
MongoDB-2

WPI, Mohamed Eltabakh

1

Query Language in
MongoDB

2

Find() Operator

3

Means ascending

Find() + Projection

4

Equivalent to in SQL:

Means inclusion +
 _id is always automatically included

Find(): Exclude Fields

5

Means exclusion

Cannot mix “inclusion & exclusion” in the same operator except for _id

Means equality

Find() More Examples

db.inventory.find()

6

db.inventory.find({})

Report all documents in the “inventory” collection

Select *
From inventory; Equivalent to in SQL:

db.inventory.find(
 { type: { $in: ['food', 'snacks'] } }
)

Report all documents in the “inventory” collection
Where type = ‘food’ or ‘snacks’

Select *
From inventory
Where type in
 (‘food’, ‘snacks’);

Equivalent to in SQL:

Find(): AND & OR

7

AND Semantics

OR Semantics

AND + OR Semantics

Type = ‘food’ and (qty > 100 or price < 9.95)

$AND

8

Any thing is true except 0 (for numbers), Null (for objects).

Arrays evaluate to True

True

False

True

True

False

Queries Return Cursors

•  All queries return a the results in a cursor

•  If not assigned to a variable è Printed to screen

9

•  Results are stored in a cursor
•  Many operators on top of that to manipulate the cursor

Cursor’s Methods:
http://docs.mongodb.org/manual/reference/method/js-cursor/

Cursor Manipulation

10

Dumps the content to
screen (1st 20 document)

Explicitly iterate over
each document

Shortcuts for iterations

Querying Complex Types

11

Querying Complex Types

12

Documents can be complex, E.g.,
(Arrays, embedded documents, any
nesting of these, many levels)

Queries get complex too !!!

Array Manipulation
(Exact Match)

13

Array Manipulation
(Search By Element)

14

Notice: if a document has “ratings” as an Integer field = 5, it will be returned

Array Manipulation
(Search By Position)

15

Notice: if a document has “ratings” as an Integer field = 5, it will not be returned

Array Manipulation
($elemMatch)

16

Another Example

17

Embedded Object Matching
(Exact doc Matching)

18

Exact-match
(entire object) // match

Embedded Object Matching
(Field Matching)

19

db.persons.find({“address.state” : “CA”}) Using dot notation

Try This

20

Matching Arrays of Embedded Documents

21

Select all documents where the memos array contains in the 1st element a
document written by 'shipping’ department

Matching Arrays of Embedded
Documents

22

db.inventory.find({ 'memos.0.by': 'shipping' })

Means the 1st element in the array

// Returns 1st document

Matching Arrays of Embedded Documents

23

Select all documents where the memos array contains a document written
by 'shipping’ department

Matching Arrays of Embedded
Documents

24

db.inventory.find({ 'memos.by': 'shipping' })

Means any element in the array

// Returns both documents

Matching Arrays of Embedded
Documents: Multiple Conditions

25

Select all documents where the memos array contains a document
written by 'shipping’ department and the content “on time”

Matching Arrays of Embedded
Documents: Multiple Conditions

26

Query Operators

•  http://docs.mongodb.org/manual/reference/operator/query/

27

•  Comparison Operators

•  Logical Operators

•  Element Operators

•  Evaluation Operators

•  Array Operators

•  …

Query Operators: Comparison Op

28

db.inventory.find({ qty: { $gte: 20 } })

db.inventory.update(
 { "carrier.fee": { $gte: 2 } },
 { $set: { price: 9.99 } }

)

Query Operators: Evaluation Op

29

$Where Operator

•  Passes a JavaScript expression or function to the query system

•  Very flexible in expressing complex conditions

•  But it is relatively slow as it evaluates for each document (no indexes)

•  Similar to using UDF in the Where clause in relational databases

30

);

$Where Operator

31

db.myCollection.find({ active: true, $where: "this.credits - this.debits < 0" });

db.myCollection.find({ active: true,

 $where: function() { return obj.credits - obj.debits < 0; } });

•  Can combine MongoDB operators with $Where

Is this And semantics or Or semantics ???

Collection Modeling

32

Collection Modeling

•  Modeling multiple collections that reference each other

•  In Relational DBs è FK-PK Relationships

•  In MongoDB, two options
•  Referencing

•  Embedding

33

FK-PK in Relational DBs

34

!  Create “Students” relation

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa REAL);

CREATE TABLE Courses
 (cid Varchar2(20),
 name varchar2(50),
 maxCredits integer,
 graduateFlag char(1));

!  Create “Courses” relation

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid Varchar2(20),
 enrollDate date,
 grade CHAR(2));

!  Create “Enrolled” relation
Foreign key

Foreign key

u Each tuple in “Enrolled”
reference a specific student
and a specific course

How to Define FK-PK

35

!  Create “Students” relation

CREATE TABLE Students
 (sid CHAR(20) Primary Key,
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa REAL);

CREATE TABLE Courses
 (cid Varchar2(20) Primary Key,
 name varchar2(50),
 maxCredits integer,
 graduateFlag char(1));

!  Create “Courses” relation

CREATE TABLE Enrolled
 (sid CHAR(20) Foreign Key References Students (sid),
 X Varchar2(20),
 enrollDate date,
 grade CHAR(2),

 Constraint fk_cid Foreign Key (X) References Courses (cid));

!  Create “Enrolled” relation

Two ways to define the FK
constrain while creating a table

FK-PK in Relational DBs

36

It comes with an enforcement mechanism

•  Cannot insert a FK for a non-existing PK
•  You cannot delete a PK that has a FK

In MongoDB

•  Referencing between two collections
•  Use Id of one and put in the other

•  Very similar to FK-PK in Relational DBs

•  Does not come with enforcement mechanism

•  Embedding between two collections
•  Put the document from one collection inside the other one

37

Referencing

38

•  Have three collections in the DB: “User”, “Contact”, “Access”
•  Link them by _id (or any other field(s))

Normalized Way

No Enforcements

Embedding

•  Have one collection in DB: “User”

•  The others are embedded inside each user’s document

39

De-Normalized Way

Examples (1)

•  “Patron” & “Addresses”

40

•  If it is 1-1 relationship

•  If usually read the address with the name

•  If address document usually does not expand

Referencing

If most of these hold
 è better use Embedding

Examples (2)

•  “Patron” & “Addresses”

41

•  When you read, you get the entire document at once

•  In Referencing è Need to issue multiple queries

Embedding

Examples (3)

•  What if a “Patron” can have many “Addresses”

42

•  Do you read them together è Go for Embedding

•  Are addresses dynamic (e.g., add new ones frequently)

 è Go for Referencing

Referencing

Examples (4)

•  What if a “Patron” can have many “Addresses”

43

Embedding

Use array of addresses

Examples (5)

•  If addresses are added frequently …

44

This array will expand
frequently

Size of “Patron” document
increases frequently

May trigger re-locating the
document each time (Bad)

Document Size and Storage

•  Each document needs to be contiguous on disk

•  If doc size increases è Document location
must change

•  If doc location changes è Indexes must be
updates è leads to more expensive updates

45

•  In a newer version, each document is allocated a power-of-2 bytes (the
smallest above its size)

•  Meaning, the system keeps some space empty for possible expansion

Examples (6)

•  One-to-Many “Book”, “Publisher”
•  A book has one publisher
•  A publisher publishes many books

•  If embed “Publisher” inside “Book”
•  Repeating publisher info inside each of its books
•  Very hard to update publisher’s info

•  If embed “Book” inside “Publisher”
•  Book becomes an array (many)
•  Frequently update and increases in size

46

Referencing is better

in this case

Modeling Tree Structure

47

Collections with Tree-Like
Relationships

48

•  Insert these records while maintaining this tree-like relationship

Given one node, answer queries:

•  Report the parent node

•  Report the children nodes

•  Report the ancestors

•  Report the descendants

•  Report the siblings

Method 1: Parent References

49

•  Each document has a field “parent”

•  Order does not matter

Method 1: Parent References

50

Q1: Parent of “Programming”

Q2: Siblings of “Databases”

db.categories.find({_id: "Programming"}, {parent: 1, _id: 0});

var parentDoc = db.categories.find({_id: "Databases"});

db.categories.find({parent: parentDoc._id,
 _id: { $ne :"Databases"} });

Method 1: Parent References

51

Q3: Descendants of “Programming”

Method 1: Parent References

52

Q3: Descendants of “Programming”

var descendants = [];
var stack = [];

var item = db.categories.find({_id: "Programming"});

stack.push(item);

while (stack.length > 0) {

 var current = stack.pop();

 var children = db.categories.find({parent: current._id});

 while (children.hasNext() == true) {

 var child = children.next();

 descendants.push(child._id);

 stack.push(child);

 }

}

descendants;

Method 1: Parent References

53

Q4: Ancestors of “MongoDB”

Method 2: Child References

54

•  Each document has an array of
immediate children

Method 2: Child References

55

Q1: Get children documents of “Programming”

var x = db.categories.findOne({_id: "Programming"}).children;

db.categories.find({_id: {$in: x}});

Method 2: Child References

56

Q2: Ancestors of “MongoDB”

Method 2: Child References

57

Q2: Ancestors of “MongoDB”

var results=[];

var parent = db.categories.findOne({children: "MongoDB"});

while(parent){

 print({Message: "Going up one level…"});

 results.push(parent._id);

 parent = db.categories.findOne({children: parent._id});

}

results;

Method 2: Child References

58

Q3: descendants of “Books”

Other Methods

•  Several other methods:
•  Include both parent and children

•  Include Ancestors

•  Include root-to-node path

59

