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Query Language in 
MongoDB 
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Find() Operator 
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Means ascending 



Find() + Projection 
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Equivalent to in SQL: 

Means inclusion + 
 _id is always automatically included   



Find(): Exclude Fields 
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Means exclusion 

Cannot mix “inclusion & exclusion” in the same operator except for _id 

Means equality 



Find() More Examples 

db.inventory.find( ) 
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db.inventory.find( {} ) 

Report all documents in the “inventory” collection  

Select * 
From inventory; Equivalent to in SQL: 

db.inventory.find(  
        { type: { $in: [ 'food', 'snacks' ] } } 
 ) 

Report all documents in the “inventory” collection 
Where type = ‘food’ or ‘snacks’  

Select * 
From inventory 
Where type in  
       (‘food’, ‘snacks’); 

Equivalent to in SQL: 



Find(): AND & OR 
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AND  Semantics 

OR Semantics 

AND + OR Semantics 

Type = ‘food’ and (qty > 100  or price < 9.95) 



$AND 
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Any thing is true except 0 (for numbers), Null (for objects).  
 
Arrays evaluate to True 

True 

False 

True 

True 

False 



Queries Return Cursors 

•  All queries return a the results in a cursor 

•  If  not assigned to a variable è Printed to screen  
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•  Results are stored in a cursor 
•  Many operators on top of  that to manipulate the cursor   

Cursor’s Methods:  
http://docs.mongodb.org/manual/reference/method/js-cursor/ 
 



Cursor Manipulation 
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Dumps the content to 
screen (1st 20 document)  

Explicitly iterate over 
each document 

Shortcuts for iterations 



Querying Complex Types  
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Querying Complex Types  
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Documents can be complex, E.g., 
(Arrays, embedded documents, any 
nesting of  these, many levels)  

Queries get complex too !!! 



Array Manipulation 
(Exact Match) 
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Array Manipulation 
(Search By Element) 
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Notice: if  a document has “ratings” as an Integer field = 5, it will be returned 



Array Manipulation 
(Search By Position) 
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Notice: if  a document has “ratings” as an Integer field = 5, it will not be returned 



Array Manipulation 
($elemMatch) 
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Another Example 
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Embedded Object Matching 
(Exact doc Matching) 
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Exact-match 
(entire object) // match 



Embedded Object Matching 
(Field Matching) 
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db.persons.find( {“address.state” : “CA”}) Using dot notation 



Try This 
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Matching Arrays of  Embedded Documents 
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Select all documents where the memos array contains in the 1st element a 
document written by 'shipping’ department 



Matching Arrays of  Embedded 
Documents 
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db.inventory.find( { 'memos.0.by': 'shipping' } ) 

Means the 1st element in the array 

// Returns 1st document 



Matching Arrays of  Embedded Documents 
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Select all documents where the memos array contains a document written 
by 'shipping’ department 



Matching Arrays of  Embedded 
Documents 
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db.inventory.find( { 'memos.by': 'shipping' } ) 

Means any element in the array 

// Returns both documents 



Matching Arrays of  Embedded 
Documents: Multiple Conditions 
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Select all documents where the memos array contains a document 
written by 'shipping’ department and the content “on time” 



Matching Arrays of  Embedded 
Documents: Multiple Conditions 
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Query Operators 

•  http://docs.mongodb.org/manual/reference/operator/query/ 
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•  Comparison Operators 

•  Logical Operators 

•  Element Operators 

•  Evaluation Operators 

•  Array Operators 
 
•  … 



Query Operators: Comparison Op 
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db.inventory.find( { qty: { $gte: 20 } } ) 

db.inventory.update(  
 { "carrier.fee": { $gte: 2 } },  
 { $set: { price: 9.99 } }  

) 



Query Operators: Evaluation Op 
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$Where Operator 

•  Passes a JavaScript expression or function to the query system 

•  Very flexible in expressing complex conditions 

•  But it is relatively slow as it evaluates for each document (no indexes) 

•  Similar to using UDF in the Where clause in relational databases 
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); 



$Where Operator 
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db.myCollection.find( { active: true, $where: "this.credits - this.debits < 0" } ); 
 
 
db.myCollection.find( { active: true,  

                      $where: function() { return obj.credits - obj.debits < 0; } } ); 

•  Can combine MongoDB operators  with  $Where 

Is this And semantics or  Or semantics ??? 



Collection Modeling 
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Collection Modeling 

•  Modeling multiple collections that reference each other 

•  In Relational DBs è FK-PK Relationships 

•  In MongoDB, two options 
•  Referencing  

•  Embedding 
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FK-PK in Relational DBs 
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!  Create “Students”  relation 

CREATE TABLE Students 
 (sid CHAR(20),  
  name CHAR(20),  
  login CHAR(10), 
  age INTEGER, 
  gpa REAL);   

CREATE TABLE Courses 
         (cid Varchar2(20),  
          name varchar2(50),  
          maxCredits integer, 
           graduateFlag char(1));   

!  Create “Courses”  relation 

CREATE TABLE Enrolled 
 (sid CHAR(20),  
  cid Varchar2(20),  
 enrollDate date, 
  grade CHAR(2));   

!  Create “Enrolled”  relation 
Foreign key 

Foreign key 

u Each tuple in “Enrolled” 
reference a specific student 
and a specific course 



How to Define FK-PK 
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!  Create “Students”  relation 

CREATE TABLE Students 
 (sid CHAR(20) Primary Key,  
  name CHAR(20),  
  login CHAR(10), 
  age INTEGER, 
  gpa REAL);   

CREATE TABLE Courses 
         (cid Varchar2(20) Primary Key,  
          name varchar2(50),  
          maxCredits  integer, 
           graduateFlag char(1));   

!  Create “Courses”  relation 

CREATE TABLE Enrolled 
 (sid  CHAR(20) Foreign Key References Students (sid),  
  X Varchar2(20),  
 enrollDate date, 
  grade CHAR(2),  

 Constraint fk_cid Foreign Key (X) References Courses (cid));   

!  Create “Enrolled”  relation 

Two ways to define the FK 
constrain while creating a table 



FK-PK in Relational DBs 
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It comes with an enforcement mechanism 

•  Cannot insert a FK for a non-existing PK  
•  You cannot delete a PK that has a FK 



In MongoDB 

•  Referencing between two collections 
•  Use Id of  one and put in the other 

•  Very similar to FK-PK in Relational DBs 

•  Does not come with enforcement mechanism  

•  Embedding between two collections 
•  Put the document from one collection inside the other one 
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Referencing 
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•  Have three collections in the DB: “User”, “Contact”, “Access” 
•  Link them by _id (or any other field(s)) 

Normalized Way 

No Enforcements 



Embedding 

•  Have one collection in DB: “User” 

•  The others are embedded inside each user’s document 
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De-Normalized Way 



Examples (1) 

•  “Patron” & “Addresses” 
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•  If  it is 1-1 relationship 

•  If  usually read the address with the name 

•  If  address document usually does not expand   

Referencing 

If most of these hold  
 è better use Embedding 



Examples (2) 

•  “Patron” & “Addresses” 
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•  When you read, you get the entire document at once 

•  In Referencing è Need to issue multiple queries  

Embedding 



Examples (3) 

•  What if  a “Patron” can have many “Addresses” 
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•  Do you read them together è Go for Embedding 

•  Are addresses dynamic (e.g., add new ones frequently)  

  è Go for Referencing  

Referencing 



Examples (4) 

•  What if  a “Patron” can have many “Addresses” 
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Embedding 

Use array of addresses 



Examples (5) 

•  If  addresses are added frequently … 
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This array will expand 
frequently  

Size of “Patron” document 
increases frequently  

May trigger re-locating the 
document each time (Bad) 



Document Size and Storage 

•  Each document needs to be contiguous on disk 

•  If  doc size increases è Document location 
must change 

•  If  doc location changes è Indexes must be 
updates  è leads to more expensive updates 
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•  In a newer version, each document is allocated a power-of-2 bytes (the 
smallest above its size) 

•  Meaning, the system keeps some space empty for possible expansion  



Examples (6) 

•  One-to-Many “Book”, “Publisher” 
•  A book has one publisher 
•  A publisher publishes many books 

•  If embed “Publisher” inside “Book” 
•  Repeating publisher info inside each of  its books 
•  Very hard to update publisher’s info 

•  If embed “Book” inside “Publisher” 
•  Book becomes an array (many) 
•  Frequently update and increases in size 
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Referencing is better  

in this case 



Modeling Tree Structure 

47 



Collections with Tree-Like 
Relationships 
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•  Insert these records while maintaining this tree-like relationship 

Given one node, answer queries: 

•  Report the parent node 

•  Report the children nodes 

•  Report the ancestors 

•  Report the descendants  

•  Report the siblings 



Method 1: Parent References 
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•  Each document has a field “parent” 

•  Order does not matter 



Method 1: Parent References 
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Q1: Parent of “Programming” 

Q2: Siblings of “Databases” 

db.categories.find( {_id: "Programming"}, {parent: 1, _id: 0});  

var  parentDoc = db.categories.find( {_id: "Databases"});  

db.categories.find( {parent:  parentDoc._id,   
                                 _id: { $ne :"Databases"}     });  



Method 1: Parent References 
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Q3: Descendants of “Programming” 



Method 1: Parent References 
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Q3: Descendants of “Programming” 

var descendants = []; 
var stack = []; 

var item = db.categories.find({_id: "Programming"}); 

stack.push(item); 

while (stack.length > 0) { 

 var current = stack.pop(); 

        var children =  db.categories.find( {parent: current._id}); 

 while (children.hasNext() == true) { 

  var child = children.next(); 

  descendants.push(child._id); 

  stack.push(child); 

 } 

} 
 

descendants;  



Method 1: Parent References 
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Q4: Ancestors of “MongoDB” 



Method 2: Child References 
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•  Each document has an array of  
immediate children 



Method 2: Child References 
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Q1: Get children documents of “Programming” 

var x = db.categories.findOne({_id: "Programming"}).children; 
 
db.categories.find({_id: {$in: x}}); 



Method 2: Child References 
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Q2: Ancestors of “MongoDB” 



Method 2: Child References 
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Q2: Ancestors of “MongoDB” 

var results=[]; 

var parent = db.categories.findOne({children: "MongoDB"}); 

while(parent){ 

 print({Message: "Going up one level…"}); 

 results.push(parent._id); 

 parent = db.categories.findOne({children: parent._id}); 

} 

 

results; 



Method 2: Child References 
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Q3: descendants of “Books” 



Other Methods 

•  Several other methods: 
•  Include both parent and children  

•  Include Ancestors 

•  Include root-to-node path 
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