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• Introduction to access control.

• Some logical approaches.

• Some systems and languages.

• A closer look at a particular logic based on a 
type system for tracking dependencies.

2



Contents (cont.)

• Some retrospective, some news.

• Some technical material, about languages, 
logic, proofs, security, and their connections.

–A nonstandard application of language-
based security to access control.

–A surprising relation between access control 
and information-flow control.



References

• Any  general book on security (e.g., Ross 
Anderson’s) for the introductory material.

• The tutorial notes in the FOSAD volume for 
more logical material, e.g., on the logic CDD.

• The papers cited there for a broader look at 
the field.



Basics



The access control model

• Elements:

–Objects or resources

–Requests

– Sources for requests, called principals

–A reference monitor to decide on requests

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource



Authentication vs. access control

• Access control (authorization): 

– Is principal A trusted on statement s?

– If A requests s, is s granted? 

• Authentication:

–Who says s?



An access control matrix [Lampson, 1971]

objects

principals

file1 file2 file3 file4

user1 rwx rw r x

user2 r r x

user3 r r x



The principle of complete mediation 
[Saltzer and Schroeder, 1975]

Every access to every object must be checked 
for authority.

• This principle can be enforced in several ways:

– The OS intercepts some of the requests.
The hardware catches others. 

–A software wrapper / interpreter intercepts 
some of the requests. (E.g., as in VMs.)



Implementing access control

Two strategies (often combined): 
ACLs and capabilities.

• ACL: a column of an access control matrix,
attached to an object.

• Capability: (basically) a pair of an object and 
an operation, for a given principal.
It means that the principal may perform the 
operation on the object.



More on ACLs

• An ACL says which subjects can access a 
particular object.

– It is a column of an access control matrix,

– typically maintained “near” the object that 
it protects.

• ACLs can be compact and easy to review.

• ACLs may have negative entries (and then 
evaluation may be order-depedendent).

• Revoking a subject can be painful.



More on capabilities

• An alternative is to associate capabilities with 
each subject.

–A capability means that the subject can 
perform an operation on an object.

• These capabilities form a row of an access 
control matrix for the subject.

• Capabilities are often easy to pass around 
(so they enable delegation).

• They can be hard to revoke.



Implementing capabilities

Subjects should not be allowed to 
forge capabilities.

• This leads to implementations of capabilities

– stored in a protected address space,

–with special tags with hardware support,

– as references in a typed language,

–with a secret,

–with cryptography, e.g., certificates.



ACLs and capabilities

• ACLs and capabilities are dual.

• Both can yield practical implementations of 
access matrices.

• In actual systems, they are often combined.



Some further elaborations 
and complications

• Joint requests

• Groups

• Roles

• Programs

• Defining principals, objects, and operations



Conjunctions

• Sometimes a request should be granted only if 
it is made jointly by several principals.

• A conjunction may or may not be made 
explicit in the access policy.



Groups and roles

• Principals can be organized into groups.

• Principals can play roles.

• These groups and roles may be used as a level 
of indirection in access control.

– E.g., any member of a group G may access a 
file f.



Groups and roles (cont.)

• Suppose that any member of a group G may 
access a file f owned by A.

– G may be maintained by someone other A.

– The group may change over time, without 
immediate knowledge of A.

– The ACL for f should be short and clear.

– Proofs of memberships resemble (are?) 
capabilities.

– Access to f might be partly anonymous.

– Still, A may require a proof of identity at each f 
access, for auditing.



More on objects and operations

• Objects and operations may also be put in 
groups, e.g., 

– all company files,

– all read operations on an object.

• Sometimes operations should be bundled, 
e.g.,

– read a patient's record,

–write a log record.



Design choices

• Principals, objects, and operations should 
have the “right” granularity and be at the 
“right” level of abstraction

– for ease of understanding,

– to avoid giving away too much privilege.



Programs

• Programs may be principals too.

• But then:

–we need to deal with call chains,
• e.g., application on browser on OS,

–we still need to connect programs to other 
principals
• who write them or edit them,

• who provide them,

• who install them,

• who call them.



Installing programs

• Programs should be set up so that they get 
appropriate rights when they run.

• Programs should be adequately protected 
from editing.



Running programs

• What are the run-time rights of a program?

– those of the caller,

– those of the program owner, or

– some combination, or

– something else, e.g, because of intrinsic 
properties.

• E.g., a program that moves incoming mail to a 
user's inbox may need to combine system 
rights and user rights.



Running programs (cont.)

• Some answers: 

– setuid, 

–program identities, 

– code access security (with stack inspection 
or alternatives), 

–proof-carrying code, 

–…



Protection and isolation

• At run-time, programs should be protected and 
limited to communicate over proper interfaces.

• This is often the job of the computing platform 
(OS + hardware).

– It can implement address spaces 
so that programs in separate spaces cannot 
interact directly 
(e.g., cannot smash or snoop on one another).

• A language and its run-time system can provide 
finer control over communication.

– (Remember capabilities?)



Common dangers

• Access control can be insufficient or irrelevant

–when it is implemented incorrectly,

–when the underlying operations are 
implemented incorrectly,

–when the policy is wrong,

–when it is circumvented.



Circumventing access control

• Sometimes the reference monitor does not 
protect all important objects and operations, 
or does not protect them all the time.

–Control-flow subversions.

–Race conditions.

–Data recovery from disks.

–Hostile platforms (e.g., for DRM systems).

–Users that give out sensitive information.

–…

check

operation



Issues

• Access control is pervasive

– applications

– virtual machines

–operating systems

– firewalls

–doors

–…

• Access control seems difficult to get right.



Issues (cont.)

• Many characteristics of distributed systems 
make access control harder: 

– size,

– faultiness (e.g., revocations may get lost),

–heterogeneity (e.g., of communication 
channels and of protection mechanisms),

– autonomy, lack of central administration 
and therefore of central trust,

–…



Logical approaches



General theories and systems

• Over the years, there have been many 
theories and systems for access control.

– Logics

– Languages

– Infrastructures (e.g., PKIs)

–Architectures

• They often aim to explain, organize, and unify 
access control.

• They may be intellectually pleasing.

• They may actually help.



Algorithmic analysis 
[starting with Harrison, Ruzzo, and Ullman, 1976]

• A system has finite sets of rights and commands. 

• A configuration is an access control matrix.

• A command is of the form “if conditions hold, 
perform operations” (with some parameters).

– The conditions are predicates on the matrix.

– The operations add or delete rights, principals, 
and objects. E.g.:
command CONFERr (owner, friend, file)
if own in (owner, file)
then enter r into (friend,file)

end



Algorithmic analysis (cont.)

• Safety means that untrusted subjects cannot 
access a resource in any reachable state.

• Safety is undecidable (in general).



Algorithmic analysis (cont.)
[in particular, Li, Winsborough, and Mitchell, 2003]

• Not all interesting problems are undecidable!

• Consider the containment problem:

In every reachable state, does every principal 
that has one property (e.g., has access to a 
resource) also have another property (e.g., 
being an employee)? 

For different classes of systems, this problem 
is decidable (in coNP or coNEXP).



Formal verification

A formally verified security kernel is widely 
considered to offer the most promising basis for 
the construction of truly secure computer 
systems at least in the short term. A number of 
kernelized systems have been constructed  and 
various models of security have been formulated 
to serve as the basis for their verification.
Despite the enthusiasm for this approach there 
remain certain difficulties and problems in its 
application *…+

(Rushby, 1981)



A logic from matrices

• An access control matrix may be represented 
with a ternary predicate symbol may-access.

• The setting may be a fairly standard, classical 
predicate calculus.

• We may then write formulas such as:
may-access(Alice, Foo.txt, Rd)

and rules such as:
may-access(p, o, Wr) may-access(p, o, Rd)



A logic from matrices: questions

• Does this really help?

– In describing policies?

– In analyzing policies?

• We may need many more constructs and 
axioms for representing security policies. 
For example:

–may-jointly-access(p,q,o,r)

–owns(p,o)

– …                                              (When are we done?)



Logics for distributed systems

• A notation for representing principals and 
their statements, and perhaps more:

–objects and operations,

– trust,

– channels,

–…

• Derivation rules.



A calculus for access control
[with Burrows, Lampson, and Plotkin, 1993]

• A simple notation for assertions 

– A says s

– A speaks for B (sometimes written A ⇒ B)

• With logical rules

⊢ A says (s t) (A says s) (A says t)

If ⊢ s then ⊢ A says s.

⊢ A speaks for B (A says s) (B says s)

⊢ A speaks for A

⊢ A speaks for B ∧ B speaks for C A speaks for C



An example

• Let good-to-delete-file1 be a proposition.

• Let B controls s stand for (B says s) s

• Assume that 

– B controls (A speaks for B)

– B controls good-to-delete-file1

– B says (A speaks for B)

– A says good-to-delete-file1

• We can derive:

– B says good-to-delete-file1

– good-to-delete-file1



Says

export

import

context 1

statement

context 2

context 1 says

statement

Certificate

statement

(signed: context 1 )

export

import

context 1

statement

context 2

context 1 says

statement

Channel 

statement

(from: context 1 )

“says” represents 
communication across 
contexts.

“says” abstracts from 
the details of 
authentication.



Choosing axioms

• Classical? Intuitionistic? Other?

• Standard modal logic for “says”?

– (As above.) 

• Less?

–Give “says” no special rules.
[Halpern and van der Meyden, 2001]



Choosing axioms (cont.)

• More?

– ⊢ s (A says s)

[Lampson, 198?; Appel and Felten, 1999] 

but in classical logic this implies that “saying” is 

black-and-white: (A says s) (s (A says false)) 

– ⊢ (A says (B speaks for A)) (B speaks for A)

The “hand-off axiom”:  A controls (B speaks for A)



Semantics (briefly)

• Following standard semantics of modal logics, 
a principal may be mapped to a binary relation on 
possible worlds.

A says s holds at world w 
iff

s holds at world w’ 
for every w’ such that w A w’

• This is formally viable, also for richer logics.

• It does not give much insight on the meaning of 
authority, but it is sometimes useful.



Proof strategies

• Style of proofs:

–Hilbert systems

– Tableaux [Massacci, 1997]

–…

• Proof distribution:

–Proofs done at reference monitors

–Partial proofs provided by clients
[Wobber et al., 1993; Appel and Felten, 1999]

–With certificates pulled or pushed



More principals

• Compound principals represent a richer class 
of sources for requests:

–A ∧ B

–A quoting B

–A for B

–A as R

A ∧ B speaks for A, etc.

(Another addition: local naming.)



Groups and programs

• We may represent each group by a principal. 
Then, when A is a member of G, we may write 
that A speaks for G.

• In practice, it is harder to know when A is not 
a member of G.

• Programs may be treated as roles.



An example

• The cast:

– CA, the certification authority, with public key KCA

– WS, a workstation, with public key KWS

– OS, an operating system, with no key

– (WS as OS), the resulting node, with ephemeral 
public key Kn

– bwl, a user, with public key Kbwl

– Kdel, an ephemeral public key for the node for bwl

– C, a secure channel to a file server

– TrustedNode and SysAdm, two groups



An example (cont.)

• KCA says (KWS speaks for WS)

• KWS says (Kn speaks for (WS as OS))

• KCA says (Kbwl speaks for bwl)

• Kbwl says (Kdel speaks for ((WS as OS) for bwl))

• Kn says (Kdel speaks for ((WS as OS) for bwl))

• Kdel says (C speaks for ((WS as OS) for bwl))

• C says good-to-delete-file1

• And we may deduce:
((WS as OS) for bwl) says good-to-delete-file1



An example (cont.)

• KCA says ((WS as OS) speaks for TrustedNode)

• KCA says (bwl speaks for SysAdm)

• Then we may deduce: 
TrustedNode for SysAdm

says good-to-delete-file1

• The ACL for file1 may say:
TrustedNode for SysAdm

controls good-to-delete-file1

• Then we conclude: good-to-delete-file1



Applications (1): Security in an 
operating system [Wobber et al., 1993]

Workstation

hardware

 node

Accounting

Server
hardware

bsd 4.3

NFS Server

network
channel

C | pr

as for

Kn
–1

Kws
–1

pr

as as
for

C

file

as for
may read

Kbwl
-1

as

Kbwl Kws

as



Applications (2): An account of security 
in JVMs [Wallach and Felten, 1998]



Applications (3): A Web access control 
system [Bauer, Schneider, and Felten, 2002]



Applications (4): The Grey system
[Bauer, Reiter, et al., 2005]

• Converts a cell phone into a tool for 
delegating and exercising authority.

• Uses cell phones to replace physical locks and 
key systems.

• Implemented in part of CMU.

• With access control based on logic and 
distributed proofs.
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Distributed Proving
D208

Phone discovers door

To prove:
Mike says

Goal(D208.open)

Open 

D208

Jon

Jon’s 

phone

Mike’s 

phone
Mike

I can prove that with any of
1) Jon speaksfor Mike.Student

2) Jon speaksfor Mike.Admin

3) Jon speaksfor Mike.Wife

4) Delegates(Mike, Jon,

D208.open)

Please help

Jon speaksfor 

Mike.Student Proof of:
Jon says Goal(D208.open) 

Mike says Goal(D208.open)

Proof of:
Mike says

Goal(D208.open)

Hmm, I can’t prove 

that.  I’ll ask Mike’s 

phone for help.



Further applications: 
Other languages and systems

Several languages rely on logics for access control and on 
logic programming:

• D1LP and RT [Li, Mitchell, et al.]

• SD3 [Jim] and Binder [DeTreville]

• Daisy [Cirillo et al.]

• SecPAL [Becker, Fournet, and Gordon] and DKAL [Gurevich and Neeman]

“says” and “speaks for” play a role in other systems:

• SDSI and SPKI [Lampson and Rivest; Ellison et al.]

• Alpaca [Lesniewski-Laas et al.]

• Aura [Vaughan et al.]

• Plan 9 [Pike et al.]



Binder



Binder

• Binder is a relative of Prolog. 

• Like Datalog, it lacks function symbols.

• It also includes the special construct says.

• It does not include much else.



An example in Binder

• Facts

–owns(Alice, Foo.txt).

–Alice says good(Bob).

• Rules 

–may_access(p, o) :-
owns(q, o), blesses(q, p).

–blesses(Alice, p) :- Alice says good(p).

• Conclusions

–may_access(Bob, Foo.txt).



Binder’s proof rules

• Binder includes a standard resolution rule.

• In addition, Binder includes a rule for 
importing formulas from a context F to a 
context D.

– The rule adds a “F says” in front of all atoms 
without a “says”.

– The rule applies only to clauses where the 
head atom does not have “says”.



Binder’s proof rules: example

• Suppose F has the rules

– may_access(p, o) :-
owns(q, o), blesses(q, p).

– blesses(Alice, p) :- Alice says good(p).

– Alice says good(Bob).

• D may import the first two as:

– F says may_access(p, o) :-
F says owns(q, o), F says blesses(q, p).

– F says blesses(Alice, p) :- Alice says good(p).

• D may import good(Bob) directly from Alice.



Binder’s proof rules (cont.)

• Suppose F has the rule

–blesses(Alice, p) :- Alice says good(p).

• D may import it as:

– F says blesses(Alice, p) :- Alice says good(p).

• D and F should agree on Alice’s identity.

• But the meaning of predicates may vary, and it 
typically will. 
For example, F may also have:

–blesses(Bob, p) :- Bob says excellent(p).



Another example 
[DeTreville]

import

importexport

export

certificate c1

“John Smith is a BCL

employee.” (signed:

BCL HR)

certificate c2

“John Smith is a

BigCo employee.”

(signed: BigCo HR)

certificate c4

“All BCL employees

are BigCo

employees.” (signed:

BigCo HR)

certificate c3

“I trust BCL HR to say

who is a BCL

employee.” (signed:

BigCo HR)

“John Smith is a

BCL employee.”

BCL HR

BigCo HR

“All BCL

employees are

BigCo

employees.”

“I trust BCL HR

to say who is a

BCL employee.”
“I trust BigCo HR

to say who is a

BigCo

employee.”

Service S



A logical analysis

• Suppose that A has the rule:
p :- B says q, r

• C would import this as:
A says p :- B says q, A says r

• We may represent C’s view of A’s rule by:
A says ((B says q) ∧ r p)

• We may represent C’s conclusion by:

(B says q) ∧ (A says r) (A says p)

• How did we get here?



A logical analysis (cont.)

• So  we assume:  
A says ((B says q) ∧ r p)

and would like to derive:

(B says q) ∧ (A says r) (A says p)

• Assume the standard modal axiom 
A says (s t) (A says s) (A says t)

and the necessitation rule.

• We obtain:
A says ((B says q) ∧ r) (A says p)

and then (only!):
(A says B says q) ∧ (A says r) (A says p)



A logical analysis (cont.)

• We can finish with the strong axiom:
s (A says s)

• A weaker form suffices:
B says s (A says B says s) 



Important properties of Binder

• Binder programs can define and use new, application-
specific predicates.

• A statement in Binder can be read as a declarative 
English sentence.

• Queries in Binder are decidable (in PTime).

• Questions:

– Should there be more built-in syntax and semantics?

– Can all reasonable policies be expressed? 
Can the simple ones be expressed simply enough?

– What about other algorithmic problems?



Data integration

• A classic database problem is how to integrate 
multiple sources of data.

– The sources may be heterogeneous. 
Their contents and structure may be partly 
unknown.

– The data may be semi-structured (e.g., XML 
on the Web).



TSIMMIS and MSL [Garcia-Molina et al., mid 1990’s+

• Wrappers translate between a common language 
and the native languages of sources.

• Mediators then give integrated views of data 
from multiple sources.

• The mediators may be written in the Mediator 
Specification Language (MSL).

<cs_person {<name N> <relation R> Rest1 Rest2}>@med :-
<person {<name N> <dept `CS'> <relation R> |     

Rest1}>@whois
AND decompose_name(N, LN, FN)
AND <R {<first_name FN> <last_name LN> | Rest2}>@cs



Similarities

• MSL is remarkably similar to Binder.
– They start from Datalog.
– They add sites (or contexts).
– X@s corresponds to s says X.
– In X@s, the site s may be a variable.

• More broadly, distributed access control is partly about 
data integration.
– Binder follows the “global as view” approach (GAV), 

in which each relation in the mediator schema is 
defined by a query over the data sources.

– The converse “local as view” approach (LAV) might 
not be as meaningful for access control.



Caveats

• MSL and Binder are used in different 
environments and for different purposes.

–Work in databases seems to focus on a 
messy but benign and tolerant world, full of 
opportunities.

–Work in security deals with a hostile world 
and tries to do less.

• Security is primarily a property of systems, 
not of languages. 
Coincidences in languages go only so far.



Potential outcomes (speculation)

• Language-design ideas

–Constructs beyond Datalog

– Semi-structured data

• More theory, algorithms, tools

• Closer relation to database machinery

may_Q(p,x) :- s1 says Q(x),  
s2 says Ok(p,x)

Q(x)?
Bob Authentication Mediator

may_Q(Bob,x)?

S1

S2

S3



Proof-carrying code, 
proof-carrying authorization, …



Proof-carrying code (PCC)
[Necula and Lee, 1996]

• Proof-carrying code is also based on logic.

• It is also essentially concerned with an 
authorization decision (running code):

Annotation

Code

VCGen

VC

Axiomatization (Safety policy)

Proof
reconstructor

and checker

Proof 
skeleton



Reason + Authority
[with Whitehead and Necula]

• How does PCC fit into the broader context of 
access control?

• How about hybrid policies and mechanisms?

Annotation

Code

VCGen

VC

Signed axiomatization (safety policy)

Proof
reconstructor
and checker

Signed
claims

Proof 
skeleton



BCIC = Binder + CIC (Coq logic)

• An example of authorizing code execution:

–may_run(p) :- sat(safe p),  approved(p).



BCIC = Binder + CIC (Coq logic)

• An example of authorizing code execution:

proved in CIC            by policy

–may_run(p) :- sat(safe p),  approved(p).

– approved(p) :- Admin says approved(p).



BCIC = Binder + CIC (Coq logic)

• An example of authorizing code execution:

proved in CIC            by policy

–may_run(p) :- sat(safe p),  approved(p).

– approved(p) :- Admin says approved(p).

digitally signed



From proof-carrying to code-carrying
[with Maffeis, Fournet, and Gordon]

• Proofs are programs that can be presented as 
evidence with requests.

• Going further, programs provided by clients 
may do some of the access control.

– In a pi calculus with higher-order features 
and dynamic typing.

–With types for authorization.

–Verifiably in compliance with policy.



Access control in a type system for 
tracking dependencies



Status and issues

• Calculi for access control have been applied in 
several languages and systems, 
(but are not in wide day-to-day use).

• It is easy to add constructs and axioms, but 
sometimes difficult to decide which are right.

• Explicit representations for proofs are useful.

• Even with logic, access control typically does 
not provide end-to-end guarantees 
(e.g., the absence of flows of information).



The Dependency Core Calculus 
[with Banerjee, Heintze, and Riecke, 1999]

• A minimal but expressive calculus in which the 
types capture dependencies.

• A foundation for some static analyses:

– information-flow control, 

–binding-time analysis, 

– slicing, 

–…

• Based on the computational lambda calculus.



DCC basics

• Let L be a lattice.

• For each type s and each j in L, there is a type Tj(s).

• If j ⊑ k then terms of type Tk(t) may depend on terms 
of type Tj(s).

For instance:

• The lattice may have two elements: 

• TPublic(int) and TSecret(bool) would be two types.

• Then DCC guarantees that outputs of type TPublic(int) 
do not depend on inputs of type TSecret(bool).

• This result is a non-interference theorem.

Public

Secret

⊑
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A new look at DCC

• We read DCC as a logic, 
via the Curry-Howard isomorphism.

– Types are propositions. 

–Programs are proofs.



A new look at DCC (cont.)

• We consider significant but routine variations 
on the original DCC:

–We remove recursion.

–We add polymorphism.

• We write A says s instead of TA(s).

• We write A speaks for B as an abbreviation 
for X. (A says X B says X).

(This presentation omits the lattice aspects, and makes 

other small simplifications. This turns DCC into CDD.)



A new look at DCC (cont.)

• The result is a logic for access control, with 
some principles and some useful theorems.

• The logic is intuitionistic (not classical).

– So it does not have “excluded middle”.

• Terms are proofs to be used in access control.



Typing rules

• As usual, typing rules are rules for deducing 
judgments (assertions) of the form:

assumptions
(e.g., free variables with 

their types)
program 

(aka term)

type
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The Simply Typed λ-calculus: rules



Logical reading



Rules for says

• The rules are those of the λ-calculus plus:

• In other words:



Rules for quantification

• We use the rules from System F, 
basically



Semantics

• Operational semantics (one possibility): 

–usual λ-calculus rules, plus

– the new rule

(Zdancewic checked subject reduction and 
progress properties in Twelf.)

• Denotational semantics? (We have some 
pieces. More could be done. See Abramsky 
and Jagadeesan; Kammar and Plotkin.)



Theorems

• We can rederive the core of the previous 
logics:

⊢ A says (s t) (A says s) (A says t)

If ⊢ s then ⊢ A says s.

⊢ A speaks for B (A says s) (B says s)

⊢ A speaks for A

⊢ A speaks for B ∧ B speaks for C
A speaks for C



Theorems (cont.)

• We obtain some additional useful theorems, 
including

⊢ s (A says s)

⊢ (A says (B speaks for A)) (B speaks for A)

• These follow from general rules, 
apparently without annoying consequences.



Another theorem

• X. A controls (A says X B says X)

A speaks for B

The value of this theorem is more debatable.



Non-theorems

• It does not follow that:
(A says s) s (A says false)



Non-theorems

• It does not follow that:
(A says s) s (A says false)

This would trivialize “says”.



Non-theorems

• It does not follow that:
(A says s) s (A says false)

• Nor does it follow that control is monotonic:
(s t) (A controls s) (A controls t)

This would trivialize “says”.



Non-theorems

• It does not follow that:
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Non-theorems

• It does not follow that:
(A says s) s (A says false)

• Nor does it follow that control is monotonic:
(s t) (A controls s) (A controls t)

• Both would follow in classical logic.

• Both are equivalent classically, 
but not intuitionistically.

This would trivialize “says”.

What about Least Privilege?



Metatheory

• We also obtain a useful metatheory, including:

–old and new non-interference results,

– various interpretations in other systems.

• Thus, we can provide at least partial evidence 
of the “goodness” of our rules.



Mapping to System F (warm-up)

• Tse and Zdancewic have defined a clever 
encoding of Simply Typed DCC in System F.

• We can define a more trivial mapping (.)F

from Polymorphic DCC to System F by letting

• This mapping preserves provability, 
so Polymorphic DCC is consistent.



Non-interference

• Access control requires the integrity of 
requests and policies. 

–We would like some guarantees on the 
effects of the statements of principals.

– E.g., if A and B are unrelated principals, 
then B’s statements should not interfere 
with A’s.

• There are previous non-interference theorems 
for DCC, and we can prove some more.



Another mapping: what a formula 
means when B may say anything



A theorem



Non-interference (a special case)



Another good property: 
simple reasoning with “speaks for”

• We would like: 
if s is a formula with “speaks for” but 
no other use of quantifiers, then 

s is provable using propositional rules 
for “speaks for”

if and only if
s is provable using the definition 
A speaks for B = X. (A says X B says X)

• So reasoning about “speaks for” does not 
require hard reasoning with quantifiers.



Three systems

• ICL = intuitionistic propositional logic + “says” 
with the axioms and rules just given

• ICL⇒ = ICL + primitive “speaks for”
with the axioms given, i.e.,

– A speaks for B (A says s) (B says s)

– reflexivity + transitivity of “speaks for”

– (A says (B speaks for A)) (B speaks for A)

• CDD = ICL + 
with the usual rules for 



Translation to S4
[with Garg]

• We translate to the classical S4 modal logic. 
We write T(s) for the translation of s.

• The translation of propositional connectives 
consists in adding boxes [Gödel]:
T(p) = □ p   
T(s t) = □ (T(s) T(t))

• For “says” and primitive “speaks for”, we set:
T(A says s) = □ (A T(s))
T(A speaks for B) = □ (A B) 

where A and B are proposition symbols in S4.



Translation to S4 (cont.)

• This translation is sound and complete 
for ICL and ICL⇒.

• It follows that ICL and ICL⇒ are decidable 
in PSPACE [via Ladner].

• We obtain possible-worlds semantics.

• Furthermore, the translation suggests a nice 
logic with Boolean operations on principals.
• Again, even when A is a Boolean expression, we set: 
T(A says s) = □ (A T(s))



Translation to S4 (cont.)

• We also obtain that ICL⇒ is sound and 
complete for its fragment of CDD: 

if s is a formula in ICL⇒, then 
s is provable in ICL⇒ 

if and only if
s is provable in CDD 
expanding A speaks for B to 

X. (A says X B says X)

• So reasoning about “speaks for” does not 
require hard reasoning with quantifiers.



Further work and open questions

• Rich, convenient languages for policies.

• More semantics.

• Integrating access control into programming.

• Relation to information-flow control.



Conclusions

• Big stakes.

• A growing body of sophisticated approaches

–with diverse ideas and techniques from 
programming languages;

– as explanations or as possible substitutes 
for more ad hoc methods.



Questions?


