OBJECT-ORIENTED & OBJECT-
RELATIONAL DATABASES

CS561-SPRING 2014

WPI, MOHAMED ELTABAKH

Object-Relational Model

Oracle Link: hitp://docs.oracle.com/cd/B19306_01/appdev.102/

b14260/toc.him

SECOND APPROACH: OBJECT-
RELATIONAL MODEL

- Object-oriented model tries to bring the main
concepts from relational model to the OO domain

* The heart is OO concepts with some extensions

- Object-relational model tries to bring the main
concepts from the OO domain to the relational
model
« The heart is the relational model with some extensions
« Extensions through user-defined types

CONCEPTUAL VIEW OF OBJECT-
RELATIONAL MODEL

« Relation is still the fundamental structure

- Relational model extended with the following features

+ Type system with primitive and structure types (UDT)
Including set, bag, array, list collection types
Including structures like records

* Methods
?ggﬁiol operations can be defined over the user-defined types
SEr>ecic1|ized operators for complex types, e.g., images, multimedia,
etc.

 |dentifiers for tuples
Unique identifiers even for identical tuples
* References
Several ways for references and de-references

CONCEPTUAL VIEW OF OBJECT-
RELATIONAL MODEL

name address birthdate movies
Fisher street city 9/9/99 ritle year | length
| Maple |H’wood | Star Wars 1577 124
Locusti{Malibu _E_:rrlp_i_ria_ _l1s80 _1_2_'7_‘ .
Return | 1683] 133 « Allow of nested relations
Hamill street city 8/8/88 ritle year | lengti . RepeGTIﬂg mOV|eS |nS|de .I.he S.I.Ors
o Rveos S Eakl B records is redundanc
- | Empire 1980 127| v
Return 1983] 133
Star(name, address(street, city), birthdate, - To avoid redundancy, use pointers
movies(title, year, length)) (references)
name address birthdate| movies
Fisher street city 9/9/99 ~
Hile year | length
Maple | H' wood \\\
"""""""" 977 124
LocustiMalibu N Star Wars) 1377) 124
———————————————————————————— gt Emp i_r:e_ _11980) 127
Hamill { | street | city 8/8/88 | Return |1983] 133
1
Qak B'w > Movie

Star

SUPPORT FROM VENDORS

« Several major software companies including IBM,
Informix, Microsoft, Oracle, and Sybase have all
released object-relational versions of their products

» Extended SQL standards called SQL-99 or SQL3

SQL-99: QUERY LANGUAGE FOR OBJECT-
RELATIONAL MODEL

- User-defied types (UDT) replace the concept of
classes

» Create relations on top of the UDTs
* Multiple relations can be created on top of the same UDT

<name> (attributes and method declarafions)

CREATING UDT

/*** Create ADDRESS UDT **=x/
CREATE TYPE ADDRESS AS OBJECT

(

street
city
state
zip code

~—

VARCHAR(60),
VARCHAR(30),
CHAR(2),
CHAR(5)

CREATE TYPE PERSON AS OBJECT

(

name VARCHAR(30),
ssn NUMBER,
addr ADDRESS

—

Creating a type for the address of
stars

A hierarchy of types
(inheritance)

DEFINING METHODS

CREATE TYPE PERSON AS OBJECT
(

name VARCHAR(30), c e
ssn NUMBER, Create the type object (definition)
addr ADDRESS »

Member Function getName return varchar
);
/

> If the we have member function, then we need to define the type body

Create Type Body Person IS
Member Function getName return varchar is
Begin
return name;
End;
End;

CREATING RELATIONS

« Once types are created, we can create relations

 In general, we can create tables without types
« But types provide encapsulation, inheritance, etc.

10

TABLES IN O-R MODEL (1)

CREATE TYPE PERSON AS OBJECT
(

name VARCHAR(30),

ssn NUMBER,

addr ADDRESS
)

/ Typed table

/*** Create a typed table for PERSON objects ***/
CREATE TABLE persons OF PERSON;

> Eachrecord in the table is an object.
> That is not a relational table

11

TABLES IN OR MODEL (1I)

/*** Create ADDRESS UDT **=x/ CREATE TYPE PERSON AS OBJECT
CREATE TYPE ADDRESS AS OBJECT (
(name VARCHAR(30),

street VARCHAR(60), asn NUMBER

city VARCHAR(30), m—-

state CHAR(2), addr ADDRESS

zip code CHAR(5) ;

~—

/*** Create a relational table with references to types***/
CREATE TABLE employees
(
empnumber INTEGER PRIMARY KEY,
person_data REF PERSON, Typed objects
manager REF PERSON,
office_addr ADDRESS,
salary NUMBER

12

INSERTING DATA (I)

CREATE TYPE PERSON AS OBJECT
(.
name VARCHAR(30), /*** Create a typed table for PERSON objects ***/

sen NUMBER, CREATE TABLE persons OF PERSON;

ADDRESS
)

/

/*** Insert some data--2 objects into the persons typed table ***/
INSERT INTO persons VALUES (

PERSON('Wolfgang Amadeus Mozart', 123456,
ADDRESS('Am Berg 100', 'Salzburg', 'AT','10424')))
/

INSERT INTO persons VALUES (

PERSON('Ludwig van Beethoven', 234567,
ADDRESS('Rheinallee’, 'Bonn’, 'DE', '69234')))

13

/*** Create ADDRESS UDT *=**/

INSERTING DATA (II)

CREATE TYPE PERSON AS OBJECT

CREATE TYPE ADDRESS AS OBJECT (

(

street
city
state
zip_code

~—

name VARCHEAR(30),
VARCHAR(60), ssn NUMBER,
VARCHAR(30), addr ADDRESS
CHEAR(2),)
CHAR(5)

/

/*** Create a relational table with references to types***/
CREATE TABLE employees
(

empnumber INTEGER PRIMARY KEY,

person_data REF PERSON,

manager REF PERSON,

office_addr ADDRESS,

salary NUMBER

)

/** Put a row in the employees table **/
INSERT INTO employees (empnumber, office_addr, salary)

VALUES (
1001,

ADDRESS('500 Oracle Parkway', 'Redwood Shores', 'CA', '94065'),

50000)

14

UPDATING DATA (1)

/*** Create ADDRESS UDT *=**/ CREATE TYPE PERSON AS OBJECT
CREATE TYPE ADDRESS AS OBJECT (

(name VARCHAR(30),
street VARCHEAR(60), ssn NUMBER,
city VARCHAR(30), addr ADDRESS
state CHEAR(2),)
zip_code CHAR(5) /
)
/ /*** Create a relational table with references to types***/
CREATE TABLE employees
(
empnumber INTEGER PRIMARY KEY,

person_data REF PERSON,
manager REF PERSON,
office_addr ADDRESS,
salary NUMBER

)

/** Set the manager and PERSON REFs for the employee **/
UPDATE employees
SET manager =
(SELECT REF(p) FROM persons p
WHERE p.name = 'Wolfgang Amadeus Mozart')

15

UPDATING DATA (II)

/*%* Create ADDRESS UDT *#%/ CREATE TYPE PERSON AS OBJECT
CREATE TYPE ADDRESS AS OBJECT (
(name VARCHAR(30),

street VARCHEAR(60), ssn NUMBER,

city VARCHAR(30), addr ADDRESS

state CHEAR(2),)

zip_code CHAR(5) /
)
/ /*** Create a relational table with references to types***/

CREATE TABLE employees
empnumber INTEGER PRIMARY KEY,

person_data REF PERSON,
manager REF PERSON,
office_addr ADDRESS,
salary NUMBER

)

UPDATE employees
SET person_data =
(SELECT REF(p) FROM persons p
WHERE p.name = 'Ludwig van Beethoven')

16

COLLECTIONS AND LARGE OBJECTS

- Book Type contains collections
* Arrays of authors - capture the order of authors
« Set of keywords

create type Book as
(title varchar(20),
author-array varchar(20) array [10],
pub-date date,
publisher Publisher,
keyword-set setof(varchar(20)))

+ Large object types
« CLOB: Character large objects Usually provide methods inside
book-review CLOB(10KB) the UDT to manipulate CLOB &
- BLOB: binary large objects BLOB
image BLOB(10MB)
movie BLOB(2GB)

{7/

COLLECTION TYPES IN ORACLE

Variable-Length Arrays

CREATE TYPE typename IS VARRAY(n) OF datatype;

Nested Tables

CREATE TYPE typename AS TABLE OF datatype;

18

EXAMPLE

CREATE TYPE PHONE_ARRAY IS VARRAY(10) OF varchar2(30)
/

CREATE TABLE employees

(empnumber INTEGER PRIMARY KEY,
person_data REF person,
manager REF person,
office_addr address,
salary NUMBER,
phone_nums phone_array

N

19

EXAMPLE (CONT'D)

Inserting into the array

CREATE TABLE employees

(empnumber INTEGER PRIMARY KEY,
person_data REF person,
manager REF person,
office_addr address,
salary NUMBER,
phone_nums phone_array
)
/

/** Put a row in the employees table **/
INSERT INTO employees (empnumber, office_addr, phone_nums)
VALUES |

1001,
ADDRESS('500 Oracle Parkway', 'Redwood Shores', 'CA', '94065'),

phone_array(‘111-222-3333", '111-222-4444’))

20

NESTED TABLE V5. ARRAY

An array has a declared number of elements

A nested table does not. The size of a nested table can
increase dynamically.

An array is always dense.

A nested table is dense initially, but it can become sparse,
because you can delete elements from it.

Array of Integers

Fixed
321 17 99 | 407 | 83 | 622 | 105 19 67 | 278 Upper

x(1) x(2) x(3) x(4) x(5 x(6) x(7) x(8) x(9 x(10) Sound
Nested Table after Deletions Upper limit
of index

| 321 - 99 | 407 - 622 | 105 l 19 - 278 \ type

x(1) x(3) x(4) x(6) x(7) x(8) x(10)

21

ALTER TYPES

Using an ALTER TYPE statement, you can:
- Add and drop afttributes
 Add and drop methods

* Modify a numeric aftribute to increase its length, precision,
or scale

- Modify a varying length character attribute to increase its
length

22

REFERENCES

- Actual Object
- References without scope

- References with scope

23

ACTUAL OBJECTS

CREATE TYPE PERSON AS OBJECT
— VARCHAR(30), /*** Create a typed table for PERSON objects ***/
ssn_ NUMBER. CREATE TABLE persons OF PERSON;

ADDRESS
)

/

addr is the entire object

/*** Insert some data--2 objects into the persons typed table ***/
INSERT INTO persons VALUES (

PERSON('Wolfgang Amadeus Mozart', 123456,
ADDRESS('Am Berg 100', 'Salzburg', 'AT','10424')))

The entire object

24

REFERENCE WITHOUT S5COPE

CREATE TYPE emp_person_typ AS OBJECT (- Reference to atype
name VARCHAR2(30), - We did not spgcnfy fr.om
manager REF emp_person_typ); where the objects will come
/

CREATE TABLE emp_person_obj_table OF emp_person_typ;

INSERT INTO emp_person_obj_table VALUES (
emp_person_typ (‘John Smith’, NULL));

INSERT INTO emp_person_obj_table
SELECT emp_person_typ ('Bob Jones', REF(e))
FROM emp_person_obj_table e
WHERE e.name = 'John Smith’;

25

REFERENCE WITH SCOPE

CREATE TABLE contacts_ref (
contact_ref REF person_typ SCOPE IS person_obj_table,
contact_date DATE);

- Reference to a type - The scope is a table
containing objects of that

type

26

REFERENCE WITH SCOPE

CREATE TABLE contacts_ref (
contact_ref REF person_typ SCOPE IS person_obj_table,
contact_date DATE);

INSERT INTO contacts_ref
SELECT REF(p), '26 Jun 2003’
FROM person_obj_table p
WHERE p.idno =1;

27

WHAT'S NEXT

- Second Approach: Object-Relational Model

« Conceptual view

- Data Definition Language (Creating types, tables, and
relationships)

- Querying object-relational database (SQL-99)

28

QUERYING OBJECT-RELATIONAL
DATABASE

* Most relational operators work on the object-
relational tables

* E.g., selection, projection, aggregation, set operations

« Some new operators and new syntax for some
existing operators

» SQL-929 (SQL3): Extended SQL to operate on object-
relational databases

29

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (
name CHAR(30Q),
address AddressType,
bestMovie REF (MovieType) SCOPE Movie

)

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED

)

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

EXAMPLES |

Q1: Find the year of movie ‘King Kong’

Select m.year
From Movie m
Where m.title =\'King Kong’;

Variable m is important to reference the fields

Q2: Find the title of the best movie 'Jim Carry

Select s.bestMovie->title
From MovieStar s
Where s.name = ‘Jim Carry’;

Follow a reference (pointer)
using - operator

30

EXAMPLES II: DE-REFERENCING

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (
name CHAR(30Q),
address AddressType,
bestMovie REF (MovieType) SCOPE Movie

)

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED

)

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

Q3: Find movies starred by ‘Jim Carry’

Select DEREF(movie)
From Starsin
Where star->name = ‘Jim Carry’;

DEREF: Get the tuple pointed to by the given pointer

Q4: Find movies starred by ‘Jim Carry’ (Another way)

Select s.movie->title, s.movie->year, s.movie->inColor,
From Starsin's
Where s.star->name = ‘Jim Carry’;

***Using a variable for Startsin (s in Q4) is not
necessary because the table is not based on type.

EXAMPLES III: COMPARISON

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (

name CHAR(30Q),

address AddressType,

bestMovie REF (MovieType) SCOPE Movie
);

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED
)3

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

Q5: Find distinct movies starred by ‘Jim Carry’
or ‘Mel Gibson’

Select Distinct DEREF(movie)
From Starsin

Where star->name = ‘Jim Carry’
Or star->name = ‘Mel Gibson’;

X

at is wrong because all objects of type
MovieType are unique even if they have the
same content

Need a mechanism to define how objects

compare to each other

ORDERING RELATIONSHIPS

Need to define how to compare objects of a given

type T

Equality or non-equality (=, #)

EQUALS

Create Ordering For T

ORDERING FULL

Full comparison (=, <, >, £, 2, #)

Identical content

ONLY BY STATE;

! BY RELATIVE WITH F;
|

User-defined function F(O1, O2) and
returns 0, -ve, +ve

e

ORDERING FUNCTION

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (
name CHAR(30Q),
address AddressType,
bestMovie REF (MovieType) SCOPE Movie

)

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED

)

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

CREATE ORDERING FOR AddressType
ORDER FULL BY RELATIVE WITH AddrLEG;

1)
2)
3)
4)

5)
6)
7
8)
9

CREATE FUNCTION AddrLEG(
x1 AddressType,
x2 AddressType

) RETURNS INTEGER

IF x1.city() < x2.city() THEN RETURN(-1)

ELSEIF x1.city() > x2.city() THEN RETURN(1)
ELSEIF x1.street() < x2.street() THEN RETURN(-1)
ELSEIF x1.street() = x2.street(} THEN RETURN(D)

ELSE RETURN(1)
END IF;

34

EXAMPLES IV: COMPARISON

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER, . - .
s i nColor BOOLEAN Create Ordering For MovieType Equals Only By State;

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

Q5: Find distinct movies starred by ‘Jim Carry’
or ‘Mel Gibson’

CREATE TYPE StarType AS — :
name CHAR(30), Select Distinct DEREF(movie)
address AddressType,
bestMovie REF (MovieType) SCOPE Movie From Starsin .
); Where star->name = ‘Jim Carry’
— H 1.
CREATE TABLE MovieStar OF StarType (Or star->name = ‘Mel Gibson’;

REF IS starID SYSTEM GENERATED
)

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie
);
35

EXAMPLES V: GROUPING & NESTING

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (

name CHAR(30Q),

address AddressType,

bestMovie REF (MovieType) SCOPE Movie
);

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED
)3

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

Qé6: Find stars who participated in less than 10 movies

Select DEREF(star)

From Starsin

Group by DEREF(star)
Having count(movie) < 10;

Create at least an equality ordering on StarType

Q7: Find movie titles in 2000 where ‘Jim Carry’ is not in

Select m

From Movie m
Where m.year = 2000
And m.title Not In (

Select movie->title

From Starsin

Where star->name = ‘Jim Carry’
And movie->year = 2000);

36

QUERYING COLLECTIONS & ARRAYS

To get a relation containing pairs of the form
“title, author-name” for each book and each

author of the book

create type Book as
(title varchar(20),

author-array varchar(20) array [10],
pub-date date,

publisher Publisher, select B title. A
keyword-set setof(varchar(20))) from books as B, unnest (B.author-array) as A

find all books that have the word “database”
as one of their keywords

select title
from books
where ‘database’ in (unnest(keyword-set)) hr ko o rlattn

Get 1st and 2" authors of certain book

select author-array1], author-array|2]
from books
where title = "Database System Concepts’ 37

GENERATORS AND MUTATORS

How to insert new new data into tables

Generators
* Like the constructors in OO programming
« Create new objects

Mutators
* Modify the value of an existing object

For each afttribute x in UDT T, the system automatically
CHEEHE ST

« Generator T() that returns an empty object of T

« Mutator x(v) that sets the value of attribute x to value v

38

1) CREATE TYPE MovieType AS (

2) title CHAR(30),
3) year INTEGER,
4) inColor BOOLEAN

)

5) CREATE TABLE Movie OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7 PRIMARY KEY (title, year)

);

CREATE TYPE StarType AS (
name CHAR(30Q),
address AddressType,
bestMovie REF (MovieType) SCOPE Movie

)

CREATE TABLE MovieStar OF StarType (
REF IS starID SYSTEM GENERATED
)3

CREATE TABLE StarsIn (
star REF (StarType) SCOPE MovieStar,
movie REF(MovieType) SCOPE Movie

);

EXAMPLE

1)
2)
3)
4)

5)
6)

7)
8)
9)
10)
11)
12)
13)

CREATE PROCEDURE InsertStar(

)

IN s CHAR(50),
IN ¢ CHAR(20},
IN n CHAR(30)

DECLARE newAddr AddressType;
DECLARE newStar StarType;

BEGIN

END;

SET newAddr = AddressType();

SET newStar = StarType();
newAddr.street(s);

newAddr.city(c);

newStar.name(n);
newStar.address(newAddr);

INSERT INTO MovieStar VALUES(newStar);

CALL InsertStar(’345 Spruce St.’, ’Glendale’, ’Guyneth Paltrow’);

If DBMS allows creating generators with parameters

INSERT INTO MovieStar VALUES(
StarType(’Guyneth Paltrow’,

AddressType(’345 Spruce St.’, ’Glendale’)));

39

CREATING RECORDS OF COMPLEX
TYPES

N create type Book as

Collection and array types (title varchar(20),
author-array varchar(20) array [10],
pub-date date,

publisher Publisher,
keyword-set setof(varchar(20)))

Array construction ; 1
array [‘Silberschatz’” , Korth’ , Sudarshan’]

Set value attributes
set(vi, v2, ..., vn)

To insert the preceding tuple into the relation books
Insert into books values s
(' Compilers” , array[Smith’ , Jones’], null,
Publisher(‘McGraw Hill" ,”New York™),
set(parsing’ , analysis’))

40

WHAT WE COVERED

- First Approach: Object-Oriented Model
« Concepts from OO programming languages
« ODL: Object Definition Language

 What about querying OO databasesee?
+ OQL: Object Oriented Query Language

- Second Approach: Object-Relational Model
« Conceptual view

« Data Definition Language (Creating types, tables, and
relationships)

* Querying object-relational database (SQL-99)

Make use of the in’re'res’rring features of ObjeC’r—O'rien’red info

database systems = ODBMSs

41

WHEN TO CONSIDER
OODBMS OR ORDBMS

Complex Relationships

* A lot of many-to-many relationships, tree structures or network (graph)
structures.

Complex Data

+ Multi-dimensional arrays, nested structures, or binary data, images,
mulfimedia, efc.

Distributed Databases
* Need for free objects without the rigid table structure.

Repetitive use of Large Working Sets of Objects
« To make use of inheritance and reusability

Expensive Mapping Layer

* Expensive decomposition of objects (hormalization) and re-
composition at query time

42

OBJECT-ORIENTED VS. OBJECT-
RELATIONAL

* Object-oriented DBMSs

* Did not achieve much success (until now) in the market
place

* No query support (Indexing, optimization)
« No security layer

- Object-relational DBMSs

« Better support from big vendors

* Tries to make use of all advances in RDBMSs
Indexes, views, triggers, query optimizations, security layer, etc.
Work in progress --- Long way to go

43

MODIFICATIONS TO RDBMS

* Parsing
 Type-checking for methods prefty complex

- Query Rewriting
* New rewriting rules including complex types and collections

- Optimization
* New algebra operators needed for complex types.
* Must know how to integrate them into optimization.

« WHERE clause exprs can be expensive!l
Selection pushdown may be a bad idea.

44

MODIFICATIONS TO RDBMS (CONT'D)

* Execution
* New algebra operators for complex types.
« OID generation & reference handling.
Dynamic linking and overriding.
Support objects bigger than 1 page.
Caching of expensive methods.

- Access Methods
* Indexes on methods, not just columns.
* Indexes over collection hierarchies.
* Need indexes for new WHERE clause exprs (not just <, >, =)

- Data Layout
» Clustering of nested objects.
* Chunking of arrays.

45

COMPARISON

Criteria

RDBMS

ODBMS

ORDBMS

Product maturity

Relatively old and so very
mature

This concept is few
years old and so
relatively matur feature

Still in development
stage so immature

The use of SQL

Extensive supports SQL

OQL is similar to SQL,
but with additional
features like Complex
objects and object-
oriented features

SQL3 is being developed
with OO features
incorporated in it

Advantages

Its dependence on SQL,
relatively simple query
optimization hence good
performance

It can handle all types
of complex applications,
reusability of code, less
coding

Ability to query complex
applications and ability
to handle large and
complex applications

Disadvantage

Inability to handle complex
applications

Low performance due to
complex query
optimization, inability to
support large-scale
systems

Low performance in
web application

Support from
vendors

It is considered to be highly
successful so the market
size is very large but many
vendors are moving towards
ORDBMS

Presently lacking
vendor support due to
vast size of RDBMS

market

All major RDBMS
vendors are after this so
has very good future

49

COMPARISON

Table 2

A Comparison of Database Management Systems

Criteria

RDBMS

ORDBMS

ODBMS

Defining standard

SQL2 (ANSI X3H2)

SQL3/4 (in process)

ODMG-V2.0

Support for object-oriented
programming

Poor; programmers
spend 25% of coding
time mapping the
program object to the
database

Limited mostly to new
data types

Direct and extensive

Simplicity of use

Table structures easy to
understand; many end-
user tools available

Same as RDBMS, with
some confusing
extensions

OK for programmers;
some SQL access for
end users

Simplicity of development

Provides independence
of data from application,
good for simple

Provides independence
of data from application,
good for simple

Objects are a natural
way to model; can
accommodate a wide
variety of types and

relationships relationships] .
p P relationships
Can handle arbitrary
Limited mostly to new complexity; users can
Extensibility and content None y P Y

data types

write methods and on
any structure

Complex data relationships

Difficult to model

Difficult to model

Can handle arbitrary
complexity; users can
write methods and on
any structure

