
DISTRIBUTED DATABASES 
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DEFINITIONS 

A distributed database (DDB) is a collection of 
multiple, logically interrelated databases distributed 
over a computer network.  

A distributed database management system (D–
DBMS) is the software that manages the DDB and 
provides an access mechanism that makes this 
distribution transparent to the users.  

Distributed database system (DDBS) = DB + Communication 
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DISTRIBUTED DATABASES 
MAIN CONCEPTS 

•  Data are stored at several locations 
•  Each managed by a DBMS that can run autonomously 

•  Ideally, location of data is unknown to client 
•  Distributed Data Independence  

•  Distributed Transactions 
•  Clients can write Transactions regardless of where the 

affected data are located 
•  Big question: How to ensure the ACID properties Distributed 

Transactions??? 
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•  Transparent management of distributed, 
fragmented, and replicated data 

•  Improved reliability/availability through distributed 
transactions 

•  Improved performance 

•  Easier and more economical system expansion 

DISTRIBUTED DBMS PROMISES 
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DISTRIBUTED DATABASE - USER VIEW 
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Distributed Database!



DISTRIBUTED DBMS - REALITY 
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TRANSPARENCY & DATA 
INDEPENDENCE  

•  Data distributed (with 
some replication) 

•  Transparently ask query: 
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SELECT ENAME,SAL 
FROM  EMP,ASG,PAY 

WHERE  DUR > 12 

AND  EMP.ENO = ASG.ENO 

AND  PAY.TITLE = EMP.TITLE 



TYPES OF DISTRIBUTED DATABASES 

•  Homogeneous 
•  Every site runs the same type of 

DBMS 

 
•  Heterogeneous:  
•  Different sites run different DBMS 

(maybe even RDBMS and 
ODBMS) 
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Homogeneous DBs can communicate 
directly with each other  

DBMS1 DBMS2 DBMS3 

Gateway 

Heterogeneous DBs communicate 
through gateway interfaces 



DISTRIBUTED DATABASE 
ARCHITECTURE  

•  Client-Server 
•  Client connects directly 

to specific server(s) and 
access only their data 

•  Direct queries only 

•  Collaborative Servers 
•  Servers can serve queries 

or be clients and query 
other servers 

•  Support indirect queries 
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Indirect query (will be 
forwarded from one 
server to another) 

direct query (will be 
served by the same 
server) 



DISTRIBUTED DATABASE 
ARCHITECTURE (CONT’D) 

•  Peer-to-Peer Architecture 
•  Scalability and flexibility in growing and shrinking 
•  All nodes have the same role and functionality 
•  Harder to manage because all machines are autonomous 

and loosely coupled  
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MAIN ISSUES 

•  Data Layout Issues 
•  Data partitioning and fragmentation 
•  Data replication 

•  Query Processing and Distributed Transactions 
•  Distributed join  
•  Transaction atomicity using two-phase commit 
•  Transaction serializability using distributed locking  
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FRAGMENTATION 

•  How to divide the data? Can't we just distribute 
relations? 

•  What is a reasonable unit of distribution? 
•  relation 
•  views are subsets of relations 
•  extra communication 
•  Less parallelism  

•  fragments of relations (sub-relations) 
•  concurrent execution of a number of transactions that access 

different portions of a relation 
•  views that cannot be defined on a single fragment will require extra 

processing 
•  semantic data control (especially integrity enforcement) more 

difficult 
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FRAGMENTATION ALTERNATIVES – 
HORIZONTAL 

PROJ1 : projects with budgets 
less than $200,000 

PROJ2 : projects with budgets 
greater than or equal to 
$200,000 

PROJ1!

PNO! PNAME! BUDGET! LOC!

P3 ! CAD/CAM! 250000! New York!

P4! Maintenance! 310000! Paris!
P5! CAD/CAM! 500000! Boston!

PNO! PNAME! LOC!

P1! Instrumentation! 150000! Montreal!

P2! Database Develop.! 135000! New York!

BUDGET!

PROJ2!

New York!
New York!

PROJ!
PNO! PNAME! BUDGET! LOC!

P1! Instrumentation! 150000! Montreal!

P3 ! CAD/CAM! 250000!
P2! Database Develop.!135000!

P4! Maintenance! 310000! Paris!
P5! CAD/CAM! 500000! Boston!

New York!
New York!

Stored in London 

Stored in Boston 

14 



FRAGMENTATION ALTERNATIVES – 
VERTICAL 

PROJ1: information about 
project budgets 

PROJ2: information about 
project names and 
locations 

PNO! BUDGET!

P1! 150000!

P3 ! 250000!
P2! 135000!

P4! 310000!
P5! 500000!

PNO! PNAME! LOC!

P1! Instrumentation! Montreal!

P3 ! CAD/CAM! New York!
P2! Database Develop.! New York!

P4! Maintenance! Paris!
P5! CAD/CAM! Boston!

PROJ1! PROJ2!

New York!
New York!

PROJ!
PNO! PNAME! BUDGET! LOC!

P1! Instrumentation! 150000! Montreal!

P3 ! CAD/CAM! 250000!
P2! Database Develop.!135000!

P4! Maintenance! 310000! Paris!
P5! CAD/CAM! 500000! Boston!

New York!
New York!

Stored in London Stored in Boston 

Horizontal partitioning is 
more common 
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•  Completeness 
•  Decomposition of relation R into fragments R1, R2, ..., Rn is 

complete if and only if each data item in R can also be found 
in some Ri 

•  Reconstruction (Lossless) 
•  If relation R  is decomposed into fragments R1, R2, ..., Rn, then 

there should exist some relational operator ∇ such that 
R = ∇1≤i≤nRi  

•  Disjointness (Non-overlapping) – not mandatory 
•  If relation R is decomposed into fragments R1, R2, ..., Rn, and 

data item di is in Rj, then di should not be in any other 
fragment Rk (k ≠ j ). 

CORRECTNESS OF FRAGMENTATION 
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REPLICATION ALTERNATIVES 
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  Non-replicated 
  partitioned : each fragment resides at only one site 

  Replicated 
  fully replicated : each fragment at each site 
  partially replicated : each fragment at some of the 

sites 

  Rule of thumb: 
 

If                                     replication is advantageous,
  

otherwise replication may cause problems 
  

read - only queries!
update queries!  !≥  1!



DATA REPLICATION 

•  Pros:  
•  Improves availability 
•  Distributes load 
•  Reads are cheaper 

•  Cons: 
•  N times more updates 
•  N times more storage 
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Catalog Management 
 

•  Catalog is needed to keep track of the location 
of each fragment & replica 

•  Catalog itself can be centralized or distributed 

Similar to NameNode in Hadoop 



UPDATING REPLICAS 

•  Synchronous Replication: All copies of modified relation (fragment) must be 
updated before modifying Xact commits. 
•  Data distribution is made transparent to users. 

•  Asynchronous Replication:  Copies of modified relation only periodically 
updated; different copies may get out of synch in meantime. 
•  Users must be aware of data distribution. 

•  Current products tend to follow later approach. 



COMPARISON OF REPLICATION 
ALTERNATIVES 
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Full-replication Partial-replication Partitioning 

QUERY 
 PROCESSING Easy Same Difficulty 

Same Difficulty DIRECTORY 
MANAGEMENT  

Easy or 
Non-existant 

CONCURRENCY 
CONTROL Easy Difficult Moderate 

RELIABILITY Very high High Low 

REALITY 
Possible 

application Realistic 
Possible 

application 



MAIN ISSUES 

•  Data Layout Issues 
•  Data partitioning and fragmentation 
•  Data replication 

•  Query Processing and Distributed Transactions 
•  Distributed join  
•  Transaction atomicity using two-phase commit 
•  Transaction serializability using distributed locking  
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DISTRIBUTED JOIN R(X,Y) ⋈ S(Y,Z) 

•  Option 1: Send R to S’s location and join their 
•  Option 2: Send S to R’s location and join their 
•  Communication cost is expensive, too much data to send 

•  Is there a better option ??? 
•  Semi Join 
•  Bloom Join 
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R(X1,X2, …
Xn, Y) 

S(Y, Z1, Z2,…, 
Zm) 

Stored in London Stored in Boston 

Join based on 
R.Y = S.Y 



SEMI-JOIN  

•  Send only S.Y column to R’s location 

•  Do the join based on Y columns in R’s location (Semi Join) 

•  Send the records of R that will join (without duplicates) to S’s location  

•  Perform the final join in S’s location 
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R(X1,X2, …
Xn, Y) 

S(Y, Z1, Z2,…, 
Zm) 

Stored in London Stored in Boston 



IS SEMI-JOIN EFFECTIVE 

Depends on many factors: 
•  If the size of Y attribute is small compared to the remaining attributes 

in R and S 

•  If the join selectivity is high à             is small 

•  If there are many duplicates that can be eliminated  
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R(X1,X2, …
Xn, Y) 

S(Y, Z1, Z2,…, 
Zm) 

Stored in London Stored in Boston 



BLOOM JOIN 

•  Build a bit vector of size K in R’s location (all 0’s) 

•  For every record in R, use a hash function(s) based on Y value (return 
from 1 to K) 
•  Each function hashes Y to a bit in the bit vector. Set this bit to 1  

•  Send the bit vector to S’s location 

•  S will use the same hash function(s) to hash its Y values 
•  If the hashing matched with 1’s in all its hashing positions, then this Y is 

candidate for Join 

•  Otherwise, not candidate for join 
•  Send S’s records having candidate Y’s to R’s location for join  
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0 0 1 1 … 0 0 1 



SELECTING ALTERNATIVES 
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SELECT  ENAME     Π Project 
FROM  EMP,ASG     σ Select 
WHERE  EMP.ENO = ASG.ENO   × Join 
AND  DUR > 37 

 
Strategy 1 
$ $ΠENAME(σDUR>37∧EMP.ENO=ASG.ENO (EMP × ASG)) 

Strategy 2   

  ΠENAME(EMP    ENO (σDUR>37 (ASG))) 
 
Strategy 2 avoids Cartesian product, so is “better” 



MAIN ISSUES 

•  Data Layout Issues 
•  Data partitioning and fragmentation 
•  Data replication 

•  Query Processing and Distributed Transactions 
•  Distributed join  
•  Transaction atomicity using two-phase commit 
•  Transaction serializability using distributed locking  
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TRANSACTIONS 

•  A Transaction is an atomic sequence of actions in 
the Database (reads and writes) 

•  Each Transaction has to be executed completely, 
and must leave the Database in a consistent state 

•  If the Transaction fails or aborts midway, then the 
Database is “rolled back” to its initial consistent state 
(before the Transaction began) 
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ACID Properties of Transactions 

J.J.Bunn, Distributed Databases, 2001 11

What Is A Transaction?What Is A Transaction?
 Programmer’s view: Programmer’s view: 

 Bracket a collection of actionsBracket a collection of actions
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ATOMICITY IN DISTRIBUTED DBS 

•  One transaction T may touch many sites 
•  T  has several components T1, T2, …Tm 
•  Each Tk is running (reading and writing) at site k 
•  How to make T is atomic ???? 
•  Either T1, T2, …, Tm complete or None of them is executed 

•  Two-Phase Commit techniques is used 
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Paris assignments 
Boston employees 
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TWO-PHASE COMMIT 

•  Phase 1 
•  Site that initiates T is the coordinator 
•  When coordinator wants to commit (complete T), it sends a 

“prepare T” msg to all participant sites 
•  Every other site receiving “prepare T”, either sends “ready T” or 

“don’t commit T” 
•  A site can wait for a while until it reaches a decision (Coordinator will 

wait reasonable time to hear from the others)  

•  These msgs are written to local logs 
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TWO-PHASE COMMIT (CONT’D) 

•  Phase 2 
•  IF coordinator received all “ready T” 

•  Remember no one committed yet 
•  Coordinator sends “commit T” to all participant sites 
•  Every site receiving “commit T” commits its transaction 

•  IF coordinator received any “don’t commit T” 
•  Coordinator sends “abort T” to all participant sites 
•  Every site receiving “abort T” commits its transaction 

•  These msgs are written to local logs 
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•  Straightforward if no failures happen 
•  In case of failure logs are used to 

ensure ALL are done or NONE 

Example 2: What if all sites in Phase 1 
replied “ready T”, then one site 
crashed??? 

Example 1: What if one sites in Phase 1 
replied “don’t commit T”, and then 
crashed??? 



MAIN ISSUES 

•  Data Layout Issues 
•  Data partitioning and fragmentation 
•  Data replication 

•  Query Processing and Distributed Transactions 
•  Distributed join  
•  Transaction atomicity using two-phase commit 
•  Transaction serializability using distributed locking  
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DATABASE LOCKING 

•  Locking mechanisms are used to prevent concurrent transactions from 
updating the same data at the same time 

•  Reading(x) à shared lock on x 
•  Writing(x) à exclusive lock on x 
•  More types of locks exist for efficiency 
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Shared lock Exclusive lock 

Shared lock Yes No 

Exclusive lock No No 

What you have 

What you 
request 

In Distributed DBs: 
•  x may be replicated in multiple sites (not one place) 
•  The transactions reading or writing x may be running at different sites 



DISTRIBUTED LOCKING 

•  Centralized approach 
•  One dedicated site managing all locks 
•  Cons: bottleneck, not scalable, single point of failure 

•  Primary-Copy approach 
•  Every item in the database, say x, has a primary site, say Px 
•  Any transaction running any where, will ask Px for lock on x 

•  Fully Distributed approach 
•  To read, lock any copy of x 
•  To write, lock all copies of x 
•  Variations exists to balance the cots of read and write op. 
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Deadlocks are very possible. How to resolve them??? 
Using timeout: After waiting for a while for a lock, abort and start again 



•  A transaction is deadlocked if it is blocked and will remain 
blocked until there is intervention. 

•  Locking-based CC algorithms may cause deadlocks. 

•  TO-based algorithms that involve waiting may cause 
deadlocks. 

•  Wait-for graph 
•  If transaction Ti waits for another transaction Tj to release a lock 

on an entity, then Ti → Tj in WFG. 

DEADLOCK 

Ti 
Tj 



Assume T1 and T2 run at site 1, T3 and T4 run at site 2. Also assume T3 waits 
for a lock held by T4 which waits for a lock held by T1 which waits for a 
lock held by T2 which, in turn,  waits for a lock held by T3. 

Global WFG 

LOCAL VS. GLOBAL WFG 

T1 

Site 1 Site 2 

T2 

T4 

T3 

T1 

T2 

T4 

T3 

Local WFG 



•  Ignore 
•  Let the application programmer deal with it, or restart the system 

•  Prevention 
•  Guaranteeing that deadlocks can never occur in the first place. 

Check transaction when it is initiated. Requires no run time support. 

•  Avoidance 
•  Detecting potential deadlocks in advance and taking action to 

insure that deadlock will not occur. Requires run time support. 

•  Detection and Recovery 
•  Allowing deadlocks to form and then finding and breaking them. As 

in the avoidance scheme, this requires run time support. 

DEADLOCK MANAGEMENT 



•  All resources which may be needed by a transaction must 
be predeclared. 
•  The system must guarantee that none of the resources will be 

needed by an ongoing transaction. 
•  Resources must only be reserved, but not necessarily allocated 

a priori 
•  Unsuitability of the scheme in database environment 
•  Suitable for systems that have no provisions for undoing 

processes. 

DEADLOCK PREVENTION 



•  Transactions are not required to request resources a priori. 

•  Transactions are allowed to proceed unless a requested 
resource is unavailable. 

•  In case of conflict, transactions may be allowed to wait for a 
fixed time interval.  

•  Order either the data items or the sites and always request 
locks in that order. 

•  More attractive than prevention in a database environment. 

DEADLOCK AVOIDANCE 



•  Transactions are allowed to wait freely. 

•  Wait-for graphs and cycles. 

•  Topologies for deadlock detection algorithms 

•  Centralized 

•  Distributed 

•  Hierarchical 

DEADLOCK DETECTION 



•  Promises of DDBMSs 
•  Transparent management of distributed, fragmented, and 

replicated data 
•  Improved reliability/availability through distributed 

transactions 
•  Improved performance 
•  Easier and more economical system expansion 

•  Classification of DDBMS 
•  Homogeneous vs. Heterogeneous 
•  Client-Sever vs. Collaborative Servers vs. Peer-to-Peer 

SUMMARY OF DISTRIBUTED DBS 
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SUMMARY OF DISTRIBUTED DBS 
(CONT’D) 

•  Data Layout Issues 
•  Data partitioning and fragmentation 
•  Data replication 

•  Query Processing and Distributed Transactions 
•  Distributed join  
•  Transaction atomicity using two-phase commit 
•  Transaction serializability using distributed locking  
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