
DISTRIBUTED DATABASES

1

DEFINITIONS

A distributed database (DDB) is a collection of
multiple, logically interrelated databases distributed
over a computer network.

A distributed database management system (D–
DBMS) is the software that manages the DDB and
provides an access mechanism that makes this
distribution transparent to the users.

Distributed database system (DDBS) = DB + Communication

2

DISTRIBUTED DATABASES
MAIN CONCEPTS

•  Data are stored at several locations
•  Each managed by a DBMS that can run autonomously

•  Ideally, location of data is unknown to client
•  Distributed Data Independence

•  Distributed Transactions
•  Clients can write Transactions regardless of where the

affected data are located
•  Big question: How to ensure the ACID properties Distributed

Transactions???

3

•  Transparent management of distributed,
fragmented, and replicated data

•  Improved reliability/availability through distributed
transactions

•  Improved performance

•  Easier and more economical system expansion

DISTRIBUTED DBMS PROMISES

4

DISTRIBUTED DATABASE - USER VIEW

5

Distributed Database!

DISTRIBUTED DBMS - REALITY

6

Communication!
Subsystem!

User!
Query!

DBMS!
Software!

DBMS!
Software! User!

Application!

DBMS!
Software!

User!
Application!User!

Query!
DBMS!
Software!

User!
Query!

DBMS!
Software!

TRANSPARENCY & DATA
INDEPENDENCE

•  Data distributed (with
some replication)

•  Transparently ask query:

7

Paris projects
Paris employees
Paris assignments
Boston employees

Montreal projects
Paris projects
New York projects
 with budget > 200000
Montreal employees
Montreal assignments

Boston

Communication
Network

Montreal

Paris

New
York

Boston projects
Boston employees
Boston assignments

Boston projects
New York employees
New York projects
New York assignments

Tokyo

SELECT ENAME,SAL
FROM EMP,ASG,PAY

WHERE DUR > 12

AND EMP.ENO = ASG.ENO

AND PAY.TITLE = EMP.TITLE

TYPES OF DISTRIBUTED DATABASES

•  Homogeneous
•  Every site runs the same type of

DBMS

•  Heterogeneous:
•  Different sites run different DBMS

(maybe even RDBMS and
ODBMS)

8

Homogeneous DBs can communicate
directly with each other

DBMS1 DBMS2 DBMS3

Gateway

Heterogeneous DBs communicate
through gateway interfaces

DISTRIBUTED DATABASE
ARCHITECTURE

•  Client-Server
•  Client connects directly

to specific server(s) and
access only their data

•  Direct queries only

•  Collaborative Servers
•  Servers can serve queries

or be clients and query
other servers

•  Support indirect queries

9

Indirect query (will be
forwarded from one
server to another)

direct query (will be
served by the same
server)

DISTRIBUTED DATABASE
ARCHITECTURE (CONT’D)

•  Peer-to-Peer Architecture
•  Scalability and flexibility in growing and shrinking
•  All nodes have the same role and functionality
•  Harder to manage because all machines are autonomous

and loosely coupled

10

Site 5

Site 1

Site 2

Site 3 Site 4

Communication
Network

MAIN ISSUES

•  Data Layout Issues
•  Data partitioning and fragmentation
•  Data replication

•  Query Processing and Distributed Transactions
•  Distributed join
•  Transaction atomicity using two-phase commit
•  Transaction serializability using distributed locking

11

MAIN ISSUES

•  Data Layout Issues
•  Data partitioning and fragmentation
•  Data replication

•  Query Processing and Distributed Transactions
•  Distributed join
•  Transaction atomicity using two-phase commit
•  Transaction serializability using distributed locking

12

FRAGMENTATION

•  How to divide the data? Can't we just distribute
relations?

•  What is a reasonable unit of distribution?
•  relation
•  views are subsets of relations
•  extra communication
•  Less parallelism

•  fragments of relations (sub-relations)
•  concurrent execution of a number of transactions that access

different portions of a relation
•  views that cannot be defined on a single fragment will require extra

processing
•  semantic data control (especially integrity enforcement) more

difficult

13

FRAGMENTATION ALTERNATIVES –
HORIZONTAL

PROJ1 : projects with budgets
less than $200,000

PROJ2 : projects with budgets
greater than or equal to
$200,000

PROJ1!

PNO! PNAME! BUDGET! LOC!

P3 ! CAD/CAM! 250000! New York!

P4! Maintenance! 310000! Paris!
P5! CAD/CAM! 500000! Boston!

PNO! PNAME! LOC!

P1! Instrumentation! 150000! Montreal!

P2! Database Develop.! 135000! New York!

BUDGET!

PROJ2!

New York!
New York!

PROJ!
PNO! PNAME! BUDGET! LOC!

P1! Instrumentation! 150000! Montreal!

P3 ! CAD/CAM! 250000!
P2! Database Develop.!135000!

P4! Maintenance! 310000! Paris!
P5! CAD/CAM! 500000! Boston!

New York!
New York!

Stored in London

Stored in Boston

14

FRAGMENTATION ALTERNATIVES –
VERTICAL

PROJ1: information about
project budgets

PROJ2: information about
project names and
locations

PNO! BUDGET!

P1! 150000!

P3 ! 250000!
P2! 135000!

P4! 310000!
P5! 500000!

PNO! PNAME! LOC!

P1! Instrumentation! Montreal!

P3 ! CAD/CAM! New York!
P2! Database Develop.! New York!

P4! Maintenance! Paris!
P5! CAD/CAM! Boston!

PROJ1! PROJ2!

New York!
New York!

PROJ!
PNO! PNAME! BUDGET! LOC!

P1! Instrumentation! 150000! Montreal!

P3 ! CAD/CAM! 250000!
P2! Database Develop.!135000!

P4! Maintenance! 310000! Paris!
P5! CAD/CAM! 500000! Boston!

New York!
New York!

Stored in London Stored in Boston

Horizontal partitioning is
more common

15

•  Completeness
•  Decomposition of relation R into fragments R1, R2, ..., Rn is

complete if and only if each data item in R can also be found
in some Ri

•  Reconstruction (Lossless)
•  If relation R is decomposed into fragments R1, R2, ..., Rn, then

there should exist some relational operator ∇ such that
R = ∇1≤i≤nRi

•  Disjointness (Non-overlapping) – not mandatory
•  If relation R is decomposed into fragments R1, R2, ..., Rn, and

data item di is in Rj, then di should not be in any other
fragment Rk (k ≠ j).

CORRECTNESS OF FRAGMENTATION

16

REPLICATION ALTERNATIVES

17

  Non-replicated
  partitioned : each fragment resides at only one site

  Replicated
  fully replicated : each fragment at each site
  partially replicated : each fragment at some of the

sites

  Rule of thumb:

If replication is advantageous,

otherwise replication may cause problems

read - only queries!
update queries! !≥ 1!

DATA REPLICATION

•  Pros:
•  Improves availability
•  Distributes load
•  Reads are cheaper

•  Cons:
•  N times more updates
•  N times more storage

18

Catalog Management

•  Catalog is needed to keep track of the location
of each fragment & replica

•  Catalog itself can be centralized or distributed

Similar to NameNode in Hadoop

UPDATING REPLICAS

•  Synchronous Replication: All copies of modified relation (fragment) must be
updated before modifying Xact commits.
•  Data distribution is made transparent to users.

•  Asynchronous Replication: Copies of modified relation only periodically
updated; different copies may get out of synch in meantime.
•  Users must be aware of data distribution.

•  Current products tend to follow later approach.

COMPARISON OF REPLICATION
ALTERNATIVES

20

Full-replication Partial-replication Partitioning

QUERY
 PROCESSING Easy Same Difficulty

Same Difficulty DIRECTORY
MANAGEMENT

Easy or
Non-existant

CONCURRENCY
CONTROL Easy Difficult Moderate

RELIABILITY Very high High Low

REALITY
Possible

application Realistic
Possible

application

MAIN ISSUES

•  Data Layout Issues
•  Data partitioning and fragmentation
•  Data replication

•  Query Processing and Distributed Transactions
•  Distributed join
•  Transaction atomicity using two-phase commit
•  Transaction serializability using distributed locking

21

DISTRIBUTED JOIN R(X,Y) ⋈ S(Y,Z)

•  Option 1: Send R to S’s location and join their
•  Option 2: Send S to R’s location and join their
•  Communication cost is expensive, too much data to send

•  Is there a better option ???
•  Semi Join
•  Bloom Join

22

R(X1,X2, …
Xn, Y)

S(Y, Z1, Z2,…,
Zm)

Stored in London Stored in Boston

Join based on
R.Y = S.Y

SEMI-JOIN

•  Send only S.Y column to R’s location

•  Do the join based on Y columns in R’s location (Semi Join)

•  Send the records of R that will join (without duplicates) to S’s location

•  Perform the final join in S’s location

23

R(X1,X2, …
Xn, Y)

S(Y, Z1, Z2,…,
Zm)

Stored in London Stored in Boston

IS SEMI-JOIN EFFECTIVE

Depends on many factors:
•  If the size of Y attribute is small compared to the remaining attributes

in R and S

•  If the join selectivity is high à is small

•  If there are many duplicates that can be eliminated

24

R(X1,X2, …
Xn, Y)

S(Y, Z1, Z2,…,
Zm)

Stored in London Stored in Boston

BLOOM JOIN

•  Build a bit vector of size K in R’s location (all 0’s)

•  For every record in R, use a hash function(s) based on Y value (return
from 1 to K)
•  Each function hashes Y to a bit in the bit vector. Set this bit to 1

•  Send the bit vector to S’s location

•  S will use the same hash function(s) to hash its Y values
•  If the hashing matched with 1’s in all its hashing positions, then this Y is

candidate for Join

•  Otherwise, not candidate for join
•  Send S’s records having candidate Y’s to R’s location for join

25

0 0 1 1 … 0 0 1

SELECTING ALTERNATIVES

26

SELECT ENAME Π Project
FROM EMP,ASG σ Select
WHERE EMP.ENO = ASG.ENO × Join
AND DUR > 37

Strategy 1
$ $ΠENAME(σDUR>37∧EMP.ENO=ASG.ENO (EMP × ASG))

Strategy 2

 ΠENAME(EMP ENO (σDUR>37 (ASG)))

Strategy 2 avoids Cartesian product, so is “better”

MAIN ISSUES

•  Data Layout Issues
•  Data partitioning and fragmentation
•  Data replication

•  Query Processing and Distributed Transactions
•  Distributed join
•  Transaction atomicity using two-phase commit
•  Transaction serializability using distributed locking

27

TRANSACTIONS

•  A Transaction is an atomic sequence of actions in
the Database (reads and writes)

•  Each Transaction has to be executed completely,
and must leave the Database in a consistent state

•  If the Transaction fails or aborts midway, then the
Database is “rolled back” to its initial consistent state
(before the Transaction began)

28

ACID Properties of Transactions

J.J.Bunn, Distributed Databases, 2001 11

What Is A Transaction?What Is A Transaction?
 Programmer’s view: Programmer’s view:

 Bracket a collection of actionsBracket a collection of actions
 A A simplesimple failure modelfailure model

 Only two outcomes:Only two outcomes:

Begin()Begin()
actionaction
actionaction
actionaction
actionaction

Commit()Commit()

Success!Success!

Begin()Begin()
action action
actionaction
actionaction
Rollback()Rollback()

Begin()Begin()
action action
actionaction
actionaction

Rollback()Rollback()

Failure!Failure!

Fail !Fail !Fail !

J.J.Bunn, Distributed Databases, 2001 11

What Is A Transaction?What Is A Transaction?
 Programmer’s view: Programmer’s view:

 Bracket a collection of actionsBracket a collection of actions
 A A simplesimple failure modelfailure model

 Only two outcomes:Only two outcomes:

Begin()Begin()
actionaction
actionaction
actionaction
actionaction

Commit()Commit()

Success!Success!

Begin()Begin()
action action
actionaction
actionaction
Rollback()Rollback()

Begin()Begin()
action action
actionaction
actionaction

Rollback()Rollback()

Failure!Failure!

Fail !Fail !Fail !

ATOMICITY IN DISTRIBUTED DBS

•  One transaction T may touch many sites
•  T has several components T1, T2, …Tm
•  Each Tk is running (reading and writing) at site k
•  How to make T is atomic ????
•  Either T1, T2, …, Tm complete or None of them is executed

•  Two-Phase Commit techniques is used

29

Paris projects
Paris employees
Paris assignments
Boston employees

Montreal projects
Paris projects
New York projects
 with budget > 200000
Montreal employees
Montreal assignments

Boston

Communication
Network

Montreal

Paris

New
York

Boston projects
Boston employees
Boston assignments

Boston projects
New York employees
New York projects
New York assignments

Tokyo

TWO-PHASE COMMIT

•  Phase 1
•  Site that initiates T is the coordinator
•  When coordinator wants to commit (complete T), it sends a

“prepare T” msg to all participant sites
•  Every other site receiving “prepare T”, either sends “ready T” or

“don’t commit T”
•  A site can wait for a while until it reaches a decision (Coordinator will

wait reasonable time to hear from the others)

•  These msgs are written to local logs

30

TWO-PHASE COMMIT (CONT’D)

•  Phase 2
•  IF coordinator received all “ready T”

•  Remember no one committed yet
•  Coordinator sends “commit T” to all participant sites
•  Every site receiving “commit T” commits its transaction

•  IF coordinator received any “don’t commit T”
•  Coordinator sends “abort T” to all participant sites
•  Every site receiving “abort T” commits its transaction

•  These msgs are written to local logs

31

•  Straightforward if no failures happen
•  In case of failure logs are used to

ensure ALL are done or NONE

Example 2: What if all sites in Phase 1
replied “ready T”, then one site
crashed???

Example 1: What if one sites in Phase 1
replied “don’t commit T”, and then
crashed???

MAIN ISSUES

•  Data Layout Issues
•  Data partitioning and fragmentation
•  Data replication

•  Query Processing and Distributed Transactions
•  Distributed join
•  Transaction atomicity using two-phase commit
•  Transaction serializability using distributed locking

32

DATABASE LOCKING

•  Locking mechanisms are used to prevent concurrent transactions from
updating the same data at the same time

•  Reading(x) à shared lock on x
•  Writing(x) à exclusive lock on x
•  More types of locks exist for efficiency

33

Shared lock Exclusive lock

Shared lock Yes No

Exclusive lock No No

What you have

What you
request

In Distributed DBs:
•  x may be replicated in multiple sites (not one place)
•  The transactions reading or writing x may be running at different sites

DISTRIBUTED LOCKING

•  Centralized approach
•  One dedicated site managing all locks
•  Cons: bottleneck, not scalable, single point of failure

•  Primary-Copy approach
•  Every item in the database, say x, has a primary site, say Px
•  Any transaction running any where, will ask Px for lock on x

•  Fully Distributed approach
•  To read, lock any copy of x
•  To write, lock all copies of x
•  Variations exists to balance the cots of read and write op.

34

Deadlocks are very possible. How to resolve them???
Using timeout: After waiting for a while for a lock, abort and start again

•  A transaction is deadlocked if it is blocked and will remain
blocked until there is intervention.

•  Locking-based CC algorithms may cause deadlocks.

•  TO-based algorithms that involve waiting may cause
deadlocks.

•  Wait-for graph
•  If transaction Ti waits for another transaction Tj to release a lock

on an entity, then Ti → Tj in WFG.

DEADLOCK

Ti
Tj

Assume T1 and T2 run at site 1, T3 and T4 run at site 2. Also assume T3 waits
for a lock held by T4 which waits for a lock held by T1 which waits for a
lock held by T2 which, in turn, waits for a lock held by T3.

Global WFG

LOCAL VS. GLOBAL WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3

Local WFG

•  Ignore
•  Let the application programmer deal with it, or restart the system

•  Prevention
•  Guaranteeing that deadlocks can never occur in the first place.

Check transaction when it is initiated. Requires no run time support.

•  Avoidance
•  Detecting potential deadlocks in advance and taking action to

insure that deadlock will not occur. Requires run time support.

•  Detection and Recovery
•  Allowing deadlocks to form and then finding and breaking them. As

in the avoidance scheme, this requires run time support.

DEADLOCK MANAGEMENT

•  All resources which may be needed by a transaction must
be predeclared.
•  The system must guarantee that none of the resources will be

needed by an ongoing transaction.
•  Resources must only be reserved, but not necessarily allocated

a priori
•  Unsuitability of the scheme in database environment
•  Suitable for systems that have no provisions for undoing

processes.

DEADLOCK PREVENTION

•  Transactions are not required to request resources a priori.

•  Transactions are allowed to proceed unless a requested
resource is unavailable.

•  In case of conflict, transactions may be allowed to wait for a
fixed time interval.

•  Order either the data items or the sites and always request
locks in that order.

•  More attractive than prevention in a database environment.

DEADLOCK AVOIDANCE

•  Transactions are allowed to wait freely.

•  Wait-for graphs and cycles.

•  Topologies for deadlock detection algorithms

•  Centralized

•  Distributed

•  Hierarchical

DEADLOCK DETECTION

•  Promises of DDBMSs
•  Transparent management of distributed, fragmented, and

replicated data
•  Improved reliability/availability through distributed

transactions
•  Improved performance
•  Easier and more economical system expansion

•  Classification of DDBMS
•  Homogeneous vs. Heterogeneous
•  Client-Sever vs. Collaborative Servers vs. Peer-to-Peer

SUMMARY OF DISTRIBUTED DBS

41

SUMMARY OF DISTRIBUTED DBS
(CONT’D)

•  Data Layout Issues
•  Data partitioning and fragmentation
•  Data replication

•  Query Processing and Distributed Transactions
•  Distributed join
•  Transaction atomicity using two-phase commit
•  Transaction serializability using distributed locking

42

