
PARALLEL & DISTRIBUTED
DATABASES

1

INTRODUCTION

•  In centralized database:
•  Data is located in one

place (one server)

•  All DBMS functionalities are

done by that server
•  Enforcing ACID properties

of transactions

•  Concurrency control,
recovery mechanisms

•  Answering queries

2

INTRODUCTION

•  In Distributed databases:
•  Data is stored in multiple places (each is running a DBMS)
•  New notion of distributed transactions
•  DBMS functionalities are now distributed over many machines
•  Revisit how these functionalities work in distributed environment

3

WHY DISTRIBUTED DATABASES

•  Data is too large (Volume in Big Data)

•  Applications are by nature distributed
•  Bank with many branches
•  Chain of retail stores with many locations
•  Library with many branches

•  Get benefit of distributed and parallel processing
•  Faster response time for queries

4

PARALLEL VS. DISTRIBUTED

•  Distributed processing usually imply parallel processing
(not vise versa)
•  Can have parallel processing on a single machine

•  Assumptions about architecture
•  Parallel Databases
•  Machines are physically close to each other, e.g., same server room
•  Machines connects with dedicated high-speed LANs and switches
•  Communication cost is assumed to be small
•  Can shared-memory, shared-disk, or shared-nothing architecture

•  Distributed Databases
•  Machines can far from each other, e.g., in different continent
•  Can be connected using public-purpose network, e.g., Internet
•  Communication cost and problems cannot be ignored
•  Usually shared-nothing architecture

5

6

OVERVIEW ON TRANSACTIONS

BEGIN TRANSACTION;

INSERT INTO Takes
 SELECT Students.SSN, Courses.CID
 FROM Students, Courses
 WHERE Students.name = ‘Mary Johnson’ and
 Courses.name = ‘CSE444’

-- More updates here....

IF everything-went-OK
 THEN COMMIT;
ELSE ROLLBACK

If system crashes, the transaction is still either committed or aborted

7

OVERVIEW ON TRANSACTIONS

•  A transaction = sequence of statements that either all
succeed, or all fail

•  Basic unit of processing

•  Transactions have the ACID properties:
A = atomicity
C = consistency
I = independence (Isolation)
D = durability

TRANSACTION	 ACID	 PROPERTIES	

•  Each transaction has a Start and End and does many things in
between

•  “A” è Atomic: Either the entire transaction is done (all its actions) or
none.

•  “C” è Consistency: A transaction must move the DB from one
consistent state to another consistent state

8

T1

T2

T3
T4

TRANSACTION	 ACID	 PROPERTIES	 (CONT’D)	

•  What about interaction
•  Can T2 read what T1 is writing?
•  Can T3 read what T1 is reading?
•  Can T4 read what T1 wrote?

•  “I” è Isolation: Although running concurrently, they should
appear as if they run is a certain serial order

9

T1

T2

T3
T4

TRANSACTION	 ACID	 PROPERTIES	 (CONT’D)	

•  If T1 failed & T2 completed è This means what?
•  T1 ç Rolledback & T2 ç Committed

•  “D” è Durability: The effect of a committed transaction must
be persistent (not lost)

10

T1

T2

T3
T4

11

OVERVIEW ON TRANSACTIONS
BEGIN TRANSACTION;

INSERT INTO Takes
 SELECT Students.SSN, Courses.CID
 FROM Students, Courses
 WHERE Students.name = �Mary Johnson� and
 Courses.name = �CSE444�

-- More updates here....

IF everything-went-OK
 THEN COMMIT;
ELSE ROLLBACK

BEGIN TRANSACTION;

INSERT INTO Takes
 SELECT Students.SSN, Courses.CID
 FROM Students, Courses
 WHERE Students.name = �Mary Johnson� and
 Courses.name = �CSE444�

-- More updates here....

IF everything-went-OK
 THEN COMMIT;
ELSE ROLLBACK

BEGIN TRANSACTION;

INSERT INTO Takes
 SELECT Students.SSN, Courses.CID
 FROM Students, Courses
 WHERE Students.name = �Mary Johnson� and
 Courses.name = �CSE444�

-- More updates here....

IF everything-went-OK
 THEN COMMIT;
ELSE ROLLBACK

BEGIN TRANSACTION;

INSERT INTO Takes
 SELECT Students.SSN, Courses.CID
 FROM Students, Courses
 WHERE Students.name = �Mary Johnson� and
 Courses.name = �CSE444�

-- More updates here....

IF everything-went-OK
 THEN COMMIT;
ELSE ROLLBACK

Logging and Recovery Control

Many transactions at the
same time
(Concurrency Control)

Ensure the ACID
properties

Fundamental differences on how to do it in centralized
vs. distributed DBs.

PARALLEL DATABASE
&

PARALLEL PROCESSING

12

WHY PARALLEL PROCESSING

13

1 Terabyte

10 MB/s

 At 10 MB/s
1.2 days to scan

1 Terabyte

1,000 x parallel
1.5 minute to scan.

Bandwidth

•  Divide a big problem into many smaller ones to be solved in
parallel

•  Increase bandwidth (in our case decrease queries’ response
time)

DIFFERENT ARCHITECTURE

•  Three possible architectures for passing information

14

Shared-memory Shared-disk

Shared-nothing

1- SHARED-MEMORY ARCHITECTURE

•  Every processor has its own disk

•  Single memory address-space for
all processors
•  Reading or writing to far memory can

be slightly more expensive

•  Every processor can have its own
local memory and cache as well

15

2- SHARED-DISK ARCHITECTURE

•  Every processor has its own
memory (not accessible by others)

•  All machines can access all disks
in the system

•  Number of disks does not
necessarily match the number of
processors

16

3- SHARED-NOTHING ARCHITECTURE

•  Every machine has its own memory and
disk
•  Many cheap machines (commodity

hardware)

•  Communication is done through high-
speed network and switches

•  Usually machines can have a hierarchy
•  Machines on same rack

•  Then racks are connected through
high-speed switches

17

•  Scales better
•  Easier to build
•  Cheaper cost

TYPES OF PARALLELISM

•  Pipeline Parallelism (Inter-operator parallelism)
•  Ordered (or partially ordered) tasks and different machines

are performing different tasks

•  Partitioned Parallelism (Intra-operator parallelism)
•  A task divided over all machines to run in parallel

18

Partition Sequential
 Sequential

Pipeline Sequential
 Sequential
 Sequential

Order between
them

IDEAL SCALABILITY SCENARIO

•  Speed-Up
•  More resources means

proportionally less time for
given amount of data.

•  Scale-Up
•  If resources increased in

proportion to increase in
data size, time is constant.

degree of ||-ism

X
ac

t/
se

c.

(t
hr

ou
gh

pu
t)

 Ideal

degree of ||-ism

se
c.

/X
ac

t
(r

es
po

ns
e

tim
e)

Ideal

PARTITIONING OF DATA

20

A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z A...E F...J K...N O...S T...Z

To partition a relation R over m machines

Range partitioning Hash-based partitioning Round-robin partitioning

•  Shared-nothing architecture is sensitive to partitioning

•  Good partitioning depends on what operations are
common

PARALLEL ALGORITHMS FOR
DBMS OPERATIONS

21

PARALLEL SCAN σc(R)

•  Relation R is partitioned over m machines
•  Each partition of R is around |R|/m tuples

•  Each machine scans its own partition and applies the selection
condition c

•  If data are partitioned using round robin or a hash function (over
the entire tuple)
•  The resulted relation is expected to be well distributed over all nodes
•  All partitioned will be scanned

•  If data are range partitioned or hash-based partitioned (on the
selection column)
•  The resulted relation can be clustered on few nodes
•  Few partitions need to be touched

22

•  Parallel Projection is also straightforward
•  All partitions will be touched
•  Not sensitive to how data is partitioned

PARALLEL DUPLICATE ELIMINATION

•  If relation is range or hash-based partitioned
•  Identical tuples are in the same partition
•  So, eliminate duplicates in each partition independently

•  If relation is round-robin partitioned
•  Re-partition the relation using a hash function
•  So every machine creates m partitions and send the ith

partition to machine i
•  machine i can now perform the duplicate elimination

23

•  Same idea applies to Set Operations (Union, Intersect,
Except)

•  But apply the same partitioning to both relations R & S

PARALLEL JOIN R(X,Y) ⋈ S(Y,Z)

•  Re-partition R and S on the join attribute Y (natural join) or (equi join)
•  Hash-based or range-based partitioning

•  Each machine i receives all ith partitions from all machines (from R

and S)
•  Each machine can locally join the partitions it has

•  Depending on the partitions sizes of R and S, local joins can be
hash-based or merge-join

24

Original Relations
(R then S)

OUTPUT

2

B main memory buffers Disk Disk

INPUT
1

hash
function

h
B-1

Partitions

1
2

B-1
. . .

PARALLEL SORTING

•  Range-based
•  Re-partition R based on ranges into m partitions
•  Machine i receives all ith partitions from all

machines and sort that partition
•  The entire R is now sorted
•  Skewed data is an issue
•  Apply sampling phase first
•  Ranges can be of different width

•  Merge-based
•  Each node sorts its own data
•  All nodes start sending their sorted data (one

block at a time) to a single machine
•  This machine applies merge-sort technique as

data come

25

PARALLEL GROUP BY

26

WHAT ABOUT PARALLEL
MERGE-SORT?

27

•  Sorting takes an unordered collection and
makes it an ordered one.

5 12 35 42 77 101

1 2 3 4 5 6

5 12 35 42 77 101

1 2 3 4 5 6

ONE-PROCESSOR MERGE-SORT

DIVIDE AND CONQUER

•  Divide and Conquer cuts the problem in half each time, but
uses the result of both halves:
•  cut the problem in half until the problem is trivial
•  solve for both halves
•  combine the solutions

MERGE-SORT

•  A divide-and-conquer algorithm

•  Divide the unsorted array into 2 halves until the sub-arrays only
contain one element

•  Merge the sub-problem solutions together:
•  Compare the sub-array’s first elements
•  Remove the smallest element and put it into the result array
•  Continue the process until all elements have been put into the

result array

37 23 6 89 15 12 2 19

ALGORITHM

Mergesort(Passed an array)
 if array size > 1
 Divide array in half
 Call Mergesort on first half.
 Call Mergesort on second half.
 Merge two halves.

Merge(Passed two arrays)
 Compare leading element in each array
 Select lower and place in new array.
 (If one input array is empty then place
 remainder of other array in output array)

LB

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98

Merge

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98

23

Merge

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98

23 98

Merge

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

23 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

23 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

14

Merge

23 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

45

Merge

23 98 14

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

98 45 14 23

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

98 14

14

23 45

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

23 14

14 23

98 45

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

23 98 45 14

14 23 45

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

Merge

23 98 45 14

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

23 98 45 14

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6

23 98 45 14

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6

Merge

23 98 45 14

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6

6

Merge

23 98 45 14

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6

67

Merge

23 98 45 14 6

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

23 98 45 14 67 6

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

33 23 98 45 14 67 6

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

42 23 98 45 14 67 6 33

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 6 42 33

14 23 45 98 6

67

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 6 33

14 23 45 98 6 33

67 42

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 6 42 33

14 23 45 98 6 33 42

67

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 98 6 33 42 67

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

23 45 98 33 42 67 14 6

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

23 45 98 6 42 67

6

14 33

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 45 98 6 42 67

6 14

23 33

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 98 6 42 67

6 14 23

45 33

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 98 6 33 67

6 14 23 33

45 42

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 98 6 33 42

6 14 23 33 42

45 67

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 6 33 42

6 14 23 33 42 45

98 67

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

Merge

23 98 45 14 67 6 42 33

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67 98

67 45 23 14 6 33 98 42

67 45 23 14 6 33 98 42

45 23 14 98

23 98 45 14

67 6 33 42

67 6 33 42

23 98 45 14 67 6 42 33

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67 98

67 45 23 14 6 33 98 42

6 14 23 33 42 45 67 98

RECAP

• Divide the unsorted collection into two

• Until the sub-arrays only contain one

element

•  Then merge the sub-problem solutions

together

HOW TO MAKE PARALLELIZED?

Many-Processor MergeSort

Parallelizing Mergesort
Parent processor who makes
the division, also makes the
merging

Using tree allocation of processes

COMPLEX PARALLEL QUERY PLANS

76

A B R S

Sites 1-4 Sites 5-8

Sites 1-8

•  All previous examples are intra-operator parallelism

•  Complex queries can have inter-operator parallelism
•  Different machines perform different tasks

EXAMPLE

77

PERFORMANCE OF PARALLEL
ALGORITHMS

•  In many cases, parallel algorithms reach their expected lower
bound (or close to)
•  If parallelism degree is m, then the parallel cost is 1/m of the sequential cost
•  Cost mostly refers to query’s response time

•  Example
•  Parallel selection or projection is 1/m of the sequential cost

78

degree of ||-ism

X
ac

t/
se

c.

(t
hr

ou
gh

pu
t)

 Ideal

degree of ||-ism

se
c.

/X
ac

t
(r

es
po

ns
e

tim
e)

Ideal

PERFORMANCE OF PARALLEL
ALGORITHMS (CONT’D)

•  Total disk I/Os (sum over all machines) of parallel algorithms can
be larger than that of sequential counterpart
•  But we get the benefit of being done in parallel

•  Example
•  Merge-sort join (serial case) has I/O cost = 3(B(R) + B(S))
•  Merge-sort join (parallel case) has total (sum) I/O cost = 5(B(R) + B(S))
•  Considering the parallelism = 5(B(R) + B(S)) / m

79

Number of pages
of relations R and S

OPTIMIZING PARALLEL ALGORITHMS

•  Best serial plan != the best parallel one

•  Trivial counter-example:
•  Table partitioned with local secondary index at

two nodes
•  Range query: all data of node 1 and 1% of

node 2.
•  Node 1 should do a scan of its partition.
•  Node 2 should use secondary index.

80

N..Z

Table
Scan

A..M

Index
Scan

•  Different optimization algorithms for parallel plans (more
candidate plans)

•  Different machines may perform the same operation but using
different plans

SUMMARY OF PARALLEL DATABASES

•  Three possible architectures
•  Shared-memory
•  Shared-disk
•  Shared-nothing (the most common one)

•  Parallel algorithms
•  Intra-operator
•  Scans, projections, joins, sorting, set operators, etc.

•  Inter-operator
•  Distributing different operators in a complex query to different nodes

•  Partitioning and data layout is important and affect the
performance

•  Optimization of parallel algorithms is a challenge
81

