An Efficient Cryptographic Protocol Verifier Based on Prolog Rules

Bruno Blanchet
INRIA Rocquencourt*
Domaine de Voluceau B.P. 105
78153 Le Chesnay Cedex, France
Bruno.Blanchet@inria.fr

Abstract

We present a new automatic cryptographic protocol verifier based on a simple representation of the protocol by Prolog rules, and on a new efficient algorithm that determines whether a fact can be proved from these rules or not. This verifier proves secrecy properties of the protocols. Thanks to its use of unification, it avoids the problem of the state space explosion. Another advantage is that we do not need to limit the number of runs of the protocol to analyze it. We have proved the correctness of our algorithm, and have implemented it. The experimental results show that many examples of protocols of the literature, including Skeme [24], can be analyzed by our tool with very small resources: the analysis takes from less than 0.1 s for simple protocols to 23 s for the main mode of Skeme. It uses less than 2 Mb of memory in our tests.

1. Introduction

The design of cryptographic protocols is difficult and error-prone. This can be illustrated by flaws found in existing protocols [1, 6, 11, 25]. It is therefore important to have tools to verify the properties of cryptographic protocols. Several techniques can be used to build such tools: logics, such as the BAN logic [11] used in [23], theorem proving, used in Isabelle [33], rank functions [21], typing [2, 12, 22], abstract interpretation [7, 8, 20, 29], model checking, rewriting, and related techniques, used in Elan [13], Brutus [14], Maude [16], FDR [25], NRL [26], the Interrogator [27], Murϕ [28], Athena [35]. Most existing protocol verifiers based on model checking suffer from the problem of the state space explosion, and they need very large resources to verify even relatively simple protocols. Moreover, in general, they limit the number of runs of the protocol to guarantee the termination of the verification process. If there exists an attack that only appears with more runs of the protocol, it will not be discovered. Our solution to these problems relies on two ideas:

- a simple intermediate representation of the protocols;
- a new efficient solving algorithm.

We use Prolog rules to represent the protocol and the attacker. Messages and channels are represented by terms; the fact $\text{attack } M$ means that the attacker has the message M; rules give implications between such facts. This can be considered as an abstraction of the multiset rewriting [16] or of the linear logic representation [19]. We perform two interesting abstractions:

- Fresh values considered as functions other messages in the protocol. To give an intuition, when the attacker does not modify messages, different values are used for each pair of participants of the protocol, instead of per session.
- We forget the number of times a message appears to remember only that it has appeared. A step of the protocol can be executed several times instead of only once in each session.

These are keys to avoid limiting the number of runs of protocols: the number of repetitions is simply forgotten. Our approximations are safe, in the sense that if the verifier does not find a flaw in the protocol, then there is no flaw. The verifier therefore provides real security guarantees. In contrast, it may give a false attack against the protocol. However, false attacks are rare, and we have been able to prove the secrecy properties of all the protocols that we have considered. Therefore, we believe that our abstractions could also be useful in other protocol tools. Various protocol representations can be translated into our simple representation.

We have built an automatic translator from a restricted version of the applied pi calculus [5], that only handles certain

This work was partly done while the author was at Bell Labs Research, Lucent Technologies.
equational theories, including the theories used to represent shared- and public-key cryptography (encryption and signatures), hash functions, the Diffie-Hellman key agreement. It is also possible for the user to enter directly the rules representing the protocol, since the representation is simple enough.

Using this representation, we have built a tool to prove secrecy properties of protocols. Indeed, the attacker may have a given message \(m \) only if the fact `attacker(\(m \))` can be proved from the rules representing the protocol and the abilities of the attacker. However, the usual Prolog solving algorithm loops, due to rules that appear in the description of the attacker. Therefore, we have designed a solving algorithm. This algorithm is novel as far as we know, and it appears to be very efficient in practice. We have applied it to prove secrecy properties of several protocols of the literature, including Skeme [24], or to find attacks against them.

Related work Prolog rules and similar formalisms have already been used in a number of works on cryptographic protocols, for example [16, 26, 27]. We propose a more abstract representation of the protocols, that enables us to design a simpler and faster analysis, and to avoid limiting the number of runs of the protocol, thus improving over most model checkers. Of course, the additional approximations imply that our analysis may not be able to prove that certain protocols are secure (it may give false attacks), but in our experiments our analysis was precise enough to prove secrecy properties of the protocols we have considered. A key problem of previous tools using Prolog rules is termination. Our solving algorithm is a big step towards a solution of this problem.

Two works have already tackled the problems met by classical model checkers. Broadfoot, Lowe and Roscoe [10, 34] do not limit the number of runs of protocols. They recycle nonces, to use only a finite number of them in an infinite number of runs. We achieve the same result by directly reusing the same values for nonces. However, they limit the number of parallel runs of protocols. We avoid this limitation. They also allow the attacker to simulate honest agents, but use this technique only for servers. We generalize it to all agents involved in the protocols. In their work as well as in ours, the deduction rules for the attacker must have only equalities in their hypotheses, no inequalities (that is, they are positive deduction systems). Song [35] avoids the state space explosion problem by using the strand space model to verify protocols. This model captures the causal information of messages, in a way similar to our deduction rules. However, our model is more abstract than Song’s. She sometimes limits the number of runs of the protocol to guarantee termination, whereas we avoid this limitation.

Automatic protocol verifiers have already been built by using abstract interpretation [7, 8, 20, 29]. The analysis of Bodei et al. [7, 8] is not relational: when a variable appears several times in a message, each occurrence can take different values (in the set of values of the variable). All nonces generated by the same restriction are also considered as equal. These are causes of imprecision that our analysis solves. Moreover, Bodei’s analysis only handles shared-key cryptography. The main difference between Monniaux’ analysis [29] and ours is that Monniaux represents sets of messages by tree automata, whereas we represent rules that generate these sets. This enables us to gain in efficiency. Goubault [20] extends and improves the efficiency of [29], also using ideas of Bolignano [9]. However, [20] does not allow any term to be used in place of a key. We do not have this limitation. In our experimental results, we obtain even faster analysis with a simpler framework.

Theorem provers are not fully automatic tools: the user has to intervene to provide information on the proof. Previous works using typing are also better suited for human use than for automatic verifiers: type inference is sometimes difficult [4] and types are in general human-readable. Types provide constraints that can help the designers of new protocols ensure the desired security properties, but existing protocols may not satisfy these constraints even if they are correct. In contrast, our analysis yields a fully automatic protocol verifier.

Overview Section 2 details our protocol representation. Section 3 describes our solving algorithm, and sketches its proof of correctness. Several extensions and optimizations to this algorithm are detailed in Section 5. Section 6 gives experimental results and Section 7 concludes.

2. Protocol representation

A protocol is represented by a set of Prolog rules (clauses), whose syntax is given in Figure 1. The terms represent messages that are exchanged between participants of

Figure 1. Syntax of our protocol representation

\[
\begin{align*}
M, N & ::= x \mid a[M_1, \ldots, M_n] \mid f(M_1, \ldots, M_n) \\
F & ::= p(M_1, \ldots, M_n) \\
R & ::= F_1 \wedge \ldots \wedge F_n \rightarrow F
\end{align*}
\]

the protocol. A variable can represent any term. Names are used to represent atomic values, such as keys and nonces. Each principal has the ability of creating new names. Here, the created names are considered as functions of the messages previously received by the principal that creates the name. Thus, a different name is created when the preceding messages are different. This is slightly weaker than the fact that a new name is created at each run of the protocol. As noticed by M. Abadi (personal communication), this approximation is in fact similar to the approximation done in some type systems (such as [4]): the type of the new name depends on the types in the environment. It is enough to handle many protocols, and can be enriched by adding other parameters to the name. The function application is used to build terms: examples of functions are the encryption, or hash functions. Predicates are used to represent facts about these messages. Several predicates can be used, but for a first example, we are going to use only one predicate attacker\((M)\), meaning "the attacker may have the message \(M \)". A rule \(F_1 \land \ldots \land F_n \rightarrow F \) means that if all facts \(F_1, \ldots, F_n \) are true, then \(F \) is also true. A rule with no hypothesis \(\rightarrow F \) is written simply \(F \).

We can illustrate the coding of a protocol on the following simple example (this is a simplification of the Denning-Sacco key distribution protocol [17], omitting certificates and timestamps):

Message 1. \(A \rightarrow B : \{ \{ k \} \}_{s_A} \), \(pk_A \)
Message 2. \(B \rightarrow A : \{ s \} _k \)

There are two principals \(A \) and \(B \). \(sk_A \) is the secret key of \(A \), \(pk_A \) its public key. Similarly, \(sk_B \) and \(pk_B \) for \(B \). The key \(k \) is a new key created by \(A \). \(A \) sends this key signed with its private key \(sk_A \) and encrypted under its public key \(pk_B \). When \(B \) receives this messages, it decrypts the message, and assumes, seeing the signature, that the key \(k \) has been generated by \(A \). Then it sends a secret \(s \) encrypted under \(k \) (this is a shared-key encryption). Only \(A \) should be able to decrypt the message and get the secret \(s \). (The second message is not really part of the protocol, we use it to check if the key \(k \) can really be used to exchange secrets between \(A \) and \(B \). In fact, there is an attack against this protocol [11], so \(s \) will not remain secret.)

2.1. Representation of primitives

Cryptographic primitives are represented by functions. For instance, we represent the public-key encryption by a function \(encrypt(m, pk) \) which takes two arguments: the message \(m \) to encrypt and the public key \(pk \). There is a function \(pk \) that builds the public key from the secret key. (We could also have two functions \(pk \) and \(sk \) to build respectively the public and secret keys from a secret.) The secret key is represented by a name which has no arguments (that is, there exists only one copy of this name) \(sk(A) \) for \(A \) and \(sk(B) \) for \(B \). Then \(pk_A = pk(sk(A)) \) and \(pk_B = pk(sk(B)) \).

More generally, we consider two kinds of functions: constructors and destructors. The constructors are the functions that explicitly appear in the terms that represent messages. For instance, \(encrypt \) and \(pk \) are constructors. Destructors manipulate terms. A constructor \(g \) can be defined by one or several equations of the form \(g(M_1, \ldots, M_n, M) = M \) where \(M_1, \ldots, M_n, M \) are terms that contain only variables and constructors. For instance, the decryption \(decrypt \) is a constructor, defined by \(decrypt(encrypt(m, pk(sk)), sk) = m \). Other functions are defined similarly:

- For signatures, there is a constructor \(sign(m, sk) \) that is used to represent the message \(m \) signed under the secret key \(sk \). A destructor \(getmess \) defined by \(getmess(sign(m, sk)) = m \) returns the message without its signature, and \(checksign(sign(m, sk)) \) returns \(m \) only returns the message if the signature is valid.
- For shared-key encryption, we have a constructor \(encrypt \) and a destructor \(decrypt \), defined by \(encrypt(sencrypt(m, k), k) = m \).
- A hash function is represented by a constructor \(h \) (and no destructor).
- Tuples of arity \(n \) are represented by a constructor \((\ldots, \)) and \(n \) destructors \(\pi i \) defined by \(\pi i((x_1, \ldots, x_n)) = x_i, i \in \{1, \ldots, n\} \).

2.2. Representation of the abilities of the attacker

We assume that the protocol is executed in the presence of an attacker that can intercept all messages, compute new messages from the messages it has received, and send any message it can build. We first present the encoding of the computation abilities of the attacker. The encoding of the protocol will be detailed below.

During its computations, the attacker can apply all constructors and destructors. If \(f \) is a constructor of arity \(n \), this leads to the rule:

\[
attacker(x_1) \land \ldots \land attacker(x_n) \\
\rightarrow attacker(f(x_1, \ldots, x_n)).
\]

If \(g \) is a destructor defined by \(g(M_1, \ldots, M_n) = M \), this leads to the rule:

\[
attacker(M_1) \land \ldots \land attacker(M_n) \rightarrow attacker(M).
\]

If \(g \) is defined by several equations, there are several rules, one for each equation. The destructors never appear in the
rules, they are coded by pattern-matching on their parameters (here \(M_1, \ldots, M_n \)) in the hypothesis of the rule and generating their result in the conclusion. In the particular case of the public-key encryption, this yields:

\[
\begin{align*}
\text{attacker}(m) \land \text{attacker}(pk) \\
\quad \rightarrow \text{attacker}(\text{pencrypt}(m, pk)), \\
\text{attacker}(sk) \rightarrow \text{attacker}(pk(sk)), \\
\text{attacker}(\text{pencrypt}(m, pk(sk)) \land \text{attacker}(sk) \\
\quad \rightarrow \text{attacker}(m),
\end{align*}
\]

where the first two rules correspond to the constructors \text{pencrypt} and \text{pk}, the last rule corresponds to the destructor \text{pdecrypt}. When the attacker has an encrypted message \text{pencrypt}(m, pk) and the decryption key \text{sk}, then it also has the plaintext \(m \). (We assume that the cryptography is perfect, hence the attacker can only obtain the plaintext from the encrypted message if it has the key.)

For signatures, we obtain the rules:

\[
\begin{align*}
\text{attacker}(m) \land \text{attacker}(sk) \rightarrow \text{attacker}(\text{sign}(m, sk)), \\
\text{attacker}(\text{sign}(m, sk)) \rightarrow \text{attacker}(m),
\end{align*}
\]

where the first rule corresponds to the constructor \text{sign} and the second one to the destructor \text{getmess}. (The rule for \text{checksign} is removed, since it is implied by the rule for \text{getmess}.)

The rules above describe the abilities of the attacker. Moreover, the attacker has the public keys. Therefore, we add the rules \text{attacker}(pk(sk_A[])) and \text{attacker}(pk(sk_B[])). We also give a name \(a \) to the attacker, that will represent all the names it can generate: \text{attacker}(a[]).

2.3. Representation of the protocol itself

Now, we describe how the protocol itself is represented. We consider that \(A \) and \(B \) are willing to talk to any principal, \(A, B \) but also malicious principals that are represented by the attacker. Therefore, the first message sent by \(A \) can be \text{pencrypt}(\text{sign}(k, sk_A[]), pk(x)) for any \(x \). We leave to the attacker the task to start the protocol with the principal it wants, that is the attacker will send a first message to \(A \), mentioning the public key of principal with which \(A \) should talk. This principal can be \(B \), or another principal represented by the attacker. (The attacker can create public keys, by the rule for constructor \text{pk}.) Moreover, the attacker can intercept the message sent by \(A \). This yields a rule of the form

\[
\begin{align*}
\text{attacker}(pk(x)) \\
\quad \rightarrow \text{attacker}(\text{pencrypt}(\text{sign}(k, sk_A[]), pk(x))).
\end{align*}
\]

Moreover, a new key \(k \) is created each time the protocol is run. Hence, if two different keys \(pk(x) \) are received by \(A \), the generated keys \(k \) are certainly different: \(k \) depends on \(pk(x) \). The rule becomes:

\[
\begin{align*}
\text{attacker}(pk(x)) \\
\quad \rightarrow \text{attacker}(\text{pencrypt}(\text{sign}(k[\text{pk}(x)], sk_A[]), pk(x))).
\end{align*}
\]

Remark. It would also be possible for \(A \) to initiate the protocol itself, by choosing randomly the other principal to which it talks, instead of letting the attacker initiate the protocol. In this case, the rule above would be

\[
\begin{align*}
\text{attacker}(\text{pencrypt}(\text{sign}(k[\text{pk}(x)], sk_A[]), pk(x))).
\end{align*}
\]

where \(x \) is a variable that represents the secret key of the principal talking with \(A \). However, if we want to represent the protocol by a closed process in the applied pi calculus, the variable \(x \) must come from an input. That is, \(A \) cannot choose randomly the principal to which it talks. If the process is modeled in the applied pi calculus, the attacker sends a message that indicates with which principal \(A \) should talk. This yields the rule (2) given above.

\[
\begin{align*}
\text{attacker}(\text{pencrypt}(\text{sign}(k[\text{pk}(x)], sk_A[]), pk(x))).
\end{align*}
\]

This yields the rule (2) given above.

\[
\begin{align*}
\text{attacker}(\text{pencrypt}(\text{sign}(k[\text{pk}(x)], sk_A[]), pk(x))).
\end{align*}
\]

With these rules, \(A \) cannot play the role of \(B \) and vice-versa. If we want that, we can simply add the corresponding rules, that are obtained by swapping \(A \) and \(B \) in the above rules:

\[
\begin{align*}
\text{attacker}(pk(x)) \\
\quad \rightarrow \text{attacker}(\text{pencrypt}(\text{sign}(k_B[\text{pk}(x)], sk_B[]), pk(x))).
\end{align*}
\]

More generally, a protocol that contains \(n \) messages is encoded by \(n \) sets of rules. If a principal \(X \) sends the \(i \)th message, the \(i \)th set of rules contains rules that have as hypotheses the patterns of the messages previously received by \(X \) in the protocol, and as conclusion the pattern of the \(i \)th message. There may be several possible patterns for the previous messages as well as for the sent message, in particular when the principal \(X \) uses a destructor which is defined by several equalities. In this case, a rule must be generated for each combination of possible patterns. Moreover, notice
that the hypotheses of the rules describe all the messages previously received, not only the last one. This is important since in some protocols the fifth message for instance can contain elements received in the first message. The hypotheses summarize the history of the exchanged messages.

Remark. When the protocol makes some communications on private channels, on which the attacker cannot a priori listen or send messages, a second predicate can be used: \(\text{mess}(C, M) \) meaning “the message \(M \) can appear on channel \(C \)”. In this case, if the attacker manages to get the name of the channel \(C \), it will be able to listen and send messages on this channel. Thus, two new rules have to be added to describe the behavior of the attacker. The attacker can listen on all the channels it has:

\[
\text{mess}(x, y) \land \text{attacker}(x) \rightarrow \text{attacker}(y).
\]

It can send all the messages it has on all the channels it has:

\[
\text{attacker}(x) \land \text{attacker}(y) \rightarrow \text{mess}(x, y).
\]

2.4. Summary

To sum up, a protocol can be represented by three sets of Prolog rules:

- Rules representing the computation abilities of the attacker. There is one rule \(\text{attacker}(x_1) \land \ldots \land \text{attacker}(x_n) \rightarrow \text{attacker}(f(x_1, \ldots, x_n)) \) for each constructor \(f \), and one rule \(\text{attacker}(M_1) \land \ldots \land \text{attacker}(M_n) \rightarrow \text{attacker}(M) \) for each equation \(g(M_1, \ldots, M_n) = M \) defining a destructor \(g \).

- Facts corresponding to the initial knowledge of the attacker. There is a fact \(\text{attacker}(a[]) \) giving a name to the attacker. In general, there are also facts giving the public keys of the participants and/or their names to the attacker.

- Rules representing the protocol itself. There is one set of rule for each message in the protocol. In the set corresponding to the \(i \)th message, sent by principal \(X \), the rules are of the form \(\text{attacker}(M_{j_1}) \land \ldots \land \text{attacker}(M_{j_n}) \rightarrow \text{attacker}(M_i) \) where \(M_{j_1}, \ldots, M_{j_n} \) are the patterns of the messages received by \(X \) before sending the \(i \)th message, and \(M_i \) is the pattern of the \(i \)th message.

The rules representing the Denning-Sacco protocol are summarized in Figure 2.

2.5. Approximations

The reader can notice that our representation of protocols is approximate:

- **Freshness** is modeled by letting new names be functions of messages previously received by the creator of the name in the run of the protocol. When the attacker does not alter messages, this means that different values are used per pair of principals running the protocol instead of per session. When the attacker does alter messages, different values are used when different messages are received.

- A step of the protocol can be completed several times, as long as the previous steps have been completed at least once between the same principals. For instance, in a session between the attacker and a principal \(A \), the attacker sends the first message \(M_1 \), \(A \) replies with \(M_2 \), the attacker can then send two messages in place of the third message, as long as they correspond to the pattern expected by \(A \). That is, the attacker sends \(M_3 \) and gets \(M_4 \) from \(A \), then the attacker sends \(M_5 \) and gets \(M_6 \) from \(A \). The attacker can also perform again the \(i \)th step, even if further steps have already been performed. Therefore, the actions of the principals are not organized into runs.

But the important point is that the approximations are always performed in the safe direction: if an attack exists in a more precise model, such as multiset rewriting [16], or the applied pi calculus [5], then it also exists in our representation. (We are currently proving that our translation from the applied pi calculus to this representation has this correctness property.) Performing approximations enables us to build a much more efficient verifier, which will be able to handle larger and more complex protocols. Another advantage is that the verifier does not have to limit the number of runs of the protocol. The price to pay for this is that false attacks may be found by the verifier: sequences of rule applications that do not correspond to a protocol run. When a false attack is found, we cannot know whether the protocol is secure or not: a real attack may also exist. A more precise analysis is required in this case. But our representation is precise enough so that false attacks are rare. (This is demonstrated by our experiments, see Section 6.)

2.6. Secrecy

Our goal is to determine secrecy properties: for instance, can the attacker get the secret \(s \)? That is, can the fact \(\text{attacker}(s[]) \) be inferred from the rules? If \(\text{attacker}(s[]) \) can be inferred, the sequence of rules applied to derive \(\text{attacker}(s[]) \) will lead to the description of an attack.

Our notion of secrecy is similar to that of [4, 7, 12]: a term \(M \) is secret if the attacker cannot get it by listening and sending messages, and performing computations. This notion of secrecy is weaker than non-interference, but it is
adequate to deal with the secrecy of fresh names. Non-interference is better at excluding implicit information flows or flows of parts of compound values. (See [3, Section 6] for further discussion and references.)

Technically, the hypotheses F_1, \ldots, F_n of a rule are considered as a multiset. This means that the order of the hypotheses is irrelevant, but the number of times an hypothesis is repeated is important. (This is not related to the ideas of multiset rewriting: the semantics of a rule does not depend on the number of repetitions of its hypotheses, but considering multisets is useful to make explicit the elimination of duplicate hypotheses in our verifier. It will also be useful in the proof of the algorithm.) Formally, a multiset of facts S is a function from facts to integers, such that $S(F')$ is the number of repetitions of F' in S. The inclusion on multisets is the point-wise order on functions: $S \subseteq S' \iff \forall F, S(F) \leq S'(F)$. If f is a function from facts to facts, we can extend it to multisets of facts by $\left(f(S) \right)(F') = \sum_{F'' \text{ such that } f(F'') = F'} S(F'')$. This applies in particular when f is a substitution.

We determine whether a given formula can be implied by a given set of rules. This is more precisely defined as follows.

Definition 1 We define rule implication by:

\[(H_1 \rightarrow C_1) \Rightarrow (H_2 \rightarrow C_2) \text{ if and only if } \exists \sigma, \sigma C_1 = C_2, \sigma H_1 \subseteq H_2\]

where H_1 and H_2 are multisets of hypotheses, σ is a substitution.

We write $R_1 \Rightarrow R_2$ when R_2 can be obtained by adding hypotheses to a particular instance of R_1. In this case, all facts that can be derived by R_2 can also be derived by R_1.

Definition 2 (Derivability) Let F be a closed fact, that is, a fact without variable. Let B be a set of rules. F is derivable from B if and only if there exists a finite tree defined as follows:

1. Its nodes (except the root) are labelled by rules $R \in B$;
2. Its edges are labelled by closed facts;
3. If the tree contains a node labelled by R with one incoming edge labelled by F_0 and n outgoing edges labelled by F_1, \ldots, F_n, then $R \Rightarrow \{F_1, \ldots, F_n\} \rightarrow F_0$.
4. The root has one outgoing edge, labelled by F.

Such a tree is a derivation of F from B.

In a derivation, if there is a node labelled by R with one incoming edge labelled by F_0 and n outgoing edges labelled by F_1, \ldots, F_n, then the rule R can be used to infer F_0 from F_1, \ldots, F_n. Therefore, there exists a derivation of F from B if and only if F can be inferred from rules in B.

3. Solving algorithm

Our representation is a set of Prolog rules, and our goal is simply to determine whether a given fact can be inferred from these rules or not. This is exactly the problem that is solved by usual Prolog systems. However, we cannot use these systems here, because they would not terminate. For instance, the rule:

\[
\text{attacker}(\text{pcrypt}(m, \text{pk}(sk))) \land \text{attacker}(sk) \\
\rightarrow \text{attacker}(m)
\]

leads to considering more and more complex terms, with an unbounded number of encryptions. We could of course limit arbitrarily the depth of terms to solve the problem, but...
we can do much better than that. Indeed, even when limiting
the depth of terms, the complexity of the depth-first search
will be very large. There are many rules with conclusion
attacker(x) that can always be applied, when we search a
fact of the form attacker(M). We can get better results with a
more guided search.

The main idea to guide the search is to combine pairs of
rules by unification, when the unified facts are not of the
form attacker(x). When the consequence of a rule R
unifies with one hypothesis of another (or the same) rule
R', we can infer a new rule, that corresponds to applying
R and R' one after the other. Formally, this is defined as
follows:

Definition 3 Let R and R' be two rules, R = H → C,
R' = H' → C'. Assume that there exists F_0 ∈ H' such
that: C and F_0 are unifiable, and σ is the most general
unifier of C and F_0.

In this case, we define

\[R \circ F_0, R' = \sigma(H \cup (H' - F_0)) \rightarrow \sigma C'. \]

For example, if R is the rule (2), and R' is the rule (1), the
fact F_0 is F_0 = attacker(pencrypt(m, pk(sk))). R \circ F_0, R'
is

\[\text{attacker}(pk(x)) \land \text{attacker}(x) \]
\[\rightarrow \text{attacker}(\text{sign}(k[\text{pk}(x)], sk_A[])) \]

with the substitution \(\sigma = \{ sk \mapsto x, m \mapsto \text{sign}(k[\text{pk}(x)], sk_A[]) \} \). In terms of logic programming, R \circ F_0, R' is the
result of resolving R' with R upon F_0. Of course, if this op-
eration is applied without limitations, it does not terminate
(consider the same rule as above). We specify conditions to
limit it. As far as we know, these conditions are new.

Let S be a finite set of facts. We define F' ∈ S by:
there exists a substitution \(\sigma \) mapping variables to variables
such that \(\sigma F \in S \). By default, \(S = \{ \text{attacker}(x) \} \), but the
algorithm is also correct with other values of S. The idea is
to only unify facts F such that \(F \not\not\not\in S \). The precise formal
condition is slightly more complex (see below).

The solving algorithm works in two phases, which are
described in Figures 3 and 4 respectively. The first phase
transforms the rule base into a new one, that implies the
same facts. The second one uses a depth-first search to de-
termine whether a fact can be inferred or not from the rules.

The first phase (Figure 3) contains 3 steps. The first step
inserts in B the initial rules of the protocol and the
attacker (rules that are in B_0). These rules are simpli-
fied by eliminating duplicate hypotheses, and if a rule R
implies a rule R', R' is removed (definition of add). The
second step is a fixed point iteration, that adds rules created
by resolution. The composition of rules R and R' is only
added if

\[\text{add}(R, B) = \begin{cases}
B & \text{if } \exists R' \in B, R' \Rightarrow R, \\
\{R\} \cup \{R' \in B | R \not\not\not\Rightarrow R'\} & \text{otherwise.}
\end{cases} \]

We also define \(\text{elimdup}(H \rightarrow C) = (H \cap 1) \rightarrow C \),
where 1 is the multiset which contains one copy of each
fact: \(\forall F, 1(F) = 1 \). The function \(\text{elimdup} \) eliminates the
duplicate hypotheses from a rule.

1. For each \(R \in B_0, B \leftarrow \text{add}(\text{elimdup}(R), B) \).
2. Let \(R \in B, R = H \rightarrow C \) and \(R' \in B, R' = H' \rightarrow C' \). Assume that there exists \(F_0 \in H' \) such that:
 \(a) R \circ F_0, R' \) is defined;
 \(b) \forall F \in H, F' \in S; \)
 \(c) F_0 \not\not\not\in S, \)

In this case, we execute

\[B \leftarrow \text{add}(\text{elimdup}(R \circ F_0, R'), B). \]

This procedure is executed until a fixed point is
reached.

3. Let \(B' = \{(H \rightarrow C) \in B | \forall F \in H, F' \in S \}. \)

Figure 3. First phase: completion of the rule base

- the hypotheses of R contain only facts F which sat-
sify \(F \in S \) (i.e. by default they are of the form
attacker(x)),
- and the hypothesis \(F_0 \) of R' that we unify does not
satisfy \(F_0 \not\not\not\in S \) (i.e. by default \(F_0 \) is not of the form
attacker(x)).

When a rule is created by this composition, it is added to the
rule base B, after simplification (duplicate hypotheses are
removed and if a rule R implies a rule R', R' is removed).
At last, the third step is to extract from B the new rule base
\(B' \), by taking only the rules whose all hypotheses F sat-
sify \(F \in S \) (by default, this means that \(F \) is of the form
attacker(x)). The following remarks can help understand the
algorithm:

- This algorithm corresponds to a kind of forward
search. In a forward search, a fact is unified with an
hypothesis of a rule, and a new rule is created that contains one hypothesis less. This is performed until no new fact can be inferred. Here, assume \(S = \emptyset \). Hypothesis (b) means that \(R \) has no hypothesis, that is, \(R \) is a fact. Hypothesis (c) is always true. Then a fact \(R = C \) is unified with an hypothesis of the rule \(R' \). In this case, we have exactly a forward search.

When \(S \neq \emptyset \), the algorithm resembles a forward search for a modified notion of facts. Let \(S \)-facts be the rules \(H \rightarrow C \), where \(\forall F \in H, F \in S \). Let \(S \)-rules be the rules \(H' \rightarrow F' \), where \(\forall F \in H', F \notin S \) and \(F \) is an \(S \)-fact. Notice that all rules are \(S \)-rules, simply by writing first the hypotheses that satisfy \(F \notin S \). Hypothesis (b) means that \(R \) is an \(S \)-fact. Hypothesis (c) means that \(F_0 \) is an hypothesis of an \(S \)-rule \(R' \). The \(S \)-fact and \(S \)-rule are combined, to give a new \(S \)-rule (that can be an \(S \)-fact). When all combinations have been performed, only \(S \)-facts are kept in \(B' \).

- This algorithm is similar to an unfolding of the logic program [37], but there is one important difference: In the unfolding, a rule \(R' \) and an hypothesis \(F_0 \) of \(R' \) are chosen, and the resolution is performed with all rules \(R \) whose consequence is unifiable with \(F_0 \). Here, the resolution is only applied with rules \(R \) whose hypotheses \(F \) satisfy \(F \notin S \).

- The speed of the algorithm comes essentially from the fact that there are not many rules \(H \rightarrow C \) such that \(\forall F \in H \cup \{ C \}, F \in S \). (In our uses of this algorithm, \(S \) is always a very small set.) For the other rules, (b) implies \(C \notin S \), therefore, using the default definition of \(S \), \(C \) is not of the form \(\text{attacker}(x) \): \(C \) cannot be unified with any hypothesis of any rule, only few hypotheses of rules will correspond. Similarly, \(F_0 \) is not of the form \(\text{attacker}(x) \), so only few conclusions of rules can be unified with \(F_0 \). Therefore, in general, few unifications are performed, and the algorithm is very fast.

We prove that the rules in \(B' \) imply exactly the same facts as the rules in \(B_0 \).

Lemma 1 (Correctness of phase 1) Let \(F \) be a closed fact. \(F \) is derivable from the rules in \(B_0 \) if and only if \(F \) is derivable from the rules in \(B' \).

Proof sketch We only give a proof sketch here, a detailed proof can be found in Appendix A.

Assume that \(F \) is derivable from \(B_0 \) and consider a derivation of \(F \) from \(B_0 \). The key idea of the proof is the following. Assume that the rules \(R \) and \(R' \) are applied one after the other in the derivation of \(F \). Also assume that these rules have been combined by \(R \circ F_0, R' \), yielding rule \(R'' \). In this case, we replace \(R \) and \(R' \) by \(R'' \) in the derivation of \(F \). When no more replacement can be done, we show that all the hypotheses \(F_0 \) of the remaining rules satisfy \(F_0 \in S \). Then all these rules are in \(B' \), and we have built a derivation of \(F \) from \(B' \). The converse is easy to prove.

The second phase (Figure 4) searches the facts that can be inferred from \(B' \). This is simply a backward depth-first search. The search is performed by calling \(\text{derivablerc}(R, B'') \) with two parameters: a rule \(R \) and a set of rules \(B'' \). The hypotheses of \(R \) are the facts that we currently want to prove. Its conclusion is an instance of the fact \(F \) that we initially wanted to prove. Moreover, the rule \(R \) is always a consequence of the rules in \(B' \): the conclusion of \(R \) can be proved by rules of \(B' \) from the hypotheses of \(R \). The set \(B'' \) is the set of rules that we have already seen during the search. \(\text{derivablerc}(\{ F \} \rightarrow F, B'') \) returns the set of instances of \(F \) that can be proved.

If \(R \) is implied by a rule in \(B'' \), the current branch of the search fails: this is a cycle, we are looking for instances of facts that we have already looked for (first point in the definition of \(\text{derivablerc} \)). We backtrack to try finding another derivation of the goal. If \(R \) has no hypothesis, the search succeeds: the conclusion of \(R \) is proved (second point of the definition of \(\text{derivablerc} \)). Otherwise, we have to go on searching. We try to use rule \(R' \in B' \) to prove one of the hypotheses of \(R, F_0 \). That is, we call \(\text{derivablerc} \) with the rule \(R' \circ F_0, R \) (in which \(F_0 \) has been replaced by the hypotheses of \(R', R' \) and \(R \) being instantiated so that the conclusion of \(R' \) and \(F_0 \) are unified).

The following theorem gives the correctness of the whole algorithm. It shows that we can use our algorithm to determine whether a fact is derivable or not from the initial rules. The first part of the theorem shows that when calling derivablerc with a not necessarily closed fact \(F' \), the instances of \(F' \) that can be derived from the rules are the instances of the facts returned by derivablerc(\(F'' \)). The second part deals with the particular case of closed facts.
Theorem 2 (Correctness) Let \(F \) be a closed fact. Let \(F' \) such that there exists a substitution \(\sigma \) such that \(\sigma F' = F \). \(F' \) is derivable from the rules in \(B_0 \) if and only if \(\exists F'' \in \text{derivable}(F'), \exists \sigma, F = \sigma F'' \).

In particular, \(F' \) is derivable from \(B_0 \) if and only if \(F \in \text{derivable}(F) \).

Proof sketch Using Lemma 1, we only have to prove that \(F' \) is derivable from \(B' \) if and only if \(\exists F'' \in \text{derivable}(F'), \exists \sigma, F = \sigma F'' \).

Essentially, derivable rec performs a classical depth-first search of the rule base \(B' \) to find the desired fact. This search is stopped in case of cycle. \(F' \) is derivable if and only if it is found by the depth-first search. The detailed proof can be found in Appendix A.

\[\square \]

4. Termination

4.1. Termination of the basic algorithm

The fixed point iteration of the first phase does not always terminate, even if it terminates in most examples of protocols. We will see below several ways to force its termination.

The following proposition shows that the depth-first search of the second phase terminates on the rule base \(B' \) built by the first phase.

Proposition 3 If \(F \) is closed and \(S = \{\text{attacker}(x)\} \), then \(\text{derivable}(F) \) terminates. (Otherwise, the termination of \(\text{derivable}(F) \) is not guaranteed.)

Proof sketch The hypotheses of the rules in \(B' \) are smaller than the conclusion. Hence the depth-first search considers smaller and smaller terms, and thus terminates. The proof can be found in Appendix B.

\[\square \]

4.2. Detecting (and solving) some non-termination cases

Assume that a rule \(R = \{F_0\} \rightarrow C \) is inferred, with \(C = \sigma F_0 \), where \(\sigma \) is such that \(\exists x, (x \in \text{fv}(\sigma x) \land x \neq \sigma x) \), where \(\text{fv}(M) \) is the set of variables in the term \(M \). Assume that \(F_0 \not\in S \), and there exists a derivation of an instance of \(F_0 \) (more precisely, the verifier generates a rule \(H' \rightarrow \sigma' F_0 \), whose hypotheses \(F' \in H' \) satisfy \(F' \in S \).

Then, in general, the completion process (phase 1) does not terminate. Indeed, the rule \(R \) can be combined with the rule \(H' \rightarrow \sigma' F_0 \), yielding \(H' \rightarrow \sigma' C = H' \rightarrow \sigma' \sigma F_0 \), then this rule can combined again with \(R \), yielding \(H' \rightarrow \sigma' \sigma C = H' \rightarrow \sigma' \sigma^2 F_0 \). We can go on this way, and obtain for all integers \(n \): \(H' \rightarrow \sigma' \sigma^n F_0 \), and in general non of these rules implies another, therefore all these rules will be generated by the solving algorithm.

An example of such an exploding rule is:

\[\text{attacker}(f(x)) \rightarrow \text{attacker}(f(g(x))). \]

A solution to this non-termination case is of course to add \(F_0 \) to the set \(S \), thus forbidding the above combinations of the rule \(R \). Another solution is to add a new rule, that implies all the previous rules, for \(n \) large enough. For example, let \(\alpha \) be a renaming of variables that has an image disjoint from the variables appearing in \(H' \). Then the rule \(H' \rightarrow \alpha \sigma^\alpha C \) implies all the previous rules for \(n \geq n_0 \). When such a rule is present, the previous rules are automatically removed, and the non-termination is avoided. From the point of view of abstract interpretation, adding a new rule in this way can be considered as a widening [15], that we use to force the convergence of the fixed point iteration.

This non-termination case can be detected automatically by the verifier.

4.3. Enforcing termination

Termination can be enforced by limiting the depth of terms. Each term that starts at a depth greater than a limit fixed by the user is replaced by a new variable.

This way, if a fact can be generated by the system without depth limitation, it can also be generated by the system with depth limitation. The converse is of course wrong. The system remains correct (if it says that a protocol does not leak certain secrets, then the protocol definitely does not leak these secrets), but some precision is lost.

In practice, the algorithm terminates for many protocols without limiting the depth of terms. That is why, by default, the depth of terms is not limited in our tool. Moreover, limiting the depth of terms that appear in the rules does not limit the depth of terms that can be built by the attacker, since even with rules of bounded depth, the attacker can create terms of unbounded depth. Therefore, even if limiting the depth of terms in the rules leads to approximations, it is more precise than limiting the depth of terms in the usual depth-first search algorithm of Prolog.

5. Optimizations and extensions

5.1. Tuples

The tuples are denoted by \((M_1, \ldots, M_n)\). Tuples of different arity are considered as different functions. But the user does not have to define each of these functions: they are all built-in.

The attacker rules:

\[\text{attacker}(M_1) \land \ldots \land \text{attacker}(M_n) \rightarrow \text{attacker}((M_1, \ldots, M_n)) \]

\[\text{attacker}((M_1, \ldots, M_n)) \rightarrow \text{attacker}(M_i) \]
are also built-in, and treated in a specially optimized way. Indeed, these rules mean that \(\text{attacker}((M_1, \ldots, M_n)) \) is derivable if and only if \(\forall i \in \{1, \ldots, n\} \), \(\text{attacker}(M_i) \) is derivable. When a fact of the form \(\text{attacker}((M_1, \ldots, M_n)) \) is met, it is replaced by \(\text{attacker}(M_1) \land \ldots \land \text{attacker}(M_n) \). If this replacement is done in the conclusion of a rule \(H \rightarrow \text{attacker}((M_1, \ldots, M_n)) \), \(n \) rules are created: \(H \rightarrow \text{attacker}(M_i) \) for each \(i \in \{1, \ldots, n\} \). This replacement is of course done recursively: if \(M_i \) itself is a tuple, it is replaced again.

Notice that \((x, y, z), (x, (y, z))\) and \((x, y), z\) are different terms. Tuples are different from the concatenation. This can have important consequences. For instance, the Otway-Rees protocol [32] is flawed when using concatenation, not when using tuples. Similarly, the simplified version of the Yahalom protocol of [11] is correct from the point of view of secrecy when using tuples, whereas it is flawed when using concatenation [36, Attack 1]. (The second attack of [36] exposes an authentication flaw, not a secrecy problem.) Of course, the implementation of the protocol must correspond to the model of the verifier.

5.2. Removing useless rules and useless hypotheses

If a rule has a conclusion which is already in the hypotheses, this rule does not generate new facts. Such rules are therefore removed as soon as they are encountered by our verifier.

If a rule \(H \rightarrow C \) contains in its hypotheses \(\text{attacker}(x) \), where \(x \) is a variable that does not appear elsewhere in the rule, the hypothesis \(\text{attacker}(x) \) can be removed. Indeed, the attacker always has at least a message. Therefore \(\text{attacker}(x) \) is always satisfied.

5.3. Secrecy assumptions

When the user knows that a fact will not be derivable, he can tell it to the verifier. (When this fact is of the form \(\text{attacker}(M) \), the user tells that \(M \) remains secret.) The tool then removes all rules which have this fact in their hypotheses. At the end of the computation, the program checks that the fact is indeed underviable from the obtained rules. If the user has given erroneous information, an error message is displayed. Even in this case, the verifier never wrongly claims that a protocol is secure.

Mentioning such underviable facts prunes the search space, by removing useless rules. This speeds up the search process. In most cases, the secret keys of the principals cannot be known by the attacker. So, examples of underviable facts are \(\text{attacker}(sk_A[]) \), \(\text{attacker}(sk_B[]) \), \ldots

5.4. Diffie-Hellman key agreement

The Diffie-Hellman key agreement [18] enables two principals to build a shared secret. It is used as an elementary step in more complex protocols, such as Skeme [24].

Formally, the Diffie-Hellman key agreement can be modeled by using two functions \(f \) and \(g \) that satisfy the equation

\[
 f(y, g(x)) = f(x, g(y)).
\]

In practice, the functions are \(f(x, y) = y^x \mod p \) and \(g(x) = \alpha^x \mod p \) where \(p \) is prime and \(\alpha \) is a generator of \(\mathbb{Z}_p^* \). The equation \(f(y, g(x)) = (\alpha^x)^y \mod p = (\alpha^y)^x \mod p = f(x, g(y)) \) is satisfied. In our verifier, following the ideas used in the applied pi calculus [5], we do not consider the underlying number theory; we work abstractly with the equation (3). The Diffie-Hellman key agreement involves two principals \(A \) and \(B \). \(A \) chooses a random name \(x_0 \), and sends \(g(x_0) \) to \(B \). Similarly, \(B \) chooses a random name \(x_1 \), and sends \(g(x_1) \) to \(A \). Then \(A \) computes \(f(x_0, g(x_1)) \) and \(B \) computes \(f(x_1, g(x_0)) \). Both values are equal by (3), and they are secret: assuming that the attacker cannot have \(x_0 \) or \(x_1 \), it can compute neither \(f(x_0, g(x_1)) \) nor \(f(x_1, g(x_0)) \).

The equation (3) cannot be written directly in our framework that uses only constructors and destructors. Nevertheless, it can be encoded as follows: the constructors are \(g \), \(h_0 \), and \(h_1 \), and \(f \) is a destructor defined by

\[
 f(y, g(x)) = h_1(x, y),
 f(x, g(y)) = h_1(x, y),
 f(x, y) = h_0(x, y).
\]

Notice that this definition of \(f \) is non-deterministic: a term such as \(f(a, g(b)) \) can be reduced to \(h_1(a, b), h_1(b, a) \), and \(h_0(a, g(b)) \). When two terms \(M_1 \) and \(M_2 \) are equal according to the equation (3) then there exists a common term \(M \) such that both \(M_1 \) and \(M_2 \) reduce to \(M \). (Both sides reduce to \(h_1(x, y) \) when there is at least one \(g \) in the second parameter of \(f \), and to \(h_0(x, y) \) otherwise.) The equation is then modeled correctly.

5.5. Key compromise

The weakness of some protocols is that when an attacker manages to get some session keys, then it can also get the secrets of other sessions. Such a problem appears for example in the Needham-Schroeder shared-key protocol. It can be detected by our protocol verifier.

The strategy to model the compromise of some session keys is as follows. We say that a name is a session name if it is created at each session of the protocol. (In general, all names except long-term secret keys are session names.) We add a parameter (session identifier) to each session name \(a \).
The session identifier of \(a \) is a given constant \(s_0 \) when \(a \) has been created during a session compromised by the attacker. The session identifier is \(s_1 \) when \(a \) has been created in a session that has not been compromised. We define a predicate \(\text{comp} \) such that \(\text{comp}(M) \) is true when all session names in \(M \) have session identifier \(s_0 \). This can be defined by the following rules:

For each constructor \(f \),
\[
\text{comp}(x_1) \land \ldots \land \text{comp}(x_k) \rightarrow \text{comp}(f(x_1, \ldots, x_k))
\]
For each session name \(a \),
\[
\text{comp}(x_1) \land \ldots \land \text{comp}(x_k) \rightarrow \text{comp}(a[s_0, x_1, \ldots, x_k])
\]
For each non-session name \(a \),
\[
\text{comp}(x_1) \land \ldots \land \text{comp}(x_k) \rightarrow \text{comp}(a[x_1, \ldots, x_k])
\]

We define a predicate \(\text{attack}_0 \) by the rules normally used to encode the protocol, with session identifier \(s_0 \), and a predicate \(\text{attack}_1 \) by the same rules with session identifier \(s_1 \). Then we add the rule
\[
\text{comp}(x_1) \land \ldots \land \text{comp}(x_k) \rightarrow \text{attack}_0(a[s_0, x_1, \ldots, x_k])
\]

for each session name \(a \). These rules express that the attacker \(\text{attack}_0 \) has the names of session identifier \(s_0 \). Moreover, we add the rule
\[
\text{attack}_0(x) \rightarrow \text{attack}_1(x).
\]

The intuitive meaning of the predicates is the following: \(\text{attack}_0(M) \) is true if and only if \(M \) can be obtained by the attacker by compromising the sessions of identifier \(s_0 \); \(\text{attack}_1(M) \) is true if \(M \) can be obtained by the attacker in a non-compromised session, using the knowledge obtained in the compromised sessions. We can then use our tool to query the fact \(\text{attack}_1(s[s_1]) \), where \(s \) is a session secret. This is undervisible, then the protocol does not have the weakness mentioned above: the attacker cannot have the secret \(s \) of a session that it has not compromised. In contrast, it is normal that \(\text{attack}_1(s[s_0]) \), since the attacker has compromised the sessions of identifier \(s_0 \).

Our translation from the applied pi calculus can automatically add the rules described above to model the compromise of session keys. Also notice that our solving algorithm uses \(S = \{ \text{comp}(x), \text{attack}_0(x), \text{attack}_1(x) \} \) in this case.

Remark. We could also use a single predicate \(\text{attack} \) instead of \(\text{attack}_0 \) and \(\text{attack}_1 \). However, this would yield a less precise model, leading to more false attacks. For example, we could not prove that the corrected version of the Needham-Schroeder shared key protocol [31] is secure with this model.

6. Experimental results

We have implemented our verifier in Ocaml, and have performed tests on a Pentium MMX 233 MHz, under Linux 2.0.32 (RedHat 5.0). The results are summarized in Figure 5, with references to the papers that describe the protocols and the attacks. In these tests, the protocols are fully modeled, including interaction with the server for all versions of the Needham-Schroeder, Denning-Sacco, Otway-Rees, and Yahalom protocols. We use secrecy assumptions to speed up the search. These assumptions say that the secret keys of the principals, and the random values of the Diffie-Hellman key agreement and the session keys in the Skeme protocol, remain secret. Thanks to these secrecy assumptions, the analysis time of Skeme is 23 s instead of 70 s. The column “#Rules” indicates the number of Prolog rules in our representation of each protocol. The large number of rules for the Needham-Schroeder shared-key protocol comes from the encoding of the compromise of session keys. In the Needham-Schroeder shared key protocol, the last messages are

- **Message 4.** \(B \rightarrow A : \{ N_B \}_K \)
- **Message 5.** \(A \rightarrow B : \{ N_B - 1 \}_K \)

where \(N_B \) is a nonce. Representing this with a function \(\text{minusone}(x) = x - 1 \), this yields a loop in our verifier, since it believes that 1 can be subtracted any number of times from \(N_B \). Moreover, the techniques mentioned previously to force termination lead to a false attack. The purpose of the subtraction is to distinguish the reply of \(A \) from \(B \)'s message. As mentioned in [6], it would be clearer to have:

- **Message 4.** \(B \rightarrow A : \{ \text{Message 4 : N}_B \}_K \)
- **Message 5.** \(A \rightarrow B : \{ \text{Message 5 : N}_B \}_K \)

We use this encoding. Our tool then terminates, and the analysis is precise. There was no other termination problem in the tests of Figure 5.

These results show that our analysis can be used to verify secrecy properties of standard cryptographic protocols, in a small amount of time. It takes only a very small amount of memory (less than 2 Mb in all these tests).

7. Conclusion

We believe that our protocol verifier can provide new possibilities to verify cryptographic protocols: it is very efficient, and thus can handle complex protocols; it also avoids limiting the number of runs of the protocol. This is achieved by using a simple representation of the protocol, and a new solving algorithm.

Directions for further work include generalizing the tool to handle other equational theories. A more
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Result</th>
<th>#Rules</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needham-Schroeder public key [30]</td>
<td>Attack</td>
<td>14</td>
<td>70</td>
</tr>
<tr>
<td>Needham-Schroeder public key corrected [25]</td>
<td>Secure</td>
<td>14</td>
<td>60</td>
</tr>
<tr>
<td>Needham-Schroeder shared key corrected [31]</td>
<td>Secure</td>
<td>51</td>
<td>1190</td>
</tr>
<tr>
<td>Denning-Sacco [17]</td>
<td>Attack</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>Otway-Rees [32]</td>
<td>Secure</td>
<td>9</td>
<td>270</td>
</tr>
<tr>
<td>Otway-Rees, variant of [33]</td>
<td>Attack</td>
<td>9</td>
<td>260</td>
</tr>
<tr>
<td>Main mode of Skeme [24]</td>
<td>Secure</td>
<td>23</td>
<td>23070</td>
</tr>
</tbody>
</table>

Figure 5. Experimental results

A general study of the termination of the algorithm would also be interesting, to find conditions that guarantee the termination of the basic algorithm, and new ways of forcing termination when these conditions are not satisfied.

Acknowledgments

This work owes much to discussions with Martín Abadi. I am very grateful to him for what he taught me. I would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

A. Proof of correctness of our algorithm

Lemma 4 At the end of the first phase, \(B \) satisfies the following properties:

1. \(\forall R \in B_0, \exists R' \in B, R' \Rightarrow R; \)

2. Let \(R \in B, R = H \rightarrow C \) and \(R' \in B, R' = H' \rightarrow C' \).
 Assume that there exists \(F_0 \in H' \) such that:
 \(a) R \circ F_0, R' \) is defined;
 \(b) \forall F \in H, F \in S; \)
 \(c) F_0 \notin S. \)

In this case, there exists \(R'' \in B, R'' \Rightarrow R \circ F_0, R'. \)

Proof

To prove the first property, let \(R \in B_0 \). We show that during the whole execution of phase 1, \(\exists R' \in B, R' \Rightarrow R \).

At the beginning, we execute the instruction \(B \leftarrow \text{add}(\text{elimdup}(R), B) \). If there exists no \(R' \in B \) such that \(R' \Rightarrow \text{elimdup}(R) \), then \(\text{elimdup}(R) \) is added to \(B \). We have \(\text{elimdup}(R) \Rightarrow R \) (with \(\sigma \) the identity). Therefore, after the execution of this instruction \(\exists R' \in B, R' \Rightarrow R \).

Assume that we execute \(B \leftarrow \text{add}(R', B) \), and before this execution \(\exists R' \in B, R' \Rightarrow R \). Either \(R' \) is kept in \(B \), then this property is true after the execution of \(\text{add} \). Or \(R' \) is removed, and \(R^n \Rightarrow R' \). Then \(R^n \Rightarrow R \) (\(\Rightarrow \) is transitive) and the property is still satisfied.

The second property simply means that the fixed point is reached at the end of phase 1 (using \(\text{elimdup}(R \circ F_0, R') \Rightarrow R \circ F_0, R' \)). \(\square \)
Lemma 5 If $R \circ F_0$, R' is defined, $R_1 \Rightarrow R$ and $R'_1 \Rightarrow R'$ then either there exists F_1 such that $R_1 \circ F_1$, $R'_1 \Rightarrow R_1 \circ F_1$, $R'_1 \Rightarrow R_1 \circ F_1$, R' or $R'_1 \Rightarrow R_1 \circ F_1$, $R'_1 \Rightarrow R_1 \circ F_1$, R'.

Proof Let $R = H \rightarrow C$, $R' = H' \rightarrow C'$, $R_1 = H_1 \rightarrow C_1$, $R'_1 = H'_1 \rightarrow C'_1$. By renaming the variables, we can arrange such that the variables of R_1 and R'_1 are distinct. Then there exists a substitution σ such that $\sigma C_1 = C$, $\sigma H_1 \subseteq H$, $\sigma C'_1 = C'$, $\sigma H'_1 \subseteq H'$.

We have $R \circ F_0, R' = \sigma' (H \cup (H' - F_0)) \rightarrow \sigma' C'$. We have two cases.

First case: $\exists F_1 \in H'_1, \sigma F_1 = F_0$. Since $R \circ F_0$ is defined, F_0 and C are unifiable, let σ' be the most general unifier. If $\sigma F_1 = \sigma' C_1$, then F_1 and C_1 are unifiable, therefore $R \circ F_1, R'_1$ is defined. Let σ_1 be the most general unifier. There exists σ_1 such that $\sigma' \sigma = \sigma'_1 \sigma_1$. We have $R_1 \circ F_1 = \sigma_1 (H_1 \cup (H'_1 - F_1)) \rightarrow \sigma_1 C'_1$, $\sigma_1' \sigma_1 (H_1 \cup (H'_1 - F_1)) \subseteq \sigma_1' (H \cup (H' - F_0))$, $\sigma_1' \sigma_1 C'_1 = \sigma_1' C_1 = \sigma' C'$. Then $R_1 \circ F_1, R'_1 \Rightarrow R \circ F_0, R'$.

Second case: $\sigma H'_1 \subseteq H' - F_0$. Then $\sigma H'_1 \subseteq (H \cup (H' - F_0))$ and $\sigma C'_1 = C'$. Therefore $R_1 \Rightarrow R \circ F_0, R'$.

Lemma 1 (Correctness of phase 1) Let F be a closed fact. F is derivable from B_0 if and only if F is derivable from B'.

Proof Assume that F is derivable from B_0 and consider a derivation of F from B_0. For each rule R in B_0, there exists a rule R' in B such that $R' \Rightarrow R$ (Lemma 4, Property 1).

Assume that R is the label of a node with an incoming edge labelled F_1, \ldots, F_n. We have $R \Rightarrow \{F_1, \ldots, F_n\} \rightarrow F$. Then $R' \Rightarrow \{F_1, \ldots, F_n\} \rightarrow F$.

Therefore, we can replace the node labelled R by a node labelled R'. This way, we obtain a derivation of F from B'.

Assume that there are two nodes n and n' in the derivation of F, linked by an edge from n' to n labelled C_1. Assume that n is labelled R and n' is labelled R'. Let H be the set of labels of outgoing edges of n, H' the same for n', C' the label of the incoming edge of n'. Then

$(H \rightarrow C_1) \circ_{C_1} (H' \rightarrow C')$ is defined (with a substitution σ being the identity). By Lemma 5, there exists F' such that $R \circ F' \Rightarrow F$ is defined, and $R \circ F' \Rightarrow F$. Theorem 2 Let F be a closed fact. Let F' such that F' is derivable from the rules in B_0 if and only if F' is derivable from F'.

In particular, F is derivable from B_0 if and only if F is derivable (F'). Theorem 2
We have derivable(rec(R′, B′)) = derivable(F′) hence the result.

For the induction step, consider a partial derivation with \(k + 1 \) nodes. Let \(n \) be a node of this derivation whose all outgoing edges have been cut (a leaf of the partial derivation). Assume that \(n \) is labelled by \(R \), that its incoming edge is labelled by \(F \), its outgoing edges by \(F_1, \ldots, F_n \). The other edges that have been cut to build the partial derivation are labelled by \(F_2, \ldots, F_n \). By induction hypothesis on the partial derivation without node \(n \), there exists \(R' \) such that \(R' \Rightarrow \{F_1, \ldots, F_n\} \rightarrow F \), derivable(rec(R′, B′)) \(\subseteq \) derivable(F′) and \(\forall R'' \in B'' \), \(R'' \neq R' \). We show that there exists \(R'' \) such that \(R'' \Rightarrow \{F_1, \ldots, F_n\} \rightarrow F \), derivable(rec(R′′, B′′)) \(\subseteq \) derivable(F′) and \(\forall R'' \in B'' \), \(R'' \neq R'' \). By definition of a derivation, \(R \Rightarrow \{F'_1, \ldots, F'_n\} \rightarrow F_1 \). Notice that the composition \(\{F'_1, \ldots, F'_n\} \Rightarrow F_1 \), of the form derivable(rec(R0, B0) \(\subseteq \) derivable(F0). If \(\forall R_1 \in \{R' \cup B'' \}, R_1 \neq R_0 \), we have the expected result with \(R' = R_1 \). Otherwise, \(\exists R_1 \in \{R' \cup B'' \}, R_1 = R_0 \). By transitivity of \(\Rightarrow \), \(R_1 \Rightarrow \{F'_1, \ldots, F'_n\} \rightarrow F \). There is an older call to derivable(rec, of the form derivable(rec(R1, B1), such that derivable(rec(R1, B1)) \(\subseteq \) derivable(F1). If \(B_1 \) satisfies \(\forall R_0 \in \{R_1, R_0 \neq R_1 \), we have the result with \(R' = R_1 \). Otherwise, we go on taking a previous call to derivable(rec as above. The process terminates, since \(B'' \) is finite.

We can apply the result we have just proved to the particular case when the partial derivation is in fact the whole derivation of \(F \). We obtain \(\exists R', R' \Rightarrow \emptyset \rightarrow F \) and derivable(rec(R′, B′)) \(\subseteq \) derivable(F′), \(\forall R'' \in B'' \), \(R'' \neq R' \). Therefore \(R' = \emptyset \rightarrow F' \), with \(\sigma^{F'} = F \). derivable(rec(R′, B′)) = \{F′\}. (The case (a) of the definition of derivable(rec) cannot be applied because of the condition \(\forall R'' \in B'' \), \(R'' \neq R' \).) Then \(F'' \in \text{derivable}(F') \). We have the expected result.

The proof of the converse inclusion is left to the reader. (essentially, the rule \(R \Rightarrow R' \) does not generate facts that cannot be generated by applying \(R \) and \(R' \).

\(\square \)

B. Termination

Lemma 3 If \(F \) is closed and \(S = \{\text{attacker}(x)\} \), then derivable(F) terminates.

Proof derivable(rec(R, B)) is only called with \(R = \{F \} \rightarrow F \) or \(R = \text{attacker}(M_1) \land \ldots \land \text{attacker}(M_n) \rightarrow F \) where \(M_1, \ldots, M_n \) are closed terms, or a variable that appears only once. This is proved by induction in the following. Moreover, we prove that the pair \(p = (\text{total size of the } M_1, \ldots, M_n \text{ that are closed terms}, \text{number of } M_1, \ldots, M_n \text{ that are variables}) \) ordered lexicographically strictly decreases. This decrease proves the termination.

At the beginning, the rule is indeed \(R = \{F \} \rightarrow F \). For recursive calls to derivable(rec, the rule is \(R' \circ F_0 \) \(R \), where \(R' = \text{attacker}(x_1) \land \ldots \land \text{attacker}(x_k) \rightarrow F \).

1. First case: \(F_0 \) is a closed fact.

 After unification of \(F' \) and \(F_0 \), \(x_i \) is substituted by a closed term \(N_i \) if \(x_i \) appears in \(F' \). Otherwise, \(x_i \) remains unchanged, and we define \(N_i = x_i \).

 • If \(R = \{F \} \rightarrow F \), the resulting rule \(R' \circ F_0 \) \(R \) is \(\text{attacker}(N_1) \land \ldots \land \text{attacker}(N_k) \rightarrow F \).

 • Otherwise, \(R = \text{attacker}(M_1) \land \ldots \land \text{attacker}(M_n) \rightarrow F, F_0 = \text{attacker}(M_i) \). Assume that \(M_i \) is a closed term. The resulting rule is \(\text{attacker}(N_1) \land \ldots \land \text{attacker}(N_k) \land \text{attacker}(M_1) \land \ldots \land \text{attacker}(M_{i-1}) \land \text{attacker}(M_{i+1}) \land \ldots \land \text{attacker}(M_n) \rightarrow F \). Moreover, the \(N_1, \ldots, N_k \) that are closed terms are disjoint subterms of \(M_i \), therefore the total size of the \(N_1, \ldots, N_k \) that are closed terms is strictly smaller than the size of \(M_i \) (except when \(R' = \text{attacker}(x) \rightarrow \text{attacker}(x) \), but in this case, \(R' \circ F_0 \) \(R = R \in \{R \} \cup B' \), by the first point of the definition of derivable(rec). Therefore the total size of the closed terms in the hypotheses strictly decreases. Hence the pair \(p \) ordered lexicographically strictly decreases.

2. Second case: \(R = \text{attacker}(M_1) \land \ldots \land \text{attacker}(M_n) \rightarrow F, F_0 = \text{attacker}(M_i), M_i = x_i \).

 If \(R' \) has some hypotheses, the resulting rule is \(R' \circ F_0 \) \(R = \text{attacker}(x_1) \land \ldots \land \text{attacker}(x_k) \land \text{attacker}(M_1) \land \ldots \land \text{attacker}(M_{i-1}) \land \text{attacker}(M_{i+1}) \land \ldots \land \text{attacker}(M_n) \rightarrow F \). We clearly have \(R' \circ F_0 \) \(R \rightarrow R \). Therefore the call \(\text{derivabler}(R' \circ F_0, R, \{R \} \cup B' \) stops immediately because \(R' \circ F_0 \) \(R = R \in \{R \} \cup B' \), by the first point of the definition of derivable(rec).

 If \(R' \) has no hypothesis, the resulting rule is \(R' \circ F_0 \) \(R = \text{attacker}(M_1) \land \ldots \land \text{attacker}(M_{i-1}) \land \text{attacker}(M_{i+1}) \land \ldots \land \text{attacker}(M_n) \rightarrow F \), and the total size of closed terms in the hypotheses is constant, whereas the number of variables strictly decreases. Hence the pair \(p \) ordered lexicographically strictly decreases.

\(\square \)

Remark. The cases \(R' = \text{attacker}(x) \rightarrow \text{attacker}(x) \) and \(F_0 = \text{attacker}(x_i) \) are removed by the optimizations of Section 5.2.