
C S 5 6 1 - S P R I N G 2 0 1 4
W P I , M O H A M E D E LTA B A K H

OBJECT-ORIENTED & OBJECT-
RELATIONAL DATABASES

1

Object-Relational Model

Oracle Link: http://docs.oracle.com/cd/B19306_01/appdev.102/
b14260/toc.htm

2

SECOND APPROACH: OBJECT-
RELATIONAL MODEL

•  Object-oriented model tries to bring the main
concepts from relational model to the OO domain
•  The heart is OO concepts with some extensions

•  Object-relational model tries to bring the main
concepts from the OO domain to the relational
model
•  The heart is the relational model with some extensions
•  Extensions through user-defined types

3

CONCEPTUAL VIEW OF OBJECT-
RELATIONAL MODEL

•  Relation is still the fundamental structure

•  Relational model extended with the following features
•  Type system with primitive and structure types (UDT)
•  Including set, bag, array, list collection types
•  Including structures like records

•  Methods
•  Special operations can be defined over the user-defined types

(UDT)
•  Specialized operators for complex types, e.g., images, multimedia,

etc.
•  Identifiers for tuples
•  Unique identifiers even for identical tuples

•  References
•  Several ways for references and de-references

4

CONCEPTUAL VIEW OF OBJECT-
RELATIONAL MODEL

5

168 CHAPTER 4. OTHER DAT.4 MODELS

integers, reals, strings, and SO on had little to do with the issues discussed,
such as functional dependencies and normalization. We shall continue to avoid
this distinction, but when describing the schema of a nested relation, we must
indicate which attributes have relation schemas as types. To do so, we shall
treat these attributes as if they were the names of relations and follow them
by a parenthesized list of their attributes. Those attributes, in turn, may haye
associated lists of attributes, down for as many levels as we wish.

Example 4.23: Let us design a nested relation schema for stars that incor-
porates within the relation an attribute movies, which will be a relation rep-
resenting all the movies in which the star has appeared. The relation schema
for attribute movies will include the title, year, and length of the movie. The
re1atio:i schem? +r the relation Stars mill include the name, address, and birth-
date, as well a:, :e information found in movies. Additionally, the address
attribute will have a relation type with attributes street and city. We can
record in this relation several addresses for the star. The schema for Stars can
be written:

Stars(name, address(street, city), birthdate,
movies(title, y .>r , length))

An exampl(s F a possible relation for nested relation Stars is shown in
Fig. 4.17. We srv in this relation two tuples, one for Carrie Fisher and one
for Mark Warnill. The valucs of components are abbreviated to conserve space,
and the dashed lines separating tuples are only for convenience and have no
notational significance.

riame address birthdate rnovies
I I I

street city 9 / 9 / 9 9 1 Fisher 1
r:-%

1 rifle 1 year 1 ~ ~ r ~ ~ ~ j 1
Star Wars 1977 124

. - - - - - - - - - - - - - - - - - - mi
Star Wars 1977 124 - - - - - - - - - - - - - - -
Empire 1980 127 - - - - - - - - - - - - - - -
Return 1983 133

Figure 4.17: A nested relation for stars and their movies

. THE OBJECT-RELATIONAL MODEL 169

attributes, street and city, and there are two tuples, corresponding to her
two houses. Next comes the birthdate, another atomic value. Finally, there is a
component for the movies attribute; this attribute has a relation schema as its
type, with components for the title, year, and length of a movie. The relation
for the movies component of the Carrie Fisher tuple has tuples for her three
best-known movies.

The second tuple, for Mark Hamill, has the same components. His relation
for address has only one tuple, because in our imaginary data, he has only
one house. His relation for movies looks just like Carrie Fisher's because their
best-known movies happen, by coincidence, to be the same. Note that these
two relations are two different tuple-components. These components happen to
be identical, just like two components that happened to have the same integer
value, e.g., 124. 0

4.5.3 References
The fact that movies like Star Wars will appear in several relations that are
values of the movies attribute in the nested relation Stars is a cause of redun-
dancy. In effect, the schema of Example 4.23 has the nested-relation analog of
not being in BCNF. However, decomposing this Stars relation will not elimi-
nate the redundancy. Rather, we need to arrange that among all the tuples of
all the movies relations, a movie appears only once.

To cure the problem, object-relations need the ability for one tuple t to refer
to another tuple s: rather than incorporating s directly in t . lye thus add to
our model an additional inductive rule: the type of an attribute can also be a
reference to a tuple with a given schema.

If an attribute .I has a type that is a reference to a single tuple with a
relation schema named R, we show the attribute d in a schema as ,-l(*R).
Xotice that this situation is analogous to an ODL relationship .4 whose type is
R; i.e., it connects to a single object of type R. Similarly, if an attribute .4 has
a type that is a set of references to tuples of schema R. then .-I will be shown
in a schema as A({*R)). This situation resembles an ODL relationship .A that
has type Set<R>.

Example 4.24: An appropriate way to fix the redundancy- in Fig. 4.17 is
to use t~vo relations. one for stars and one For movies. The relation Movies
will be an ordinary relation ~vith the same schema as the attribute movies in
Example 4.23. The relation Stars xvill have a schema similar to the nested
relation Stars of that example. but the movies attribute will have a type that
is a set of references to Movies tuples. The schemas of the tn-o relations are
thus:

Movies (title, year, length)
\ In the Carrie Fisher tuple, we see her name. an atomic value, follo~ved Stars (name, address (street, city), birthdate,
3p a relation for the value of the address component. That relation has two movies(i*Movies3> 1 .

\

Star(name, address(street, city), birthdate,
 movies(title, year, length)) 170 CH-dPTER 4. OTHER DATA MODELS 4.5. THE OBJECT-RELATIONAL MODEL 171

interfaces, which are essentially class declarations without an extent (see the box
on "Interfaces" in Section 4.3.4). Then, ODL allows you to define any number
of classes that inherit this interface, while each class has a distinct extent. In
that manner, ODL offers the same opportunity the object-relational approach
when it comes to sharing the same declaration among several collections.

i r e did not discuss the use of methods as part of an object-relational schema.
However, in practice, the SQL-99 standard and all irnplementations of object-
relational ideas allow the same ability as ODL to declare and define methods
associated with any class.

Stars Movies Type Systems
Figure 4.18: Sets of references as the wlue of a,n attribute The type systems of the object-oriented and object-relational models are quite

similar. Each is based on atomic types and construction of new types by struct-
~h~ data of Fig. 4.17, converted to this new schema, is shown in Fig. 4.18. and collection-type-constructors. The selection of collection types may vary, but
Sotice that, because each movie has only one tuple, although it can have man!. all variants include at least sets and bags. AIoreover, the set (or bag) of structs
references, \ye have eliminated the redundancy inherent in the schema of Ex- type plays a special role in both models. It is the type of classes in ODL, and
ample 4.23. the type of relations in the object-relational model.

4.5.4 object-Oriented Versus Object-Relational References a n d Object-ID'S

~ 1 , ~ object-oriented data model, as typified by ODL, and the object-relational .A pure object-oriented model uses object-ID'S that are completely hidden from
model discussed here, are remarkably similar. Some of the salient points of the user, and thus cannot be seen or queried. The object-relational model allows

references to be part of a type, and thus it is possible under some circumstances comparison follow. for the user to see their values and even remember them for future use. You
may regard this situation as anything from a serious bug to a stroke of genius,

Objects and Tuples depending on your point of view, but in practice it appears to make little
An object's value is really a struct with components for its attributes alld re-
lationships. ~t is not specified in the ODL standard how relationships are to
be represented, but we may assume that an object is connected to related ob- Backwards Compatibility
jects by some collection of pointers. -1 tuple is likewise a struct, but in the
conventional relational model, it has colnponents for only the attributes. Re- With little difference in essential features of the two models, it is interesting to
lationsllips would be represented by tuples in another relation, as suggested in consider ~ r h y object-relational systems have dominated the pure ~ b j e c t - ~ r i ~ ~ t ~ d
Sectioll 3.2.2. Ho~vever the object-relational model, by allo\ving sets of refer- systems in the marketplace. The reason, we believe, is that there -? by the
cncfs to be a compollent of tuples, also allo\x-s relationships to be incorporated time object-oriented systems were seriously proposed, an enormous number
directly into the tuples that represent an "object" or entity. of installations running a relational database system. -4s relational DBlIS's

evolved into object-relational DBMS's, the vendors were careful to maint.ain

Extents and Relations
back~vards compatibility. That is. nen-er versions of the system would still run
the old code and accept the same schemas, should the user not care to adopt

ODL treats all objects in a class as living in an "extent" for that class. The any of the object-oriented features. On the other hand, miflation to a pure
object-relational model allorvs several different relations with identical schemas. object-oriented DBMS would require the installations to rewrite and reorganize
so it might appear that there is more opportunity in the object-relational model , extensively. Thus, whatever competitive advantage existed was not enough to
to distinguish members of the same class. However, ODL allows the definition of , convert many databases to a pure object-oriented DBXIS.

Star

Movie

•  Allow of nested relations

•  Repeating movies inside the stars
records is redundancy

•  To avoid redundancy, use pointers
(references)

SUPPORT FROM VENDORS

•  Several major software companies including IBM,
Informix, Microsoft, Oracle, and Sybase have all
released object-relational versions of their products

•  Extended SQL standards called SQL-99 or SQL3

6

SQL-99: QUERY LANGUAGE FOR OBJECT-
RELATIONAL MODEL

•  User-defied types (UDT) replace the concept of
classes

•  Create relations on top of the UDTs
•  Multiple relations can be created on top of the same UDT

7

Create Type <name> AS (attributes and method declarations)

CREATING UDT

8

Creating a type for the address of
stars

A hierarchy of types
(inheritance)

DEFINING METHODS

9

 Member Function getName return varchar
);
/

,
Create the type object (definition)

> If the we have member function, then we need to define the type body

 Create Type Body Person IS
 Member Function getName return varchar is
 Begin
 return name;
 End;

End;
/

CREATING RELATIONS

•  Once types are created, we can create relations

•  In general, we can create tables without types
•  But types provide encapsulation, inheritance, etc.

10

/*** Create a typed table for PERSON objects ***/
CREATE TABLE persons OF PERSON;

TABLES IN O-R MODEL (I)

11

Typed table

Ø  Each record in the table is an object.
Ø  That is not a relational table

/*** Create a relational table with references to types***/
CREATE TABLE employees
(
 empnumber INTEGER PRIMARY KEY,
 person_data REF PERSON,
 manager REF PERSON,
 office_addr ADDRESS,
 salary NUMBER
)

TABLES IN OR MODEL (II)

12

Typed objects

INSERTING DATA (I)

13

/*** Create a typed table for PERSON objects ***/
CREATE TABLE persons OF PERSON;

/*** Insert some data--2 objects into the persons typed table ***/
INSERT INTO persons VALUES (
 PERSON('Wolfgang Amadeus Mozart', 123456,
 ADDRESS('Am Berg 100', 'Salzburg', 'AT','10424')))
/

INSERT INTO persons VALUES (
 PERSON('Ludwig van Beethoven', 234567,
 ADDRESS('Rheinallee', 'Bonn', 'DE', '69234')))
/

INSERTING DATA (II)

14

/** Put a row in the employees table **/
INSERT INTO employees (empnumber, office_addr, salary)

 VALUES (
 1001,
 ADDRESS('500 Oracle Parkway', 'Redwood Shores', 'CA', '94065'),
 50000)
/

/*** Create a relational table with references to types***/
CREATE TABLE employees
(
 empnumber INTEGER PRIMARY KEY,
 person_data REF PERSON,
 manager REF PERSON,
 office_addr ADDRESS,
 salary NUMBER
)

UPDATING DATA (I)

15

/** Set the manager and PERSON REFs for the employee **/
UPDATE employees
 SET manager =
 (SELECT REF(p) FROM persons p

 WHERE p.name = 'Wolfgang Amadeus Mozart')

/*** Create a relational table with references to types***/
CREATE TABLE employees
(
 empnumber INTEGER PRIMARY KEY,
 person_data REF PERSON,
 manager REF PERSON,
 office_addr ADDRESS,
 salary NUMBER
)

UPDATING DATA (II)

16

UPDATE employees
 SET person_data =
 (SELECT REF(p) FROM persons p

 WHERE p.name = 'Ludwig van Beethoven')

/*** Create a relational table with references to types***/
CREATE TABLE employees
(
 empnumber INTEGER PRIMARY KEY,
 person_data REF PERSON,
 manager REF PERSON,
 office_addr ADDRESS,
 salary NUMBER
)

COLLECTIONS AND LARGE OBJECTS

•  Book Type contains collections
•  Arrays of authors à capture the order of authors
•  Set of keywords

•  Large object types
•  CLOB: Character large objects
 book-review CLOB(10KB)
•  BLOB: binary large objects

 image BLOB(10MB)
 movie BLOB(2GB)

17

create type Book as  
" (title varchar(20), 
" author-array varchar(20) array [10], 
" pub-date date, 
" publisher Publisher, 
" keyword-set setof(varchar(20)))"

Usually provide methods inside
the UDT to manipulate CLOB &

BLOB

COLLECTION TYPES IN ORACLE

•  Variable-Length Arrays

•  Nested Tables

18

CREATE TYPE typename IS VARRAY(n) OF datatype;

CREATE TYPE typename AS TABLE OF datatype;

EXAMPLE

19

CREATE TYPE PHONE_ARRAY IS VARRAY(10) OF varchar2(30)
/

CREATE TABLE employees
(empnumber INTEGER PRIMARY KEY,
 person_data REF person,
 manager REF person,
 office_addr address,
 salary NUMBER,
 phone_nums phone_array
)
/

EXAMPLE (CONT’D)

•  Inserting into the array

20

CREATE TABLE employees
(empnumber INTEGER PRIMARY KEY,
 person_data REF person,
 manager REF person,
 office_addr address,
 salary NUMBER,
 phone_nums phone_array
)
/

/** Put a row in the employees table **/
INSERT INTO employees (empnumber, office_addr, phone_nums)

 VALUES (
 1001,
 ADDRESS('500 Oracle Parkway', 'Redwood Shores', 'CA', '94065'),
 phone_array(‘111-222-3333’, ‘111-222-4444’))
/

NESTED TABLE VS. ARRAY

•  An array has a declared number of elements
•  A nested table does not. The size of a nested table can

increase dynamically.

•  An array is always dense.
•  A nested table is dense initially, but it can become sparse,

because you can delete elements from it.

21

ALTER TYPES

•  Using an ALTER TYPE statement, you can:
•  Add and drop attributes
•  Add and drop methods
•  Modify a numeric attribute to increase its length, precision,

or scale
•  Modify a varying length character attribute to increase its

length
•  …

22

REFERENCES

•  Actual Object

•  References without scope

•  References with scope

23

ACTUAL OBJECTS

24

/*** Create a typed table for PERSON objects ***/
CREATE TABLE persons OF PERSON;

addr is the entire object

/*** Insert some data--2 objects into the persons typed table ***/
INSERT INTO persons VALUES (
 PERSON('Wolfgang Amadeus Mozart', 123456,
 ADDRESS('Am Berg 100', 'Salzburg', 'AT','10424')))
/

The entire object

REFERENCE WITHOUT SCOPE

25

CREATE TYPE emp_person_typ AS OBJECT (
 name VARCHAR2(30),
 manager REF emp_person_typ);
/

CREATE TABLE emp_person_obj_table OF emp_person_typ;

INSERT INTO emp_person_obj_table VALUES (
 emp_person_typ ('John Smith', NULL));

INSERT INTO emp_person_obj_table
 SELECT emp_person_typ ('Bob Jones', REF(e))
 FROM emp_person_obj_table e
 WHERE e.name = 'John Smith';

-  Reference to a type
-  We did not specify from
 where the objects will come

REFERENCE WITH SCOPE

26

CREATE TABLE contacts_ref (
 contact_ref REF person_typ SCOPE IS person_obj_table,
 contact_date DATE);

-  Reference to a type -  The scope is a table
containing objects of that
type

REFERENCE WITH SCOPE

27

CREATE TABLE contacts_ref (
 contact_ref REF person_typ SCOPE IS person_obj_table,
 contact_date DATE);

INSERT INTO contacts_ref
 SELECT REF(p), '26 Jun 2003'
 FROM person_obj_table p
 WHERE p.idno = 1;

WHAT’S NEXT

•  Second Approach: Object-Relational Model
•  Conceptual view
•  Data Definition Language (Creating types, tables, and

relationships)
•  Querying object-relational database (SQL-99)

28

QUERYING OBJECT-RELATIONAL
DATABASE

•  Most relational operators work on the object-
relational tables
•  E.g., selection, projection, aggregation, set operations

•  Some new operators and new syntax for some
existing operators

•  SQL-99 (SQL3): Extended SQL to operate on object-
relational databases

29

EXAMPLES I

30

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q1: Find the year of movie ‘King Kong’

Select m.year
From Movie m
Where m.title = ‘King Kong’;

Variable m is important to reference the fields

Q2: Find the title of the best movie ’Jim Carry’

Select s.bestMovie->title
From MovieStar s
Where s.name = ‘Jim Carry’;

Follow a reference (pointer)
using à operator

EXAMPLES II: DE-REFERENCING

31

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q3: Find movies starred by ‘Jim Carry’

Select DEREF(movie)
From StarsIn
Where star->name = ‘Jim Carry’;

DEREF: Get the tuple pointed to by the given pointer

Q4: Find movies starred by ‘Jim Carry’ (Another way)

Select s.movie->title, s.movie->year, s.movie->inColor,
From StarsIn s
Where s.star->name = ‘Jim Carry’;

*** Using a variable for StartsIn (s in Q4) is not
necessary because the table is not based on type.

EXAMPLES III: COMPARISON

32

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q5: Find distinct movies starred by ‘Jim Carry’
or ‘Mel Gibson’

Select Distinct DEREF(movie)
From StarsIn
Where star->name = ‘Jim Carry’
Or star->name = ‘Mel Gibson’;

•  That is wrong because all objects of type
MovieType are unique even if they have the
same content

•  Need a mechanism to define how objects
compare to each other

 (needed for any comparison, e.g., ordering,
 duplicate elimination, grouping, etc.)

ORDERING RELATIONSHIPS

•  Need to define how to compare objects of a given
type T

33

Create Ordering For T

EQUALS

ORDERING FULL

ONLY BY STATE;

BY RELATIVE WITH F;

Equality or non-equality (=, ≠)

Full comparison (=, <, >, ≤, ≥, ≠)

Identical content

User-defined function F(O1, O2) and
returns 0, -ve, +ve

ORDERING FUNCTION

34

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

460 CHAPTER 9. OBJECT-ORIENT-4TION IN QUERY LANGUAGES

CREATE ORDERING FOR AddressType EQUALS ONLY BY STATE;

Alternatively, we could define a conlplete ordering of AddressType objects.
One reasonable ordering is to order addresses first by cities, alphabetically, and
among addresses in the same city, by street address, alphabetically. To do so, I{-e
have to define a function, say AddrLEG, that takes two AddressType arguments
and returns a negative, zero, or positive value to indicate that the first is less
than, equal to, or greater than the second. We declare:

CREATE ORDERING FOR AddressType
ORDER FULL BY RELATIVE WITH AddrLEG;

The function AddrLEG is shown in Fig. 9.13. Notice that if we reach line (7),
it must be that the two city components are the same, so we compare the
street components. Likewise, if we reach line (9), the only remaining possi-
bility is that the cities are the same and the first street precedes the second
alphabetically. 13

1) CREATE FUNCTION AddrLEG (
2) x1 AddressType,
3) x2 AddressType
4)) RETURNS INTEGER

5) IF xl.city() < x2.cityO THEN RETURN(-1)
6) ELSEIF xl.city() > x2.cityO THEN RETURN(1)
7) ELSEIF xl. street () < x2. street () THEN RETURN(-1)
8) ELSEIF xl.street() = x2.streetO THEN RETURN(0)
9) ELSE RETURN(1)

END IF;

Figure 9.13: A comparison function for address objects

9.5.5 Exercises for Section 9.5
Exercise 9.5.1: Using the StarsIn relation of Example 9.25, and the Movie
and Moviestar relations accessihle through StarsIn, write the following quer-
ies:

* a) Find the names of the stars of Ishtar.

*! b) Find the titles and years of all movies in which at least one star lives in
lialibu.

c) Find all the movies (objects of type MovieType) that starred Melanie
Griffith.

9.6. SUMMARY OF CHAPTER 9 461

! d) Find the movies (title and year) with a t least five stars.

Exercise 9.5.2: Using your schema from Exercise 9.4.2, write the following
queries. Don't forget to use references whenever appropriate.

a) Find the manufacturers of PC's with a hard disk larger than 60 gigabytes.

b) Find the manufacturers of laser printers.

! c) Produce a table giving for each model of laptop, the model of the lap-
top having the highest processor speed of any laptop made by the same
manufacturer.

Exercise 9.5.3: Using your schema from Exercise 9.4.4, write the following
queries. Don't forget to use references whenever appropriate and avoid joins
(i.e., subqueries or more than one tuple variable in the FROM clause).

* a) Find the ships with a displacement of more than 35,000 tons.

b) Find the battles in which at least one ship was sunk.

! c) Find the classes that had ships launched after 1930.

!! d) Find the battles in n-hich at least one US ship was damaged.

Exercise 9.5.4 : Assuming the function AddrLEG of Fig. 9.13 is available, write
a suitable function to compare objects of type StarType, and declare your
function to be the basis of the ordering of StarType objects.

*! Exercise 9.5.5 : Write a procedure to take a star name as argument and delete
from StarsIn and MovieStar all tuples involving that star.

9.6 Summary of Chapter 9
+ Select-From- Where Statements in OQL: OQL offers a select-from-where

expression that resembles SQL's. In the FROM clause, we can declare
variables that range over any collection, including both extents of classes
(analogous to relations) and collections that are the values of attributes
in objects.

+ Common OQL Operators: OQL offers for-all, there-exists, IN: union, in-
tersection, difference, and aggregation operators that are similar in spirit
to SQL's. Ho~ever, aggregation is al~vays over a collection, not a colunln
of a relation.

+ OQL Group-By: OQL also offers a GROUP BY clause in select-from-where
statements that is similar to SQL's. Howeyer, in OQL, the collection of
objects in each group is explicitly accessible through a field name called
partition.

460 CHAPTER 9. OBJECT-ORIENT-4TION IN QUERY LANGUAGES

CREATE ORDERING FOR AddressType EQUALS ONLY BY STATE;

Alternatively, we could define a conlplete ordering of AddressType objects.
One reasonable ordering is to order addresses first by cities, alphabetically, and
among addresses in the same city, by street address, alphabetically. To do so, I{-e
have to define a function, say AddrLEG, that takes two AddressType arguments
and returns a negative, zero, or positive value to indicate that the first is less
than, equal to, or greater than the second. We declare:

CREATE ORDERING FOR AddressType
ORDER FULL BY RELATIVE WITH AddrLEG;

The function AddrLEG is shown in Fig. 9.13. Notice that if we reach line (7),
it must be that the two city components are the same, so we compare the
street components. Likewise, if we reach line (9), the only remaining possi-
bility is that the cities are the same and the first street precedes the second
alphabetically. 13

1) CREATE FUNCTION AddrLEG (
2) x1 AddressType,
3) x2 AddressType
4)) RETURNS INTEGER

5) IF xl.city() < x2.cityO THEN RETURN(-1)
6) ELSEIF xl.city() > x2.cityO THEN RETURN(1)
7) ELSEIF xl. street () < x2. street () THEN RETURN(-1)
8) ELSEIF xl.street() = x2.streetO THEN RETURN(0)
9) ELSE RETURN(1)

END IF;

Figure 9.13: A comparison function for address objects

9.5.5 Exercises for Section 9.5
Exercise 9.5.1: Using the StarsIn relation of Example 9.25, and the Movie
and Moviestar relations accessihle through StarsIn, write the following quer-
ies:

* a) Find the names of the stars of Ishtar.

*! b) Find the titles and years of all movies in which at least one star lives in
lialibu.

c) Find all the movies (objects of type MovieType) that starred Melanie
Griffith.

9.6. SUMMARY OF CHAPTER 9 461

! d) Find the movies (title and year) with a t least five stars.

Exercise 9.5.2: Using your schema from Exercise 9.4.2, write the following
queries. Don't forget to use references whenever appropriate.

a) Find the manufacturers of PC's with a hard disk larger than 60 gigabytes.

b) Find the manufacturers of laser printers.

! c) Produce a table giving for each model of laptop, the model of the lap-
top having the highest processor speed of any laptop made by the same
manufacturer.

Exercise 9.5.3: Using your schema from Exercise 9.4.4, write the following
queries. Don't forget to use references whenever appropriate and avoid joins
(i.e., subqueries or more than one tuple variable in the FROM clause).

* a) Find the ships with a displacement of more than 35,000 tons.

b) Find the battles in which at least one ship was sunk.

! c) Find the classes that had ships launched after 1930.

!! d) Find the battles in n-hich at least one US ship was damaged.

Exercise 9.5.4 : Assuming the function AddrLEG of Fig. 9.13 is available, write
a suitable function to compare objects of type StarType, and declare your
function to be the basis of the ordering of StarType objects.

*! Exercise 9.5.5 : Write a procedure to take a star name as argument and delete
from StarsIn and MovieStar all tuples involving that star.

9.6 Summary of Chapter 9
+ Select-From- Where Statements in OQL: OQL offers a select-from-where

expression that resembles SQL's. In the FROM clause, we can declare
variables that range over any collection, including both extents of classes
(analogous to relations) and collections that are the values of attributes
in objects.

+ Common OQL Operators: OQL offers for-all, there-exists, IN: union, in-
tersection, difference, and aggregation operators that are similar in spirit
to SQL's. Ho~ever, aggregation is al~vays over a collection, not a colunln
of a relation.

+ OQL Group-By: OQL also offers a GROUP BY clause in select-from-where
statements that is similar to SQL's. Howeyer, in OQL, the collection of
objects in each group is explicitly accessible through a field name called
partition.

EXAMPLES IV: COMPARISON

35

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q5: Find distinct movies starred by ‘Jim Carry’
or ‘Mel Gibson’

Select Distinct DEREF(movie)
From StarsIn
Where star->name = ‘Jim Carry’
Or star->name = ‘Mel Gibson’;

Create Ordering For MovieType Equals Only By State;

EXAMPLES V: GROUPING & NESTING

36

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

Q6: Find stars who participated in less than 10 movies

Select DEREF(star)
From StarsIn
Group by DEREF(star)
Having count(movie) < 10;

Create at least an equality ordering on StarType

Q7: Find movie titles in 2000 where ‘Jim Carry’ is not in

Select m
From Movie m
Where m.year = 2000
And m.title Not In (

Select movie->title
From StarsIn
Where star->name = ‘Jim Carry’
And movie->year = 2000);

QUERYING COLLECTIONS & ARRAYS

37

create type Book as  
" (title varchar(20), 
" author-array varchar(20) array [10], 
" pub-date date, 
" publisher Publisher, 
" keyword-set setof(varchar(20)))"

select title 
"from books 
"where ‘database’ in (unnest(keyword-set))"

select B.title, A 
" from books as B, unnest (B.author-array) as A"

find all books that have the word “database”
as one of their keywords

To get a relation containing pairs of the form
“title, author-name” for each book and each
author of the book"

Unnest returns a relation

select author-array[1], author-array[2]  
"from books 
"where title = `Database System Conceptsʼ"

Get 1st and 2nd authors of certain book

GENERATORS AND MUTATORS

•  How to insert new new data into tables

•  Generators
•  Like the constructors in OO programming
•  Create new objects

•  Mutators
•  Modify the value of an existing object

•  For each attribute x in UDT T, the system automatically
creates:
•  Generator T() that returns an empty object of T
•  Mutator x(v) that sets the value of attribute x to value v

38

EXAMPLE

39

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Ses t , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

458 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

1) CREATE PROCEDURE Inse r t s t a r (
I N s CHAR(5O),

2, 3) I N c CHAR(10).
4) I N n CHAR(30)

1
5) DECLARE newAddr AddressType;
6) DECLARE newstar StarType;

BEGIN
7) SET newAddr = AddressTypeO;
8) SET newstar = StarTypeO ;
9) newAddr.street(s);

10) newAddr. c i t y (c) ;
11) newstar .name(n) ;
12) newstar. address(newAddr1;
13) INSERT INTO Moviestar VALUES(newStar);

END ;

Figure 9.12: Creating and storing a StarType object

To insert a star into MovieStar, we can call procedure Inse r t s t a r .

CALL InsertStar('345 Spruce S t . ' , 'Glendale', 'Gwyneth Paltrow');

is an example.

It is much simpler to insert objects into a relation with a UDT if your
DBMS provides, or if you create, a generator function that takes values for
the attributes of the C'DT and returns a suitable object. For example, if we
have functions AddressType(s , c) and StarType(n, a) that return objects of
the indicated types, then we can make the insertion at the end of Example 9.28
with an INSERT statement of a familiar form:

INSERT INTO MovleStar VALUES (
StarType('Gwyneth Paltrow',

AddressType('345 Spruce S t . ' , 'Glendale '))) ;

9.5.4 Ordering Relationships on UDT's
Objects that are of some LDT are inherently abstract, in the sense that there
is no way to compare two objects of the same UDT, either to test whether they
are "equal' or whether one is less than another. Even two objects that have all
components identical will not be considered equal unless we tell the system to
regard them as equal. Similarly, there is no obvious way to sort the tuples of

9.5. OPERATIONS ON OBJECT-RELATIONAL DAT.4 459

a relation that has a UDT unless we define a function that tells which of two
objects of that UDT precedes the other.

Yet there are many SQL operations that require either an equality test or
both an equality and a "less than" test. For instance, we cannot eliminate
duplicates if we can't tell whether two tuples are equal. We cannot group by an
attribute whose type is a UDT unless there is an equality test for that UDT.
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause
unless we can compare any two elements.

To specify an ordering or comparison, SQL allows us to issue a CREATE
ORDERING statement for any UDT. There are a number of forms this statement
may take, and we shall only consider the two simplest options:

1. The statement

CREATE ORDERING FOR T EQUALS ONLY BY STATE;

says that two members of UDT T are considered equal if all of their
corresponding components are equal. There is no < defined on objects of
UDT T.

2. The following statement

CREATE ORDERING FOR T
ORDERING FULL BY RELATIVE WITH F ;

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be
performed on objects of UDT T. To tell how objects xl and 2 2 compare,
we apply the function F to these objects. This function must be writ-
ten so that F(x1,z2) < 0 whenever we want to conclude that xl < x2;
F(xl ,x2) = 0 means that x1 = x2, and F(x1,x2) > 0 means that. x1 > 2 2 .
If lve replace "ORDERING FULL" with "EQUALS ONLY," then F(x1,22) = 0
indicates that x1 = x2, rvhile any other value of F(x1, xz) means that
XI # 12. Comparison by < is impossible in this case.

Example 9.29: Let us consider a possible ordering on the UDT StarType
from Example 9.20. If we want only an equality on objects of this UDT, we
could declare:

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE;

That state~nent says that t ~ - o objects of StarType are equal if and only if their
names are the same as character strings, and their addresses are the same as
objects of UDT AddressType.

The problem is that, unless we define an ordering for AddressType, an
object of that type is not even equal to itself. Thus, we also need to create
at least an equality test for AddressType. simple way to do So is to declare
that two AddressType objects are equal if and only if their streets and cities
are each the same. 11-e could do so by:

458 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

1) CREATE PROCEDURE Inse r t s t a r (
I N s CHAR(5O),

2, 3) I N c CHAR(10).
4) I N n CHAR(30)

1
5) DECLARE newAddr AddressType;
6) DECLARE newstar StarType;

BEGIN
7) SET newAddr = AddressTypeO;
8) SET newstar = StarTypeO ;
9) newAddr.street(s);

10) newAddr. c i t y (c) ;
11) newstar .name(n) ;
12) newstar. address(newAddr1;
13) INSERT INTO Moviestar VALUES(newStar);

END ;

Figure 9.12: Creating and storing a StarType object

To insert a star into MovieStar, we can call procedure Inse r t s t a r .

CALL InsertStar('345 Spruce S t . ' , 'Glendale', 'Gwyneth Paltrow');

is an example.

It is much simpler to insert objects into a relation with a UDT if your
DBMS provides, or if you create, a generator function that takes values for
the attributes of the C'DT and returns a suitable object. For example, if we
have functions AddressType(s , c) and StarType(n, a) that return objects of
the indicated types, then we can make the insertion at the end of Example 9.28
with an INSERT statement of a familiar form:

INSERT INTO MovleStar VALUES (
StarType('Gwyneth Paltrow',

AddressType('345 Spruce S t . ' , 'Glendale '))) ;

9.5.4 Ordering Relationships on UDT's
Objects that are of some LDT are inherently abstract, in the sense that there
is no way to compare two objects of the same UDT, either to test whether they
are "equal' or whether one is less than another. Even two objects that have all
components identical will not be considered equal unless we tell the system to
regard them as equal. Similarly, there is no obvious way to sort the tuples of

9.5. OPERATIONS ON OBJECT-RELATIONAL DAT.4 459

a relation that has a UDT unless we define a function that tells which of two
objects of that UDT precedes the other.

Yet there are many SQL operations that require either an equality test or
both an equality and a "less than" test. For instance, we cannot eliminate
duplicates if we can't tell whether two tuples are equal. We cannot group by an
attribute whose type is a UDT unless there is an equality test for that UDT.
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause
unless we can compare any two elements.

To specify an ordering or comparison, SQL allows us to issue a CREATE
ORDERING statement for any UDT. There are a number of forms this statement
may take, and we shall only consider the two simplest options:

1. The statement

CREATE ORDERING FOR T EQUALS ONLY BY STATE;

says that two members of UDT T are considered equal if all of their
corresponding components are equal. There is no < defined on objects of
UDT T.

2. The following statement

CREATE ORDERING FOR T
ORDERING FULL BY RELATIVE WITH F ;

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be
performed on objects of UDT T. To tell how objects xl and 2 2 compare,
we apply the function F to these objects. This function must be writ-
ten so that F(x1,z2) < 0 whenever we want to conclude that xl < x2;
F(xl ,x2) = 0 means that x1 = x2, and F(x1,x2) > 0 means that. x1 > 2 2 .
If lve replace "ORDERING FULL" with "EQUALS ONLY," then F(x1,22) = 0
indicates that x1 = x2, rvhile any other value of F(x1, xz) means that
XI # 12. Comparison by < is impossible in this case.

Example 9.29: Let us consider a possible ordering on the UDT StarType
from Example 9.20. If we want only an equality on objects of this UDT, we
could declare:

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE;

That state~nent says that t ~ - o objects of StarType are equal if and only if their
names are the same as character strings, and their addresses are the same as
objects of UDT AddressType.

The problem is that, unless we define an ordering for AddressType, an
object of that type is not even equal to itself. Thus, we also need to create
at least an equality test for AddressType. simple way to do So is to declare
that two AddressType objects are equal if and only if their streets and cities
are each the same. 11-e could do so by:

458 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

1) CREATE PROCEDURE Inse r t s t a r (
I N s CHAR(5O),

2, 3) I N c CHAR(10).
4) I N n CHAR(30)

1
5) DECLARE newAddr AddressType;
6) DECLARE newstar StarType;

BEGIN
7) SET newAddr = AddressTypeO;
8) SET newstar = StarTypeO ;
9) newAddr.street(s);

10) newAddr. c i t y (c) ;
11) newstar .name(n) ;
12) newstar. address(newAddr1;
13) INSERT INTO Moviestar VALUES(newStar);

END ;

Figure 9.12: Creating and storing a StarType object

To insert a star into MovieStar, we can call procedure Inse r t s t a r .

CALL InsertStar('345 Spruce S t . ' , 'Glendale', 'Gwyneth Paltrow');

is an example.

It is much simpler to insert objects into a relation with a UDT if your
DBMS provides, or if you create, a generator function that takes values for
the attributes of the C'DT and returns a suitable object. For example, if we
have functions AddressType(s , c) and StarType(n, a) that return objects of
the indicated types, then we can make the insertion at the end of Example 9.28
with an INSERT statement of a familiar form:

INSERT INTO MovleStar VALUES (
StarType('Gwyneth Paltrow',

AddressType('345 Spruce S t . ' , 'Glendale '))) ;

9.5.4 Ordering Relationships on UDT's
Objects that are of some LDT are inherently abstract, in the sense that there
is no way to compare two objects of the same UDT, either to test whether they
are "equal' or whether one is less than another. Even two objects that have all
components identical will not be considered equal unless we tell the system to
regard them as equal. Similarly, there is no obvious way to sort the tuples of

9.5. OPERATIONS ON OBJECT-RELATIONAL DAT.4 459

a relation that has a UDT unless we define a function that tells which of two
objects of that UDT precedes the other.

Yet there are many SQL operations that require either an equality test or
both an equality and a "less than" test. For instance, we cannot eliminate
duplicates if we can't tell whether two tuples are equal. We cannot group by an
attribute whose type is a UDT unless there is an equality test for that UDT.
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause
unless we can compare any two elements.

To specify an ordering or comparison, SQL allows us to issue a CREATE
ORDERING statement for any UDT. There are a number of forms this statement
may take, and we shall only consider the two simplest options:

1. The statement

CREATE ORDERING FOR T EQUALS ONLY BY STATE;

says that two members of UDT T are considered equal if all of their
corresponding components are equal. There is no < defined on objects of
UDT T.

2. The following statement

CREATE ORDERING FOR T
ORDERING FULL BY RELATIVE WITH F ;

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be
performed on objects of UDT T. To tell how objects xl and 2 2 compare,
we apply the function F to these objects. This function must be writ-
ten so that F(x1,z2) < 0 whenever we want to conclude that xl < x2;
F(xl ,x2) = 0 means that x1 = x2, and F(x1,x2) > 0 means that. x1 > 2 2 .
If lve replace "ORDERING FULL" with "EQUALS ONLY," then F(x1,22) = 0
indicates that x1 = x2, rvhile any other value of F(x1, xz) means that
XI # 12. Comparison by < is impossible in this case.

Example 9.29: Let us consider a possible ordering on the UDT StarType
from Example 9.20. If we want only an equality on objects of this UDT, we
could declare:

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE;

That state~nent says that t ~ - o objects of StarType are equal if and only if their
names are the same as character strings, and their addresses are the same as
objects of UDT AddressType.

The problem is that, unless we define an ordering for AddressType, an
object of that type is not even equal to itself. Thus, we also need to create
at least an equality test for AddressType. simple way to do So is to declare
that two AddressType objects are equal if and only if their streets and cities
are each the same. 11-e could do so by:

If DBMS allows creating generators with parameters

CREATING RECORDS OF COMPLEX
TYPES

•  Collection and array types

40

create type Book as  
" (title varchar(20), 
" author-array varchar(20) array [10], 
" pub-date date, 
" publisher Publisher, 
" keyword-set setof(varchar(20)))"

Array construction
 array [‘Silberschatz’,`Korth’,`Sudarshan’]

Set value attributes

 set(v1, v2, …, vn)

To insert the preceding tuple into the relation books

insert into books values
 (`Compilers’, array[`Smith’,`Jones’], null,
 Publisher(‘McGraw Hill’,`New York’),
 set(`parsing’,`analysis’))

WHAT WE COVERED

•  First Approach: Object-Oriented Model
•  Concepts from OO programming languages
•  ODL: Object Definition Language
•  What about querying OO databases???
•  OQL: Object Oriented Query Language

•  Second Approach: Object-Relational Model
•  Conceptual view
•  Data Definition Language (Creating types, tables, and

relationships)
•  Querying object-relational database (SQL-99)

41

Make use of the interesting features of Object-Oriented into
database systems è ODBMSs

WHEN TO CONSIDER
OODBMS OR ORDBMS

•  Complex Relationships
•  A lot of many-to-many relationships, tree structures or network (graph)

structures.

•  Complex Data
•  Multi-dimensional arrays, nested structures, or binary data, images,

multimedia, etc.

•  Distributed Databases
•  Need for free objects without the rigid table structure.

•  Repetitive use of Large Working Sets of Objects
•  To make use of inheritance and reusability

•  Expensive Mapping Layer
•  Expensive decomposition of objects (normalization) and re-

composition at query time

42

OBJECT-ORIENTED VS. OBJECT-
RELATIONAL

•  Object-oriented DBMSs
•  Did not achieve much success (until now) in the market

place
•  No query support (Indexing, optimization)
•  No security layer

•  Object-relational DBMSs
•  Better support from big vendors
•  Tries to make use of all advances in RDBMSs
•  Indexes, views, triggers, query optimizations, security layer, etc.
•  Work in progress --- Long way to go

43

MODIFICATIONS TO RDBMS

•  Parsing
•  Type-checking for methods pretty complex

•  Query Rewriting
•  New rewriting rules including complex types and collections

•  Optimization
•  New algebra operators needed for complex types.
•  Must know how to integrate them into optimization.
•  WHERE clause exprs can be expensive!
•  Selection pushdown may be a bad idea.

44

MODIFICATIONS TO RDBMS (CONT’D)

•  Execution
•  New algebra operators for complex types.
•  OID generation & reference handling.
•  Dynamic linking and overriding.
•  Support objects bigger than 1 page.
•  Caching of expensive methods.

•  Access Methods
•  Indexes on methods, not just columns.
•  Indexes over collection hierarchies.
•  Need indexes for new WHERE clause exprs (not just <, >, =)

•  Data Layout
•  Clustering of nested objects.
•  Chunking of arrays.

45

COMPARISON

46

Criteria RDBMS ODBMS ORDBMS

Product maturity Relatively old and so very
mature

This concept is few
years old and so
relatively matur feature

Still in development
stage so immature

The use of SQL Extensive supports SQL OQL is similar to SQL,
but with additional
features like Complex
objects and object-
oriented features

SQL3 is being developed
with OO features
incorporated in it

Advantages Its dependence on SQL,
relatively simple query
optimization hence good
performance

It can handle all types
of complex applications,
reusability of code, less
coding

Ability to query complex
applications and ability
to handle large and
complex applications

Disadvantage Inability to handle complex
applications

Low performance due to
complex query
optimization, inability to
support large-scale
systems

Low performance in
web application

Support from
vendors

It is considered to be highly
successful so the market
size is very large but many
vendors are moving towards
ORDBMS

Presently lacking
vendor support due to
vast size of RDBMS
market

All major RDBMS
vendors are after this so
has very good future

COMPARISON

47

Object Database vs. Object-Relational Databases

integrity is inherently maintained by the ODBMS. The object model used by the Object Database
Management Group in its ODMG-93 standard is derived from the OMG Common Object Model, and the
model has been supplemented with bindings for C++, Smalltalk, and Java as well as Object Definition
Language (ODL, based on OMG's IDL), the aforementioned OQL, meta-object access, and object
interchange.

The SQL3 object model is its own definition, a compromise that adds some object support while
maintaining backward compatibility with SQL2. ORDBMSs have limited support for inheritance, with
no consistent definition between vendors or with respect to SQL3 (e.g., constructed types). For all
vendors, base types are abstract types, supporting inheritance of properties and functions. There is no
such agreement for constructed types to be abstract types.

Table 2

A Comparison of Database Management Systems
Criteria RDBMS ORDBMS ODBMS
Defining standard SQL2 (ANSI X3H2) SQL3/4 (in process) ODMG-V2.0

Support for object-oriented
programming

Poor; programmers
spend 25% of coding
time mapping the
program object to the
database

Limited mostly to new
data types Direct and extensive

Simplicity of use
Table structures easy to
understand; many end-
user tools available

Same as RDBMS, with
some confusing
extensions

OK for programmers;
some SQL access for
end users

Simplicity of development

Provides independence
of data from application,
good for simple
relationships

Provides independence
of data from application,
good for simple
relationships

Objects are a natural
way to model; can
accommodate a wide
variety of types and
relationships

Extensibility and content None Limited mostly to new
data types

Can handle arbitrary
complexity; users can
write methods and on
any structure

Complex data relationships Difficult to model Difficult to model

Can handle arbitrary
complexity; users can
write methods and on
any structure

file:///E|/E_book/Database/Articles/Object%20Database%20vs_%20Object-Relational%20Databases.htm (12 of 21) [2/28/2004 5:44:39 PM]

