CS585/DS503 Big Data Management

Introduction & Logistics

WPI, Mohamed Eltabakh

Theme of this Course

Large-Scale Data Management Big Data Analytics Data Science and Analytics

• How to manage very large amounts of data and extract value and knowledge from them

Introduction to Big Data

What is Big Data?

What makes data, "Big" Data?

Data Management Applications

Big Data Definition

• No single standard definition...

"*Big Data*" is data whose scale, diversity, and complexity require new architecture, techniques, algorithms, and analytics to manage it and extract value and hidden knowledge from it...

Characteristics of Big Data: 1-Scale (Volume)

• Data Volume

- 44x increase from 2009 2020
- From 0.8 zettabytes to 35zb
- Data volume is increasing exponentially

 By A Factor Of 44

 2000: 35.2 Zettabyte

 2020: 35.2 Zettabyte

 Data storage growth

 8
 In millions of petabytes

 (One petabyte = 1,024 terabytes)

The Digital Universe 2009-2020

Growing

Characteristics of Big Data: 2-Complexity (Varity)

- Various formats, types, and structures
- Text, numerical, images, audio, video, sequences, time series, social media data, multi-dim arrays, etc...
- Static data vs. streaming data
- A single application can be generating/collecting many types of data

To extract knowledge → all these types of data need to linked together

Characteristics of Big Data: 3-Speed (Velocity)

- Data is begin generated fast and need to be processed fast
- Online Data Analytics
- Late decisions → missing opportunities

Examples

- **E-Promotions:** Based on your current location, your purchase history, what you like → send promotions right now for store next to you
- Healthcare monitoring: sensors monitoring your activities and body → any abnormal measurements require immediate reaction

Big Data: 3V's

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Big Data = Transactions + Interactions + Observations

Increasing Data Variety and Complexity

Source: Contents of above graphic created in partnership with Teradata, Inc.

Some Make it 4V's

Harnessing Big Data

- **OLTP:** Online Transaction Processing (DBMSs)
- **OLAP:** Online Analytical Processing (Data Warehousing)
- **RTAP:** Real-Time Analytics Processing (Big Data Architecture & technology)

Data Explosion

1.3 Billion RFID tags in 2005 30 Billion RFID tags by 2010

Capital market data volumes grew **1,750%**, 2003-06

4.6 Billon Mobile Phones World Wide

Twitter process 7 terabytes of data every day

World Data Centre for Climate • 220 Terabytes of Web data • 9 Petabytes of additional data

facebook 10 to data

2 Billion Internet

users by 2011

Facebook process 10 terabytes of data every day

Who's Generating Big Data

facebook

flickr

Social media and networks (all of us are generating data)

Scientific instruments (collecting all sorts of data)

Mobile devices (tracking all objects all the time)

Sensor technology and networks (measuring all kinds of data)

- The progress and innovation is no longer hindered by the ability to collect data
- But, by the ability to manage, analyze, summarize, visualize, and discover knowledge from the collected data in a timely manner and in a scalable fashion

The Model Has Changed...

• The Model of Generating/Consuming Data has Changed

Old Model: Few companies are generating data, all others are consuming data

New Model: all of us are generating data, and all of us are consuming data

What's driving Big Data

HIGH

Predictive Analytics and Data Mining

COMPI FXITY

- Optimizations and predictive analytics
- Complex statistical analysis
- All types of data, and many sources
- Very large datasets
- More of a real-time

- Ad-hoc querying and reporting

- Data mining techniques
- Structured data, typical sources
- Small to mid-size datasets

Value of Big Data Analytics

- Big data is more real-time in nature than traditional DW applications
- Traditional DW architectures (e.g. Exadata, Teradata) are not well-suited for big data apps
- Shared nothing, massively parallel processing, scale out architectures are well-suited for big data apps

Challenges in Handling Big Data

• The Bottleneck is in technology

• New architecture, algorithms, techniques are needed

Also in technical skills

• Experts in using the new technology and dealing with big data

What Technology Do We Have For Big Data ??

Big Data Landscape

Big Data Technology

What You Will Learn *MapReduce/Hadoop*

- Learn the platform (how it is designed and works)
 - How big data are managed in a scalable, efficient way
- Learn writing Hadoop jobs in different languages
 - Programming Languages: Java, C, Python
 - High-Level Languages: Apache Pig, Hive
- Learn advanced analytics tools on top of Hadoop
 - RHadoop: Statistical tools for managing big data
 - Mahout: Data mining and machine learning tools over big data
- Learn state-of-art technology from recent research papers
 - Optimizations, indexing techniques, and other extensions to Hadoop

What You Will Learn *Distributed DBMSs*

- Differences from traditional DBMSs
- Data and Query Models
- Several operators and transaction management

What You Will Learn *NoSQL DBs*

- MongoDB and Document DBs
- Lucene Index

What You Will Learn Spark

• In-Memory Data Processing

What You Will Learn *State-of-art in Research*

- Covering many research papers
- Presentations/discussion/quizzes

Course Logistics

Course Logistics

- Web Page: <u>http://web.cs.wpi.edu/~cs585/s17/</u>
- Electronic WPI system: blackboard.wpi.edu
- Lectures
 - Thursdays: (6:00 8:50pm)
 - Divided into 2 sub-lectures 80, 80, & 10 mins break

Textbook & Reading List

• No specific textbook

• Big Data is a relatively new topic (so no fixed syllabus)

• Reading List

- We will cover the state-of-art technology from research papers in big conferences
- Many Hadoop-related papers are available on the course website

• Related books:

• Check the course website

Requirements & Grading

• Seminar-Type Course

• Students will read research papers and present them (<u>Reading List</u>)

Hands-on Course

• Several coding projects covering the entire semester

• Assignments

- Coding Projects
- Presentations

Done in teams of two

• 4 Quizzes

• Final Exam

Late Submission Policy

For Projects

- One-day late \rightarrow 10% off the max grade
- Two-day late \rightarrow 20% off the max grade
- Beyond that, no late submission is accepted

• Submissions:

• Submitted via blackboard system by the due date

More about Projects

• A virtual machine is created including the needed platform for the projects

- Ubuntu OS
- Hadoop platform
- Apache Pig/ Hive
- Mahout library (Version 0.7)
- Rhadoop
- MongoDB
- Need Virtual Box (Vbox) [free]

Next Step from You...

- 1. Form teams of two
- 2. Visit the course website
- 3. Plan ahead:
 - 1. Decide what/when you want to present??
- 4. Use Blackboard "Discussion" forum for posts or for searching for teammates

Summary of What You Will Learn

Distributed DBs

MapReduce & Hadoop

NoSQL: NotOnly SQL

Big Data Mining & Analytics

Presenting & Reading Research Papers

Prerequisites

• Good knowledge about database systems

• CS4432 (DB II) or CS542

• Programming skills

• Java, Python, Scala