
MongoDB-4

WPI, Mohamed Eltabakh

1

Architecture
Replication & Sharding

(Chapters 9, 10)

2

Replication (Chapter 9)

•  Replica Set
•  Similar in concept to Master-Slave architecture
•  Goal: Availability, Fault Tolerance, Load Balancing
•  Replica sets are more recent mechanisms
•  Give more flexibility (fine tuning)

3

Replica Set

•  Consists of one “Primary” and multiple
“Secondary”

•  All write ops must go to the primary

•  Primary maintains a log “oplog”

•  Secondary sites periodically read &
apply the log from the primary site

4

Election when Primary Fails

•  Based on majority voting

•  Number of members
should be odd

•  During election, no
writes are accepted

5

Configuring Secondary Sites

•  Number of secondaries

•  Priority = 0 ç cannot be elected as primary

•  Hidden = True ç Cannot serve client operations

•  SlaveDelay = m ç waits m msec before getting the updates
from the primary site

6

Configuring Secondary Sites

•  Priority = 0
•  Cannot be primary
•  Cannot accept write

•  Still has data & accept reads
•  May want some data centers not to accept write ops

•  Hidden = True
•  Imply Priority = 0
•  But also cannot accept reads from clients

•  Good for dedicated offline tasks, e.g., reporting

•  SlaveDelay = m
•  Should be Hidden = True

•  Good to recover from bad transactions

7

Writing/Reading:
Default Behavior

•  Write
•  All writes go to the primary

•  A write is accepted once the
primary accept op. (in memory)

•  Secondaries are not updated yet

•  Read
•  All reads go to the primary

•  Ensures Strict Consistency

8

Accepted data can be lost

Journaling: Persistent Data

•  As before, but a write is accepted only after written to a log
on disk

•  Still on the primary site

•  Accepted data become persistent

9

Higher Consistency For Reads

•  Option 1- Read From Primary
•  Keep writing as is
•  Enforce the read from Primary
•  è Strict Consistency

•  Option 2: Expensive Write
•  Write is not accepted until m secondaries are

also updated

10

db.products.insert(
 { item: "envelopes", qty : 100, type: "Clasp" },
 { writeConcern: { w: 2, wtimeout: 5000 } }
)

Read Modes

11

Primary

PrimaryPreferred

Secondary

SecondayPreferred

Nearest

Sharding (Chapter 10)

•  Partitioning the data across many machine

•  Orthogonal to “Replication”

12

In this Figure

Only sharding, No replication

Similar Concept in DDBMS

13

MongoDB Sharded Cluster

•  Shard: storing data, can be replicated (replica set)

•  Config Server: Storing metadata info

•  Router: Accepts and routes client’s queries & update operations

14

Shard Key

•  A collection is sharded based on a key into chunks

•  Key: must be present in each document (and indexed)

15

Range-Based

Hash-Based

Keeping Balanced Shards

•  Splitter
•  Splits a big chunk into two
•  No change in metadata info
•  Triggered by inserts/updates

•  Balancer
•  Migrates chunks from one shard (largest in number) to

another (least in number)
•  Changes the metadata into

16

Routing Operations to Shards

•  Read/write operations are sent from client
to mongos

•  Mongos routes them to the appropriate
shards(s)

17

Indexing
(Chapter 8)

18

Indexes

•  Speedup queries

•  MongoDB uses B-Tree indexes

•  Can build the index on any field of the document

•  Skips documents that do not have the indexed field
(Sparse index)

19

Indexes

20

•  Index is an auxiliary data structure

•  Stores the values of specific field(s)
in a sorted order

•  Organized in a certain structure to
speedup the search

Index Usage

21

Ascending
order

Indexed Fields

•  _id: Unique, automatically has a B-Tree index

•  Others are user-defined indexes

22

Single-Field index

Indexed Fields: Compound-
Fields

23

Searching has to involve the 1st level field

(userid in the example)

descending
order

Indexed Fields: Arrays

24

•  MongoDB automatically detects that “addr” is an array

•  Indexes all the fields inside the array

•  Many index values will point to the same document

Examples

25

db.people.createIndex(“name”: 1)

db.people.createIndex(“address.zipcode”: 1)

db.people.createIndex(“address”: 1)

Field Level

Sub-Field Level

Embedded document Level
 (equality search only)

Examples

26

db.people.createIndex({“name”: 1, “_id”: -1})

Compound-Field Index

db.people.find(“_id”: 1000}) Index cannot answer this query
 (must have a predicate on “name”)

Index Creation Options

27

db.people.createIndex({“name”: 1, “_id”: -1},
 {“background: True”, “Sparse”: True,
 “unique”: True})

Text Indexes

•  Over fields that are strings or array of strings

•  Index is used when using $text search operator

•  Only one index on the collection
•  But it can include multiple fields

28

db.collection.createIndex({content: "text”});

db.collection.createIndex({subject: "text”,content: "text”});

db.collection.createIndex({”$**": "text”});

One field

Two fields

All text fields

$Text

•  Text search in mongoDB (Exact match)

•  Uses a text index and searches the indexed fields

29

db.articles.find({ $text: { $search: "coffee" } })
Search for “coffee” in
the indexed field(s)

db.articles.find({ $text: { $search: "bake coffee cake" } })
Apply “OR”
semantics

$Text

•  Text search in mongoDB

•  Uses a text index and searches the indexed fields

30

db.articles.find({ $text: { $search: "\"coffee cake\"" } })
Treated as one
sentence

db.articles.find({ $text: { $search: "bake coffee -cake" } })
“bake” or “coffee”
but not “cake”

$Text Score

•  $Text returns a score for each matching document

•  Score can be used in your query

31

db.articles.find(

 { $text: { $search: "cake" } },

 { score: { $meta: "textScore" } }

).sort({ score: { $meta: "textScore" } }).limit(3)

32

