CouchDB and Lucene Index

Document processing for data mining

Presented by Sijing Yang

CouchDB

A NoSQL DBMS that does not mimic SQL

Overview

-+ Background
- SQL vs. NoSQL
- A refresh on MongoDB
- Introduction
- What is CouchDB and Why
- Data modeling
- CouchDB vs. MongoDB
- Query capabilities
- CouchDB vs. MongoDB
- Concurrency control and Distributed architecture

- Conclusions and Some facts

Background: SQL vs. NoSQL

Data modeling: schema-less

- Relational: What answers do we have” (driven by the structure
of available data)

- NoSQL: What questions do we have” (driven by application-
specific pattern)

+ Query capability:

- Relational: human user-oriented, query is simple

- NoSQL: application-oriented, query is comparatively complex

Scalability:
- Relational: vertical

- NoSQL: horizontal

Background: SQL vs. NoSQL

- NoSQL is naturally fit for big data.

- Unstructured data with similar semantics but
varied syntax

- Large volume of data for which scalability is
becoming a must and consistency expensive

Visual Guide to NoSQL Systems

Availability:
Each client can
always read
and write.

CA
RDBMSs Aster Data
(MySQL, Greenplum
Postgres, Vertica
etc)

Pick Two

Relational (comparison)
Data Models | Key-Value
Column-Oriented/Tabular
Document-Oriented
AP
Dynamo Cassandra
Voldemort SimpleDB

KA Riak

Consistency:

All clients always

have the same view BigTable
of the data. Hypertable
Hbase

MongoDB Berkeley DB
Terrastore MemcacheDB
Scalaris

P

CP

Tokyo Cabinet CouchDB

Partition Tolerance:

The system works

Redis

well despite physical
network partitions.

Visual Guide to NoSQL Systems

Availability:

Each client can

always read A Data Models

and write. _
Document-Oriented

AP

CouchDB

Pick Two

C P

Consistency: CP Partition Tolerance:
All clients always The system works
have the same view MongoDB well despite physical

of the data. network partitions.

Background: A refresh on MongoDB

Use collections to organize modules

Database |Collections |Documents

Normalized (Reference) or denormalized (embedding)

contact document ‘
_id: <ObjectId2>, _id: <ObjectIdi1>,
user_id: <ObjectIdl>, username: "123xyz",
Leer docurment phone: "123-456-7890", contact: { .
email: "xyz@example.com phone: "123-456-7890", >h‘*be<1zie(1 sub
{ id: <ObjectIdl>, o } email: "xyz@example.com” y/ document
username: “123)()’2”‘\ access document Or }’
3 { access: { \
_id: <ObjectId3>, level: 5, Embedded sub
user_id: <ObjectIdi1>, group: "dev"” >do(un}ep[
level: 5, /
group: "dev” ¥
) }

Strict consistency (All writes must go to primary node)

Client Application

Writes Reads

Prlmar :
oo ““
Primary ‘
oS G
7 &, Secondary Heartbeat Secondary .
5 &, New Primary Elected

| Rehcatlon """""" :

Introduction: What is CouchDB?

i >
A ol
CouchDB

relax

e Name comes from:

- Cluster Of Unreliable Commodity Hardware

- Relax (in a couch)
e Written in Erlang, initial release in 2005

* Licence: Apache, Original author: Damien Katz, et al.

Introduction: What is CouchDB?

* An open source, document-oriented, NoSQL
database that uses JSON to store data,

as its query language, and HT TP for an API.

* Instead of locking mechanism, CouchDB uses
MVCC to resolve contlicts, and incremental

‘eplication to achieve eventual consistency.

Introduction: Why CouchDB?

* Availability, Locality and Scalability

Each node in a system should be able to make decisions purely based on local state. If you need to do something under high
load with failures occurring and you need to reach agreement, you're lost. If you're concerned about scalability, any algorithm
that forces you to run agreement will eventually become your bottleneck. Take that as a given.

—Werner Vogels, Amazon CTO and Vice President

e “A database that completely embraces the web.”

Data Modeling of CouchDB: Overview

e JSON format
e Self-contained data (as opposed to referenced data)
* One big store of documents, no collection layer

* B tree storage engine + MapReduce to compute
results of a view

10

Data Modeling of CouchDB: JSON Format

* CouchDB: JSON MongoDB: BSON

BSON 1s binary JSON

BSON is a JSON that

W— has been serialized
as a binary
— document.

11

Data Modeling of CouchDB: Self-contained Data

* CouchDB: MongoDB:
pourely self-contained embedded (NoSQL);
(Say Goodbye to SQL) or referenced (SQL-/ike)

Real-world data is managed as real-world documents

AN

Invoice 10/07/08
Joe the Plumber
Labor $200.00
Materials $ 75.00
$275.00

Due by: 12/01/08

12

Data Modeling of CouchDB: Self-contained Data

* CouchDB: MongoDB:
pourely self-contained embedded (NoSQL);
(Say Goodbye to SQL) or referenced (SQL-/ike)

If real-world data is not managed as real-world data Workers
NAME WAGE
Joe 100

Bob 150
Invoice 10/07/08 s
Joe the Plumber
Labor $200.00 -

Materials $ 75.00
$275.00

Due by: 12/01/08 Materials

NAME PRICE
Rod 30
String 20

Data Modeling of CouchDB: Data Storage

CouchDB:

one big warehouse

No global indexes predefined
on DB level, create a view to
report results instead

 MongoDB:

separated by collections
Can create index for any field of

documents in a collection
(identical to indexing in RDBMS)

Collection 1

“ID”:1;
“FIRST”: “Dipti”,
“LAST”: “Borkar”,
“ZIP": “94040",
“«<my”: “Mv”,
STATE = TCA”.
“STATUS":

{ “TEXT”: “At Con'

} “Geo_oc”: “13
) “COUNTRY": "USA"

“ID”: 1,

“FIRST”: “Dipti”,
“LAST”: “Borkar”,
“ZIP": “94040",

bl [t S
“FIRST”: “Dipti”,
“LAST”: “Borkar”,
“ZIP": “94040",
“CITY”: “MV”,
“STATE”: “CA",
“STATUS":

{ “TEXT”: “At Conf}

} “Geo_oc”: “13a”),
) “COUNTRY": "USA"

JSON

“CITY”: “MV”,

“STATE”: “CA",
“STATUS":
{ “TEXT”: “At Conf}
“GEO_LOC”: “134" },
“COUNTRY”: "USA”

}
JSON

byl |+ i S

“STATUS":

“FIRST”: “Dipti”,
“LAST”: “Borkar”,
“ZIP": “94040",
“CITY”: “MV”,
“STATE”: “CA”,

{ “TEXT”: “At Conf}

} “Geo_Loc”: “13a”),
) COUNTRY": "USA"

}

i 1

RST”: “Dipti”,
\ST”: “Borkar
P”: “94040",
TY”: “MV”,
IE - SCA”,
ATUS":

JSON

} “geo_oc”:

“STATUS":

}"COUNTRY": "USA”

{ “TEXT”: “At Conf}

}"COUNTRY": "USA”

ID”: 1,
FIRST”: “Dipti”,
LAST”: “Borkar”,
ZIP": “94040",
CITY”: “MV”,
STATE”: “CA”",

{ “TEXT”: “At Conf}
“GEO_LOC”: “134” },

JSON

”
’

“134” },

JSON

Collection 2

}

y “COUNTRY”": "USA”

“D”: 1,
“FIRST”: “Dipti”,
“LAST”: “Borkar”,
“ZIP": “94040",
“CITY”: “MV”,
“STATE”: “CA”,
“STATUS":

{ “TEXT”: “At Conf}

} “GEO_LOC”": “134" },
}”COUNTRY": "USA”

“D": 1,
“FIRST”: “Dipti”,
“LAST”: “Borkar”,
“ZIP": “94040",
“CITY”: “MV”,
“STATE”: “CA”,
“STATUS”:

{ “TEXT”: “At Conf}}

“GEO_LOC”": “134" },

Collection 3

“p: 1,
“FIRST”: “Dipt

“CITY": “MV”,
“STATE”: “CA”,
“STATUS":

“LAST": “Borkar”,
“ZIP": “94040",

{ “TEXT”: “At Conf}

“GEO_LOC”": “134" },
}"COUNTRY": "USA”

-
! ’

JSON

14

Query Capabilities: How do you aggregate unstructured data?

e Define a view
- Map takes documents and emits key/value pairs

{
i,
“first_name" "Robert", {
“hst_name":"johnson”, b
“dare_hired": "2010001/10%, "first_mme": "Bob",
“dependents” | { { "lasz_mame": "Smith”,
{ “first_name": "Margie”, "hst_rame": "Jobeson”), L - e “salary™: B0CCO,
{ “first_name":"Charlie™. "last_name": "johnson” }. *firsr_rame”: "Jim®, "first_name": "Sally”, “date_hiredl”. “201Q/03/11"
{ “fhrsc _name": "Saphie”, “lasc_name®: "johnsan®) “hst_name”: "jones”, "last_mme"; “Stevenson”, "dependents”: [
] “date_hred™ "2010002/1 1", “date_hired™ "2010/04/23", { "first_name": "Susan”, “lst_name™: "Smich” }
“salary™ 250000 “salary™ 150000 “salary™ 100000]
y) }

) 4
MapReduce
) 4

{"total _rows":4,"offset":0,"rows":[

{"id""1","key":" 1","value":{"first_name":"Margie","last_name":"Johnson"}},
{"id""1","key":" 1","value":{"first_name":"Charlie","last_name":"Johnson"}},
{"id""1","key":" I","value":{"first_name":"Sophie","last_name":"Johnson"}},
{"id":"4""key":"4","value":{"first_name":"Susan","last_name":"Smith"}}

1}

Query Capabilities: How do you aggregate unstructured data?

e Construct B-tree index
- CouchDB storage engine constructs a B-tree index

Mafll llaf” ”(h” ”(h” Ilchll M(h” llfrll M‘lt” ”it" ”Sp” Ilvi” Mvi”

Query Capabilities: How do you aggregate unstructured data?

e Query the view
- Reduce operates on the subtree to do aggregation

Maf" llaf" II(hII II(hII Ilch" Il(h” llfrll ll"t" ”it" llsp” Mvi” llvi”

Query Capabilities: How do you aggregate unstructured data?

« MapReduce + B-tree = results of a view

GET /my-database/_design/example/_view/all?startkey="a"&endkey="2"

‘example/all’ ... Range lookup
Retrieve ‘.v‘_design/example
view .‘.na " "Z u:.'
B-Tree
collation
Y ; N N w/ICU
4 .

Trigger
view update

server "3"
JSON "alln "z"
‘ > |_ view range _|
‘couchjs

rows —JSON encoding

|

HTTP: {"total rows":9,"offset":0,"rows":[...]}

18

Query Capabilities

CouchDB:

MapReduce(complex queries)

All

> (Map function J

s

Documents
I
Key, Value |
Key, Val : !
e} (1 Covmmorrer] T 1 Koo
Key, Valu 1 Key, Value |
Key, Value

}
}
}

Run

¥ View Code

function(doc) {
var store, price, value;
if (doc.item && doc.prices){
for (store in doc.prices){
price =
value = [doc.item, price];
emit(price, value);

doc.prices[store];

A

Language:| javascript v

Well, comparatively complex...

MongoDB:

(1) Aggregation pipeline(SQL-like)

(

cust_id: "A123",

amount: 500,
status: "A"

{

cust_id: "A123",

amount: 500,
status: "A"

{
cust_id: "A123"
mount: 250,
status: "A"
}
¢ $match
cust_id: "B212",
mount: 200,
status: "A"
}

cust_id: "A123"

mount: 300,
status: "D"
N

orders

}
{
cust_id: "A123",
ount: 250,
status: "A"

}

Results

{
\

X

-id: "A123",
total: 75@

$group

{
!

cust_id: "B212",

amount: 200,
status: "A"
3

}

{
_id: "B212",

total: 200

(2) MapReduce(complex queries)

{

cust_id: "A123",
amount: 500,
status: "A"

cust_id: "A123",
amount: 250,
status: "A"

cust_id: "B212",
amount: 200,
status: "A"

cust_id: "A123",
amount: 300,
status: "D"

orders

query

X

cust_id: "B212",
amount: 200,

status

{
cust_id: "A123",
amount: 5090,
s: "A"
}
{
cust_id: "A123",
amount: 250,
status: "A" map
}
{

"M

{ 923" [see, 250 1}

reauce 3

Sid=RRAI2355

value: 750

{ N6 200)

}

_id: "B212",
value: 200

order_totals

19

Data Management

Futon: Built-in administration interface

€« > CAH

Overview

[127.0.0.1:5984/_utils/database.html?hello-world/_temp_view

hello-world

€» New Document) Security... €9 Compact & Cleanup... € Delete Database... Jump to: | View:| Temporary view... §

Stale views [

v View Code
Map Function

’

Reduce Function (optional)
function(doc) {
var store, price, value;
if (doc.item && doc.prices){
for (store in doc.prices){
price = doc.prices([store];
value = [doc.item, pricel;
emit(price, value);

}
}
}

Run Language:| javascript & = Revert Save As... Save
Warning: Please note that temporary views are not suitable for use in production, as they are really slow for any database with more than a few dozen documents. You can use a
temporary view to experiment with view functions, but switch to a permanent view before using them in an application.

Key A Value

8.79 ["apple", 0.79]
D: aBB88d8d20ae17b5e8 7e47daBGaaB002490

@8.79 ["bananas", ©.79]
D: a688d8d20e17b5e87e47dabaaB0423d

1.09 ["orange", 1.09]
D: 268 20e17b5e87e47daBaaB0034 15

1.59 ["apple", 1.59]
D: a688d8d20e17b5e87e47daBaaB00249(

1.99 ["orange", 1.99]
D: a688d8d20e17b5e87e47dataaB003415

1.99 ["bananas", 1.99]
D: a688d8d20e17b5e87e47daBaaB00423d

3.19 ["orange", 3.19]
D: a688d8d20e17b5e87e47daBaaB003415

4,22 ["bananas", 4.22]
D: aBB8d8d20e17b5e87e47daBaaln423d

5.99 ["apple"”, 5.99]
D: a688d8d20e17b5e87e47daBaaB00249C

Showing 1-9 of 9 rows « Previous Page | Rows perpage:| 10 $ Next Page

»

A ol

CouchDB

relax

Tools
Overview

Configuration
Replicator
Status

Documentation
Manual

Diagnostics
Verify Installation

Recent Databases

20

Data Management

« REST API: a thin wrapper around the DB core

REST API

Create
POST http://localhost:5984/employees

Read
GET http://localhost:5984/employees/1

Update
PUT http://localhost:5984/employees/1

Delete
DELETE http://localhost:5984/employees/1

21

Data Management

« REST API: a thin wrapper around the DB core

pocoyang: ~ $: curl http://127.0.0.1:5984/
Welcome: {"couchdb™:"Welcome”, "uuid”:"bd94a3f857e93302522f918d997¢cb706" , "version”:"1.6.1"
, "vendor”:{"version":"1.6.1-1","name" : "Homebrew"}}

pocoyang: ~ $: curl -X PUT http://127.0.0.1:5984/albums
Add a new database: [

pocoyang: ~ $: curl -X PUT http://127.0.0.1:5984/albums/a688d8d20el7b5e87e47daba
, a8004eaa -d '{"title":"D Minor K466", "artist”:"Mozart";"
e RNIEVACICGVIgICIAI o -~ ¢ e "id” : "a688d8d20e17b5e87e47dabaa80R4eaa”, rev” : "1-d067700c88a3a78e5863)
970ccad4f923"}

Get a new UUID: pocoyang: ~ $: curl -X GET http://127.0.0.1:5984/_uuids
(if don’t have one) {"uuids”:["a688d8d20el7b5e87e47dabaa8004eaa"]}
pocoyang: ~ $: curl -X GET http://127.0.0.1:5984/albums/a688d8d20el7b5e87e47daba
R . a80d4eaa
ead a document: {"_id":"a688d8d20e17b5e87e47da6aa80@4eaa” , "_rev" : "1-do67700c88a3a78e5863970ccad4

f923","title":"D Minor K466","artist”:"Mozart"}

22

Concurrency control of CouchDB

* Multi-Version Concurrency Control:
- Doesn't rely on global state, always available to readers;
- Each reader is reading the latest visible snapshot

CouchDB

e CouchDB

23

Distributed Architecture of CouchDB

 Eventual consistency by incremental replication:

- Peer-to-peer rather than primary-secondary

... Replication
put 'Q P

' : Replication
. .ﬁ ‘..
Q “.._Replication

24

Distributed Architecture of CouchDB

* Eventual consistency by incremental replication:
- Peer-to-peer rather than primary-secondary
- Sites can go offline, DB will handle sync when back online

user CouchDB
Insert

CouchDB

25

Distributed Architecture of CouchDB

* Eventual consistency by incremental replication:
- Peer-to-peer rather than primary-secondary
- Sites can go offline, DB will handle sync when back online

user
insert

user
read

CouchDB

20

Distributed Architecture of CouchDB

* Eventual consistency by incremental replication:
- Peer-to-peer rather than primary-secondary
- Sites can go offline, DB will handle sync when back online

user
insert

user
read

Sync

.
.
.

CouchDB

27

Distributed Architecture of CouchDB

* Eventual consistency by incremental replication:

- Peer-to-peer rather than primary-secondary
- Sites can go offline, DB will handle sync when back online

- Automatic conflict detection and resolution

i [:] ead
lllllllllllllllllllllllllll >
read

reply with _revO
e NS user
append _rev1 delete

28

Distributed Architecture of CouchDB

* Eventual consistency by incremental replication:

- Peer-to-peer rather than primary-secondary
- Sites can go offline, DB will handle sync when back online

- Automatic conflict detection and resolution

user
read

user
delete

29

Distributed Architecture of CouchDB

* Eventual consistency by incremental replication:

- Peer-to-peer rather than primary-secondary
- Sites can go offline, DB will handle sync when back online

- Automatic conflict detection and resolution

user
read

user
delete

30

Conclusions

CouchDB

MongoDB

Primary-Secondary Peer-Peer
replication synchronization

Distributed architecture

Update in-place

Concurrency control (much like SQL) MVCC
Referenced .
Data organization One extre_l layer: .Everythlng
collections piled together
_ Aggregation pipeline MapReduce
Sy el or MapReduce views and indexes
CRUD syntax SQL-like HTTP methods

31

Some facts: Popularity

Relative adoption of NoSQL - LinkedIn member skills

ubuntu

(Stopped using in 2011..

32

Some facts: Efficiency

total time (seconds)

800

700

400

300

200

100

-

uniform_1000000

Bulk insert time

big datasets

uniform_10000000

datasetname

@ mongodb M couchdb

arangodb

accesslogs

33

When to use what?

You have some predefined queries upfront,
want to run on occasionally changing data;

Need to make sure that sites are always
available, even it data center crashes;

Need to replicate data bi-directionally
between 2 or more data centers:

It versioning is important;
You are familiar with HTTP but not SQL;

You are a geek and you believe RDBMS is
outdated.

i >
A ol
CouchDB

relax

34

When to use what?

* All other cases when you need a
distributed DBMS

‘ mongoDB

35

Lucene Index

A rich and powerful full-text search toolbox

Overview

- Background: Why full text search?

- Introduction: What Lucene Index i1s and IS not

- Lucene Workflow
- Lucene API| and Functionalities

- Some other useful resources

36

Background: Why full text search?

Question: How do you search for a term in documentation?

 Option 1: Read through 10000 pages of Help documentation

 QOption 2: Type the term in the search field

= eclipse

Search: [GNU
Search Results = = Lucky enoug n.

38 matches in All topics: Change scope

~ org.eclipse.cdt.core.dom.ast.gnu (Eclipse Fcliose help svstem sy orts option 2.
= CDT API Specification) P P Sy PP P

JavaScript is disabled on your browser.
Overview Package Class Use Tree

Deprecated Index Help Eclipse CDT 8.4 What they use Is Lucene Index.

(Luna) Prev Package Next Package
Frames No Frames All Classes ...

org.eclipse.cdt.core.dom.ast.gnu.cpp
~ (Eclipse CDT API Specification)

JavaScript is disabled on your browser.
Overview Package Class Use Tree

37

Background: Why full text search?

Question: What if you want to search for a term in a disk of 100G?

 Option 1: grep => couple hours

e Option 2: Create an index => milliseconds

Question: How do you want the result to be reported?

 Option 1: A long list of all matched hits

* Option 2: Aggregated? Sorted? Filtered?

Background: Why full text search?

3 Fundamental Questions

-+ What do you put in the index?
+ How do you create the index?

- How do you search the index?

39

Introduction: What Lucene Index is and is not

%Mff’@f@@?

 An open source, cross-platform full-text indexing and
search library in Java

* Licence: Apache, Original author: Doug Cutting

* Widely recognized for implementing both Internet
search engines and local single-site searching

* Lucene is not a search engine. It is not an application.

40

Lucene Index workflow

Flexible document Rich,powerful
format:HTTP, PDF, - search
metadata, etc. algorithms,

| Easy-to-use

APl for query

Present
Search
Results

Application

[Gather
Data

Index
Documents

Lucene

Create index
on documents

(core of Lucene) Index Parse query

and answer

41

Indexing Fundamentals

Document 1
The bright blue

butterfly hangs
on the breeze.

Query

Q- "blue sky"

J

Inverted index

ID Term Document : position
= 1 best g5
2 blue 1:3.:3:2
Document 2 3 bright 1:2,3:5
\ 4 butterfly 1:4
1 b
It's best to S breeze 8
forget the great 6 forget 2:5
sky and to — I reat 2:7
retire from 9
every wind. 8 hangs 1:56
9 needs 3:8
Document 3 10 retire e £ |
1 search 3:10
‘ 12 sky 2:8,3:3
Under blue [:> 13 wind 2:14
sky, in bright
sunlight, one
need not

search around.

Match on sequential terms

blue-3:2
sky- 3:3

J

Search object

Document

| n
reference Relevance

3 100%

INDEXING FUNDAMENTALS

e An index is maintained for a
collection of documents

e A document is a collection
of fields

e Afield is a named collection
of terms

e Atermis a paired string:
<field, term-string>

e |nverted index for efficient
term-based search

42

Lucene API

Query
Document 1 ,
Q- "blue sky"
AN ﬂ STEP 1: CREATE INDEX
The bright blue -
butterfly hangs Inverted index
Ay IERs ID Term Document : position
— RS == e Document: a record.
i I blue 1:3,3:2
Document 2 3 bright 1:2,3:5
AN L TR Field: features of a record.
It's best to ° breeze 1:8
forget the great 6 forget 2:5
f:grz':rdog — great 2:7
every wind. | e B Analyzer: parse each field
9 needs 3:8))
m—— 10| retir 2: 11 Into indexable tokens
1 search 3:10
k 12 sky 2:8,3:3
nder blu :> win - . .
o e — = ﬁ « IndexWriter: create index
unlight, on . .
Esz:’:’?‘;‘:;d Match on sequential terms aﬂd add new IﬂdeX entries
: blue-3:2
sky- 3:3
U e Directory: where index is
Search object STO red
?gfe‘:renneget Relevance
3 100%

43

ANALYZERS

* Process of converting field text into its most
fundamental indexed representation, terms.
* Analyzer tokenizes text by performing following tasks:
— extracting words
— discarding punctuation, removing accents from characters
— lowercasing (also called normalizing)
— removing common words
— reducing words to a root form (stemming)
— changing words into the basic form (lemmatization).

* Analysis done at 2 steps
— Adding fields to index
— Preparing user query for searching

source: http://www.slideshare.net/slidesharekv/lucene-apache?related=1 44

http://www.slideshare.net/slidesharekv/lucene-apache?related=1

ANALYZERS contd..

Lucene has 4 analyzers built into it

— Whitespace Analyzer D o sizlNg el g

— Simple Analyzer (e)Cauick)Cbrowa) fox)
— Stop Analyzer k| |o—e] |o—e| |o—+]
— Standard Analyzer offsets 0 34 910 1516 19

A stream of tokens is the fundamental output of the
analysis process.

During indexing, fields designated for tokenization are

processed with the specified analyzer, and each token is
written to the index as a term.

Analyzers don’t help in field separation because their scope
Is to deal with a single field at a time. Instead, parsing these
documents prior to analysis is required.

source: http://www.slideshare.net/slidesharekv/lucene-apache?related=145

http://www.slideshare.net/slidesharekv/lucene-apache?related=1

Lucene API

Query
Document 1 ,
. Q- "blue sky"
N i STEP 2: QUERY INDEX
The bright blue -
butterfly hangs Inverted index
T/ ENEPAEEE D Term Document : position "
— [5 e Query: parse query string
i W blue 1:3,3:2
Documelnt 2 3 bright g B B
N e « Term: basic unit for search
It's best to 2
forget the great 6 forget 2:5
fggrz':rdox — I great 2:7
every wind. 2 e i « TermQuery: subclass for
Document 3 10 | retir 2: 11 query operation
11 search 3:10
L 12 sky 2:8,3:3
il 4 zz‘h « IndexSearcher: search in a
unlight, on . .
rsweeldgn(t)to : Match on sequential terms bu | H: IﬂdeX
search around.
blue-3:2
sky- 3:3
| e Hits: store search results
Search object
?gfe‘:gqneget Relevance
3 100%

46

SEARCHING

* Lucene provides a powerful Search syntax.

e Supports several kinds of advanced searches.

— Boolean operators — AND, OR, NOT
— Field search - "title:Lucene AND content:Java“

—\Wildcardiseanchi=i-tex ks stex e iexss

~7

— Fuzzy search — “Solarus

— Range search — “birthday [20000101 —
20060606]”

source: http://www.slideshare.net/slidesharekv/lucene-apache?related=147

http://www.slideshare.net/slidesharekv/lucene-apache?related=1

Lucene scoring

> if (tind)-idf (1) boost (t.field in d)-lengthNorm(t. field in d)

1 in q

Factor Description

tf(t in d) Term frequency factor for the term (t) in the document (d).
idf(t) Inverse document frequency of the term.

boost(t.field in d) Field boost, as set during indexing.

e Normalization value of a field, given the number of terms within the
lengthNorm(t.field ind) | _ , i Tadh . ' ,
field. This value is computed during indexing and stored in the index.

coord(q, d) Coordination factor, based on the number of query terms the
> document contains.

Normalization value for a query, given the sum of the squared weights
queryNorm(q)
of each of the query terms.

Apache Lucene source: http://www.slideshare.net/slidesharekv/lucene-apache?related=148

http://www.slideshare.net/slidesharekv/lucene-apache?related=1

Lucene algorithms

Lucene Indexing Algorithm Search Algorithm
e K-way merge — process at disk transfer rate * Posting Lists (from .frq file)
* Average b*logN indexes - For every term Ti, we have a posting list
- n=1M,b=2 gives 20 indexes * Ti -> (Doc-id,Freq(d,y) *

- Fast to update and not too slow to search * Ti's are sorted lexically, so are posting list on doc-id

» Optimization - Postings are delta encoded(for Index Compression)

- Small sized segments kept in RAM, saves /O calls * Based on Vector Space Model

- Conjunctive Search Algorithm (AND queries)
- Disjunctive Search Algorithm (OR queries)

source: http://www.slideshare.net/prasen.bea/lucece-indexing 49

http://www.slideshare.net/prasen.bea/lucece-indexing

Integration of CouchDB and Lucene Index

An open source project for full-text indexing CouchDB:

https://github.com/rnewson/couchdb-lucene

(Outperforms MongoDB this time!)

50

https://github.com/rnewson/couchdb-lucene

REFERENCES

CouchDB:
- CouchDB: The Definitive Guide

- http://couchdb.apache.org/

- https://highlyscalable.wordpress.com/2012/03/01/nosqgl-data-modeling-
techniques/

- http://blog.scottlogic.com/2014/08/04/mongodb-vs-couchdb.html

- http://openmymind.net/2011/10/27/A-MongoDB-Guy-Learns-CouchDB/
Lucene Index:

- https://lucene.apache.org/core/documentation.html

- http://www.cnblogs.com/forfuture1978/archive/2010/04/04/1704282.html

51

http://couchdb.apache.org/
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
http://blog.scottlogic.com/2014/08/04/mongodb-vs-couchdb.html
http://openmymind.net/2011/10/27/A-MongoDB-Guy-Learns-CouchDB/
https://lucene.apache.org/core/documentation.html
http://www.cnblogs.com/forfuture1978/archive/2010/04/04/1704282.html

