MongoDB-4

WPI, Mohamed Eltabakh

Architecture

Replication & Sharding
(Chapters 9, 10)

Replication (Chapter 9)

* Replica Set
+ Similar in concept to Master-Slave architecture
* Goal: Availability, Fault Tolerance, Load Balancing
- Replica sets are more recent mechanisms
+ Give more flexibility (fine tuning)

Master / Slave Replication Replica Set

Master Member 1
SECONDARY [INNGEl Member 3
PRIMARY

\

I”’
4
Member 2
SEVEL) RECOVERING

Replica Set

Consists of one “Primary” and multiple
“Secondary”
river

Writes Reads

All write ops must go to the primary

<5 e ,
«& %y
() Z>0
N Y

. . ° (44 b2
Primary maintains a log “oplog

Secondary sites periodically read &
apply the log from the primary site

Election when Primary Fails

Based on majority voting

Number of members
should be odd

During election, no
writes are accepted

. Replication
| Primary |y

Configuring Secondary Sites

peme,

Number of secondaries
Priority = (0 <€ cannot be elected as primary
Hidden = True € Cannot serve client operations

SlaveDelay = m € waits m msec before getting the updates
from the primary site

Configuring Secondary Sites

Data Center | Data Center 2 Data Center 3

Priority = 0
+ Cannot be primary

- Still has data & accept reads

* May want some data centers not to accept write ops

Hidden = True

* Imply Priority = 0

* But also cannot accept reads from clients

* Good for dedicated offline tasks, e.g., reporting

SlaveDelay = m
» Should be Hidden = True

* @Good to recover from bad transactions

Writing/Reading:
Default Behavior

© Write

- All writes go to the primary

{1}
>

UJaduU0)alTdM
asuodsay

+ A write is accepted once the
primary accept op. (in memory)

* Secondaries are not updated yet _(A
Apply

* Read

* All reads go to the primary 4 data can be lost

.) Ccepte
* Ensures Strict Consistency A

In this case Secondaries are mostly for
Availability & Fault Tolerance

8

Journaling: Persistent Data

Driver

>

~ =
= =
R

)
—_ O
-~ 0O

>
«. 0

asuodsay

R
APPly Write to journal

As before, but a write 1s accepted only after written to a log
on disk

Still on the primary site

Accepted data become persistent

9

Higher Consistency For Reads

Driver

>

* Option 1- Read From Primary
+ Keep writing as is
- Enforce the read from Primary
« =>» Strict Consistency

1UJBOUO)IITIM
asuodsay

A

7

Primary

doy
-
ajedl|day

ChLee]]

TC

o

hel

\< -----

* Option 2: Expensive Write E——

+ Write is not accepted until m secondaries are
also updated

<7

Secondary

-~
=
[}

-

db.products.insert(
{ item: "envelopes", qty : 100, type: "Clasp" },
{ writeConcern: { w: 2, wtimeout: 5000 } }

)

Read Modes

Primary
PrimaryPreferred
Secondary

SecondayPreferred

Nearest

Sharding (Chapter

« Partitioning the data across many machine

* Orthogonal to “Replication”

~~
Shard A Shard B Shard C Shard D

256 GBI 256 GB| 256 G I 256 G|

Similar Concept in DDBMS

To partition a relation R over m machines

Range partitioning Hash-based partitioning Round-robin partitioning

e

MongoDB Sharded Cluster

App Server : App Server

Router Router
(mongos) (mongos)

“’
7~ 2 or more Shards

(replica set) (replica set)

« Shard: storing data, can be replicated (replica set)

« Config Server: Storing metadata info

* Router: Accepts and routes client’s queries & update operations

14

Shard Key

* A collection 1s sharded based on a key into chunks

* Key: must be present in each document (and indexed)

Chunk | Chunk 2 Chunk 3 Chunk 4
N e e NS

/\M/\/\ ~~

pased
Rans® v
Key Space for

Kx: 25} Kx: 26}
| |

vV

R
v

Chunk | Chunk 2 Chunk 3

Keeping Balanced Shards

* Splitter
+ Splits a big chunk into two
* No change in metadata info
+ Triggered by inserts/updates

Shard A

|
» Balancer il

* Migrates chunks from one shard (largest in number) to
another (least in number)

* Changes the metadata into

Routing Operations to Shards

« Read/write operations are sent from client
to mongos {aﬁgﬁ,d}l T
Results

Mongos routes them to the appropriate
shards(s)

Shard A Shard A | Shard B Shard C

Applications/
Drivers i
5 = |
Reads/Writes — - IS0

Reads/Writes —ip- I (WSICD) 4_>§

GR A

Indexing

(Chapter 8)

Indexes

Speedup queries
MongoDB uses B-Tree indexes
Can build the index on any field of the document

Skips documents that do not have the indexed field
(Sparse index)

Indexes

Index is an auxiliary data structure

Stores the values of specific field(s)

1n a sorted order name: "al"”,

age: 18,
status: "D",

Organized in a certain structure to groups: [“"politics”, "news"”]
speedup the search

Collection

G U

\ \

[a[] [] [E[e[[] [GIx[T] [S[e[T J[s[e[] Ivl¥] []

Index Usage

Collection Query Criteria

. ,

db.users.find({ score: { "$1t": 30 } })

Ascending
order

{ score: 1 } Index

{ { { { { {

score: 25, score: 56,| score: 45, score: 75, score: 40, score: 18, score: 30,

Indexed Fields

* _id: Unique, automatically has a B-Tree index

* (Qthers are user-defined indexes

collection

F_E::::::::_-

{
score: 30,

1e-Field indeX

1

30 45

{ score: 1 } Index

Indexed Fields: Compound-
Fields

collection

[_E::::::_

Searching has to involve the 1 level field {Score: .
(userid in the example) userid: ..

.

llaa1 ”’ llcazn’ ”Ca2”, Hcazll’ ”nb1 H,
45 75 55 30 30

{ userid: 1, score: -1 } Index

descending
order

Indexed Fields: Arrays

collection

 MongoDB automatically detects that “addr” 1s an array
{

userid: "xyz",

 Indexes all the fields inside the array s

{ zip: "10036", ... },
{ zip: "94301", ... }

* Many index values will point to the same document 1

"10036" "78610" "94301" max

{ "addr.zip”: 1 } Index

24

Examples

{"_id": ObjectlId(...),
"name": "John Dce",
"address": {

"street": "Main",
"zipcode": "53511",
"state™: "WI"

}

‘ Field Level
db.people.createIndex(“name”: 1)

Sub-Field Level
db.people.createIndex(“address.zipcode”: 1)

db.people.createIndex(“address”: 1) . Embedded document Level
(equality search only)

25

Examples

{"_id": ObjectlId(...),
"name": "John Doe",
"address": {

"street": "Main",
"zipcode": "53511",
"state™: "WI"

}

‘ Compound-Field Index

db.people.createIndex({“name”: 1, “_id”: -1})

db.people.find(“_1d”: 1000}) Index cannot answer this query
(must have a predicate on ‘“name”)

Index Creation Options

{"_id": ObjectlId(...),
"name": "John Doe",
"address": ({

"street": "Main",
"zipcode": "53511",
"state"™: "WI"

}

db.people.createIndex({“name”: 1, “_id”: -1},
{“background: True”, “Sparse”: True,
“unique”: True})

Text Indexes

* Opver fields that are strings or array of strings
* Index 1s used when using $fext search operator

* Only one index on the collection
But 1t can include multiple fields

One field

db.collection.createIndex({content: "text”});

Two fields

db.collection.createIndex({subject: "text” ,content: "text”});

All text fields

db.collection.createIndex({”$**": "text”});

$Text

e Text search 1n mongoDB (Exact match)

 Uses a text index and searches the indexed fields

{ Stext: { $search: <string>, $language: <string> } }

Search for “coffee’” in
db.articles.find({ $text: { $search: "coffee" } }) the indexed field(s)

Apply “OR”
semantics

db.articles.find({ $text: { $search: "bake coffee cake" } })

$Text

» Text search in mongoDB

 Uses a text index and searches the indexed fields

{ Stext: { $search: <string>, $language: <string> } }

db.articles.find({ $text: { $search: "\"coffee cake\"" } })

db.articles.find({ $text: { $search: "bake coffee -cake" } })

Treated as one
sentence

“bake” or ‘“coffee”
but not “cake”

$Text Score

« $Text returns a score for each matching document

* Score can be used in your query

db.articles.find(
{ $text: { $search: "cake" } },

{ score: { $meta: "textScore" } }

).sort({ score: { $meta: "textScore" } }).limit(3)

For regular expression match use $regex operator

MongoDB is :

General
Purpose

Easy to
Use

Rich data
model

Easy mapping

Operates at in-

memory speed
whereve

Full featured
indexes

Native language
drivers in all
popular

Sophisticated
query language

Simple to setup
and manage

Dynamically
add / remove
capacity with no

L e

