
CouchDB and Lucene Index

Presented by Sijing Yang

Document processing for data mining

CouchDB
A NoSQL DBMS that does not mimic SQL

• Background

 - SQL vs. NoSQL

 - A refresh on MongoDB

• Introduction

 - What is CouchDB and Why

• Data modeling

 - CouchDB vs. MongoDB

• Query capabilities

 - CouchDB vs. MongoDB

• Concurrency control and Distributed architecture

• Conclusions and Some facts

Overview

1

• Data modeling: schema-less
 - Relational: What answers do we have? (driven by the structure
of available data)

 - NoSQL: What questions do we have? (driven by application-
specific pattern)

• Query capability:
 - Relational: human user-oriented, query is simple

 - NoSQL: application-oriented, query is comparatively complex

• Scalability:
 - Relational: vertical

 - NoSQL: horizontal

Background: SQL vs. NoSQL

2

• NoSQL is naturally fit for big data.

 - Unstructured data with similar semantics but
varied syntax

 - Large volume of data for which scalability is
becoming a must and consistency expensive

Background: SQL vs. NoSQL

3

4

5

Background: A refresh on MongoDB

Database Collections Documents

or

• Use collections to organize modules

• Normalized (Reference) or denormalized (embedding)

• Strict consistency (All writes must go to primary node)

6

• Name comes from:
 - Cluster Of Unreliable Commodity Hardware

 - Relax (in a couch)

• Written in Erlang, initial release in 2005

• Licence: Apache, Original author: Damien Katz, et al.

Introduction: What is CouchDB?

7

• An open source, document-oriented, NoSQL
database that uses JSON to store data, JavaScript
as its query language, and HTTP for an API.

• Instead of locking mechanism, CouchDB uses
MVCC to resolve conflicts, and incremental
replication to achieve eventual consistency.

Introduction: What is CouchDB?

8

• Availability, Locality and Scalability

• “A database that completely embraces the web.”

Introduction: Why CouchDB?

9

Data Modeling of CouchDB: Overview

• JSON format

• Self-contained data (as opposed to referenced data)

• One big store of documents, no collection layer

• B tree storage engine + MapReduce to compute
results of a view

10

• CouchDB: JSON • MongoDB: BSON

Data Modeling of CouchDB: JSON Format

11

• CouchDB:
 purely self-contained
 (Say Goodbye to SQL)

• MongoDB:
 embedded (NoSQL);
 or referenced (SQL-like)

Data Modeling of CouchDB: Self-contained Data

12

• CouchDB:
 purely self-contained
 (Say Goodbye to SQL)

• MongoDB:
 embedded (NoSQL);
 or referenced (SQL-like)

 email: null

Workers

NAME WAGE
Joe 100
Bob 150
…

Materials

NAME PRICE
Rod 30
String 20
…

If real-world data is not managed as real-world data

Data Modeling of CouchDB: Self-contained Data

13

• CouchDB:
 one big warehouse
 No global indexes predefined
 on DB level, create a view to
 report results instead

• MongoDB:
 separated by collections
 Can create index for any field of
 documents in a collection
 (identical to indexing in RDBMS)

Collection 1

Collection 2

Collection 3

Data Modeling of CouchDB: Data Storage

14

• Define a view
 - Map takes documents and emits key/value pairs

Query Capabilities: How do you aggregate unstructured data?

15

• Construct B-tree index
 - CouchDB storage engine constructs a B-tree index

Query Capabilities: How do you aggregate unstructured data?

16

• Query the view
 - Reduce operates on the subtree to do aggregation

Query Capabilities: How do you aggregate unstructured data?

17

• MapReduce + B-tree = results of a view

Query Capabilities: How do you aggregate unstructured data?

18

Query Capabilities
• CouchDB:
 MapReduce(complex queries)

• MongoDB:
(1) Aggregation pipeline(SQL-like)

(2) MapReduce(complex queries)

Well, comparatively complex…
19

• Futon: Built-in administration interface
Data Management

20

Data Management

• REST API: a thin wrapper around the DB core

REST API

21

Welcome:

Add a new database:

Add a new document:

Get a new UUID:
(if don’t have one)

Read a document:

… …

• REST API: a thin wrapper around the DB core

Data Management

22

Concurrency control of CouchDB

• Multi-Version Concurrency Control:
 - Doesn’t rely on global state, always available to readers;
 - Each reader is reading the latest visible snapshot

• MongoDB • CouchDB

23

Distributed Architecture of CouchDB

• Eventual consistency by incremental replication:
 - Peer-to-peer rather than primary-secondary

24

• Eventual consistency by incremental replication:
 - Peer-to-peer rather than primary-secondary
 - Sites can go offline, DB will handle sync when back online

CouchDB
generate _rev0

CouchDB

user
insert

Distributed Architecture of CouchDB

25

reply with _rev0

• Eventual consistency by incremental replication:
 - Peer-to-peer rather than primary-secondary
 - Sites can go offline, DB will handle sync when back online

CouchDB
generate _rev0

CouchDB

user
read

user
insert

Distributed Architecture of CouchDB

26

reply with _rev0

• Eventual consistency by incremental replication:
 - Peer-to-peer rather than primary-secondary
 - Sites can go offline, DB will handle sync when back online

CouchDB
generate _rev0

CouchDB

user
read

user
insert

Sync

Distributed Architecture of CouchDB

27

append _rev1

append _rev1

reply with _rev0

• Eventual consistency by incremental replication:
 - Peer-to-peer rather than primary-secondary
 - Sites can go offline, DB will handle sync when back online
 - Automatic conflict detection and resolution

CouchDB
generate _rev0

CouchDB

user
write

user
read

reply with _rev0

user
insert

user
delete

reply with _rev0

Distributed Architecture of CouchDB

28

reply with _rev1(B)
append _rev1

append _rev1

reply with _rev0
CouchDB

generate _rev0

CouchDB

user
write

user
read

reply with _rev0

user
insert

user
delete

reply with _rev0
user
read

• Eventual consistency by incremental replication:
 - Peer-to-peer rather than primary-secondary
 - Sites can go offline, DB will handle sync when back online
 - Automatic conflict detection and resolution

Distributed Architecture of CouchDB

29

reply with _rev1(B)
append _rev1

append _rev1

reply with _rev0
CouchDB

generate _rev0

CouchDB

user
write

user
read

reply with _rev0

user
insert

user
delete

reply with _rev0

Sync Conflict!

user
read

• Eventual consistency by incremental replication:
 - Peer-to-peer rather than primary-secondary
 - Sites can go offline, DB will handle sync when back online
 - Automatic conflict detection and resolution

Distributed Architecture of CouchDB

30

Conclusions

MongoDB CouchDB

Focus Consistency Availability

Distributed architecture Primary-Secondary
replication

Peer-Peer
synchronization

Concurrency control Update in-place
(much like SQL) MVCC

Document format BSON JSON

Data storage Referenced
or embedded Self-contained

Data organization One extra layer:
collections

Everything
piled together

Query capabilities Aggregation pipeline
or MapReduce

MapReduce
views and indexes

CRUD syntax SQL-like HTTP methods

31

Some facts: Popularity

(Stopped using in 2011…)

32

Some facts: Efficiency

33

When to use what?

• You have some predefined queries upfront,
want to run on occasionally changing data;

• Need to make sure that sites are always
available, even if data center crashes;

• Need to replicate data bi-directionally
between 2 or more data centers;

• If versioning is important;

• You are familiar with HTTP but not SQL;

• You are a geek and you believe RDBMS is
outdated.

34

When to use what?

• All other cases when you need a
distributed DBMS

35

Lucene Index
A rich and powerful full-text search toolbox

• Background: Why full text search?

• Introduction: What Lucene Index is and is not

• Lucene Workflow

• Lucene API and Functionalities

• Some other useful resources

Overview

36

Background: Why full text search?

• Option 1: Read through 10000 pages of Help documentation

• Option 2: Type the term in the search field

Question: How do you search for a term in documentation?

Lucky enough.

Eclipse help system supports option 2.

What they use is Lucene Index.

37

Question: What if you want to search for a term in a disk of 100G?
• Option 1: grep => couple hours

• Option 2: Create an index => milliseconds

Question: How do you want the result to be reported?
• Option 1: A long list of all matched hits

• Option 2: Aggregated? Sorted? Filtered?

Background: Why full text search?

38

3 Fundamental Questions

• What do you put in the index?

• How do you create the index?

• How do you search the index?

Background: Why full text search?

39

• An open source, cross-platform full-text indexing and
search library in Java

• Licence: Apache, Original author: Doug Cutting

• Widely recognized for implementing both Internet
search engines and local single-site searching

• Lucene is not a search engine. It is not an application.

Introduction: What Lucene Index is and is not

40

Lucene Index workflow

Create index
on documents
(core of Lucene) Parse query

and answer

Flexible document
format:HTTP, PDF,
metadata, etc.

Rich,powerful
search
algorithms,
Easy-to-use
API for query

41

Indexing Fundamentals

INDEXING FUNDAMENTALS

• An index is maintained for a
collection of documents

• A document is a collection
of fields

• A field is a named collection
of terms

• A term is a paired string:
<field, term-string>

• Inverted index for efficient
term-based search

42

Lucene API

STEP 1: CREATE INDEX

• Document: a record.

• Field: features of a record.

• Analyzer: parse each field
into indexable tokens

• IndexWriter: create index
and add new index entries

• Directory: where index is
stored

43

source: http://www.slideshare.net/slidesharekv/lucene-apache?related=1 44

http://www.slideshare.net/slidesharekv/lucene-apache?related=1

source: http://www.slideshare.net/slidesharekv/lucene-apache?related=145

http://www.slideshare.net/slidesharekv/lucene-apache?related=1

STEP 2: QUERY INDEX

• Query: parse query string

• Term: basic unit for search

• TermQuery: subclass for
query operation

• IndexSearcher: search in a
built index

• Hits: store search results

Lucene API

46

source: http://www.slideshare.net/slidesharekv/lucene-apache?related=147

http://www.slideshare.net/slidesharekv/lucene-apache?related=1

source: http://www.slideshare.net/slidesharekv/lucene-apache?related=148

http://www.slideshare.net/slidesharekv/lucene-apache?related=1

Lucene algorithms

source: http://www.slideshare.net/prasen.bea/lucece-indexing 49

http://www.slideshare.net/prasen.bea/lucece-indexing

Integration of CouchDB and Lucene Index

An open source project for full-text indexing CouchDB:

https://github.com/rnewson/couchdb-lucene

(Outperforms MongoDB this time!)

50

https://github.com/rnewson/couchdb-lucene

REFERENCES

CouchDB:

• CouchDB: The Definitive Guide

• http://couchdb.apache.org/

• https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-
techniques/

• http://blog.scottlogic.com/2014/08/04/mongodb-vs-couchdb.html

• http://openmymind.net/2011/10/27/A-MongoDB-Guy-Learns-CouchDB/

Lucene Index:

• https://lucene.apache.org/core/documentation.html

• http://www.cnblogs.com/forfuture1978/archive/2010/04/04/1704282.html

51

http://couchdb.apache.org/
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
http://blog.scottlogic.com/2014/08/04/mongodb-vs-couchdb.html
http://openmymind.net/2011/10/27/A-MongoDB-Guy-Learns-CouchDB/
https://lucene.apache.org/core/documentation.html
http://www.cnblogs.com/forfuture1978/archive/2010/04/04/1704282.html

