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have importance in database systems today. In this chapter we shall introduce 
you to several other models of rising importance. 

We begin with a discussion of object-oriented data models. One approach 
to object-orientation for a database system is to extend the concepts of object- 
oriented programming languages such as C++ or Java to include persistence. 
That is, the presumption in ordinary programming is that objects go away af- 
ter the program finishes, while an essential requirement of a DBMS is that the 
objects are preserved indefinitely, unless changed by the user, as in a file sys- 
tem. W e  shall study a "pure" object-oriented data model, called ODL (object 
definition language), which has been standardized by the ODMG (object data 
management group). 

Next, we consider a model called object-relational. This model, part of 
t,he most recent SQL standard, called SQL-99 (or SQL:1999, or SQL3), is an 
attempt to extend the relational model, as introduced in Chapter 3, to include 
many of the common object-oriented concepts. This standard forms the basis 
for object-relational DBMS's t,hat are now available from essentially all the 
major vendors, although these vendors differ considerably in the details of how 
the concepts are implemented and made available to users. Chapter 9 includes 
a discussion of the object-relational model of SQL-99. 

Then, we take up the "semistructured" data model. This recent innovation 
is an attempt to deal with a number of database problems, including the need 
to combine databases and other data sources, such as Web pages, that have 
different schemas. While an essential of object-oriented or object-relational 
systems is their insistence on a fixed schema for every class or every relation, 
semistructured data is allowed much more flexibility in what components are 
present. For instance, we could think of movie objects, some of which have a 
director listed, some of which might have several different lengths for several 
different versions, some of which may include textual reviews, and so on. 

The most prominent implenientation of semistructured data is XML (exten- 
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sible markup language). Essentially, XML is a specification for "documents," component has type Ti and is referred to by its field name fi. Record 
which are really collections of nested data elements, each with a role indicated structures are exactly what C or C++ calls "structs," and we shall fie- 
by a tag. \ve believe that XML data will serve as an essential component in quently use that term in what follows. 
systems that mediate among data sources or that transmit data among sources. 
XML may even become an important approach to flexible storage of data in 2. Collection types. Given a type T, one can construct new types by applying 

databases. 
a collection operator to type T. Different languages use different collection 
Operators, but there are several common ones, including arrays, lists, and 
sets. Thus, if T viere the atomic type integer, we might build the collection 

4.1 Review of Object-Oriented Concepts types "array of integers," "list of integers," or "set of integers." 

Before introducing object-oriented database models, let us review the major 3. Reference types. -A reference to a type T is a type whose values are suitable 
object-oriented concepts themselves. Object-oriented programming has been for locating a value of the type T. In C or C++, a reference is a "pointer" 
widely regarded as a tool for better program organization and, ultimately, more to a value, that is, the virtual-memory address of the value pointed to. 
reliable software implementation. First popularized in the language Smallt,alk, 
object-oriented programming received a big boost with the development of C++ Of course, record-structure and collection operators can be applied repeat- 

and the to C++ of much software development that was formerly . e d l ~  to build ever more complex types. For instance, a bank might define a type 

done in C. More recently, the language Java, suitable for sharing Programs that is a record structure with a first component named customer of type string 

across the world Wide Web, has also focused attention on object-oriented Pro- and whose second component is of type set-of-integers and is named accounts. 

gramming. Such a type is suitable for associating bank customers with the set of their 

The database world has likewise been attracted to the object-oriented Para- 
digm, particularly for database design and for extending relational DBMS's 
with new features. In this section we shall review the ideas behind object 4.1.2 Classes and Objects 
orientation: 

class consists of a t.ype and possibly one or more fullctions or procedures 
1. A powerful type system. (called methods; see below) that can be executed on objects of that class. The 

objects of a class are either values of that type (called immutable object.$) or 
2. Classes, which are types associated with an extent, or set of objects belong- variables whose value is of that type (called mutable objects). For example, if lye 

ing to the class. An essential feature of classes, as opposed to conventional define a class C whose type is "set of integers," the11 {2,5,7) is an immutable 
data types is that classes may include methods, which are procedures that object of class C, while variable s could be declared to be a mutable object of 
are applicable to objects belonging to the class. class C and assigned a value such as {2,5,7). 

3. Object Identity, the idea that each object has a unique identity, indepen- 
dent of its value. 4.1.3 Object Identity 

4. Inheritance, which is the organization of classes into hierarchies, where Objects are assumed to have an object identity (OID). No two objects can have 

each class inherits the properties of the classes above it. the same OID, and no object has two different OID's. Object identity has 
some interesting effects on how we model data. For instance, it is essential that 

4.1.1 The Type System 
an entity set have a key formed from values of attributes possessed by it or a 
related entity set (in the case of weak entity sets). However, 13-ithin a class, 

.i\n object-oriented programming language offers the user a rich collection of we assume we can distinguish two objects whose attributes all ha\-e identical 

types. Starting with atomic types, such as integers, real numbers, booleans, values, because the OID's of the two objects are guaranteed to be different. 

and character strings, one may build new types by using type c o n s t r ~ ~ t o r ~ .  
Typically, the type constructors let us build: 4.1.4 Met hods 

1. Record structures. Given a list of types TI, T2, . . . , T, and a corresponding Associated with a class there are usually certain functions, often called methods. 
list of field names (called instance variables in Smalltalk) f i ,  f2,. . . , fn, A method for a class C has at least one argument that is an object of class C; 
one can construct a record type consisting of n components. The ith it may have other arguments of any class, including C. For example, associated 
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with a class whose type is "set of integers," we might have methods to sum the that takes an account a belonging to the subclass TimeDeposit and calculates 
elements of a given set, to take the union of two sets, or to return a boolean the penalty for early withdrawal, as a function of the dueDate field in object a 
indicating whether or not the set is empty. 

In some situations, classes are referred to as "abstract data types," meaning 
that they encapsulate, or restrict access to objects of the class so that only the 
methods defined for the class can modify objects of the class directly. This 
restriction assures that the objects of the class cannot be changed in ways that 
were not anticipated by the designer of the class. Encapsulation is regarded as L (Object Definition Language) is a standardized language for specifying 
one of the key tools for reliable software development. e structure of databases in object-oriented terms. It is an extension of IDL 

terface Description Language), a component of CORBA (Common Object 
4.1.5 Class Hierarchies quest Broker Architecture). The latter is a standard for distributed, object- 

It is possible to declare one class C to be a subclass of another class D. If 
so, then class C inherits all the properties of class D, including the type of D 

4.2.1 Object-Oriented Design and any functions defined for class D. However, C may also have additional 
. properties. For example, new methods may be defined for objects of class C, . In an object-oriented design, the world to be modeled is thought of as composed 

and these methods may be either in addition to or in place of methods of D. of objects, which are observable entities of some sort. For example, people may 
It may even be possible to extend the type of D in certain ways. In particular, 

i 
be thought of as objects; so may bank accounts, airline flights, courses a t  a 

i if the type of D is a record-structure type, then we can add new fields to this college, buildings, and so on. Objects are assumed to have a unique object 
I type that are present only in objects of type C. identity (OID) that distinguishes them from any other object, as we discussed 
I in Section 4.1.3. 

Example 4.1 : Consider a class of bank account objects. We might describe To organize information, we usually want to group objects into classes of ob- 
the type for this class informally as: jects with similar properties. However, when speaking of ODL object-oriented 

designs, we should think of "similar properties" of the objects in a class in two 
CLASS Account = CaccountNo: in teger;  

balance: r e a l ;  
owner: REF Customer; The real-world concepts represented by the objects of a class should be 

similar. For instance, it makes sense to group all customers of a bank into 
one class and all accounts at the bank into another class. I t  would not 

That is, the type for the Account class is a record structure wit,h three fields: make sense to group customers and accounts together in one class, because 
an integer account number, a real-number balance, and an owner that is a they have little or nothing in common and play essentially different roles 
reference to an object of class Customer (another class that we'd need for a in the world of banking. 
banking database, but whose type we have not introduced here). 

1 

! We could also define some methods for the class. For example. we might 
I have a method 

deposit(a: Account, m: r ea l )  

that increases the balance for Account object a by amount m. Account 
Finally, 1.c might wish to have several subclasses of the Account subclass. object 

For instance, a time-deposit account could have an additional field dueDate. 
the date at which the account balance may be withdrawn by the owner. There Figure 4.1: An object representing an account 
might also be an additional method for the subclass TimeDeposit 

The properties of objects in a class must be the same. When programming 
penalty(a: TimeDeposit) in an object-oriented language, we often think of objects as records, like 



CHAPTER 4. OTHER DATA IVODELS 4.2. INTRODUCTION TO ODL 137 

that suggested by Fig. 4.1. Objects have fields or slots in which values are Example 4.2: In Fig. 4.2 is an ODL declaration of the class of movies. I t  
placed. These values may be of common types such as integers, strings, is not a complete declaration; we shall add more to it later. Line (1) declarw 
or arrays, or they may be references to other objects. Movie to be a class. Following line (1) are the declarations of four attributes 

that all Movie objects will have. 
When specifying the design of ODL classes, we describe properties of three 

1) c lass  Movie { 

1. Attributes, which are values associated with the object. We discuss the 2) a t t r i b u t e  s t r i ng  t i t l e ;  

legal types of ODL attributes in Section 4.2.8. 3) a t t r i b u t e  integer year; 
4) a t t r i b u t e  integer length; 

2. Relationships, which are connections between the object at hand and an- 5) a t t r i b u t e  enum Film Ccolor,blackAndMite) filmType; 
other object or objects. 

3. Methods, which are functions that may be applied to objects of the class. 
Figure 4.2: An ODL declaration of the class Movie 

Attributes, relationships, and methods are collectively referred to as properties. 
The first attribute, on line (2), is named t i t l e .  Its type is string-a 

4.2.2 Class Declarations character string of unknown length. U'e expect the value of the t i t l e  attribute 
in any Movie object to be the name of the movie. The next two attributes, year 

A declaration of a class in ODL, in its simplest form, consists of: and length declared on lines (3) and (4), have integer type and represent the 
year in which the movie was made and its length in minutes, respectively. On 

1. The keyword class, line (5) is another attribute f ilmType, which tells whether the movie was filmed 
in color or black-and-white. Its type is an enumeration, and the name of the 

2. The name of the class, and enumeration is Film. Values of enumeration attributes are chosen from a list 

3. A bracketed list of properties of the class. These properties can be at- of le'terals, color and blackAndWhite in this example. 
tributes, relationships, or methods, mixed in any order. An object in the class Movie as we have defined it so far can be thought of 

as a record or tuple with four components, one for each of the four attributes. 

That is, the simple form of a class declaration is 

c l ass  <name> { ("Gone With the  Wind", 1939, 231, color) 

<list of properties, is a Movie object. 0 

Example 4.3 : In Example 4.2, all the attributes have atomic types. Here is 

4.2.3 Attributes in ODL an example with a nonatomic type. We can define the class Star  by 

The simplest kind of property is the attribute. These properties describe some 1) c lass  S ta r  C 
aspect of an object by associating a value of a fixed type with that object. 2) a t t r i b u t e  s t r i n g  name; 
For example, person objects might each have an attribute name whose type is 3) a t t r i b u t e  Struct  Addr 
string and whose value is the name of that person. Person objects might also {st r ing s t r e e t ,  s t r i n g  c i ty )  address; 
have an attribute b i r thdate that is a triple of integers (i.e., a record structure) 
representing the year, month, and day of their birth. 

In ODL, unlike the E/R model, attributes need not be of simple types, such Line (2) specifies an attribute name (of the star) that is a string. Line (3) 
as integers and strings. l i e  just mentioned bi r thdate as an example of an specifies another attribute address. This attribute has a type that is a record 
attribute with a structured type. For another example, an attribute such as structure. The name of this structure is Addr, and the type consists of two 
phones might have a set of strings as its type, and even more complex types fields: s t r e e t  and c i ty .  Both fields are strings. In general, one can define 
are possible. \Ire summarize the type system of ODL in Section 4.2.8. record structure types in ODL by the keyword Struct  and curly braces around 



Why Name Enumerations and Structures? 

The name Film for the enumeration on line 5 of Fig. 4.2 doesn't seem to 
be necessary. However, by giving it a name, we can refer to it outside the 
scope of the declaration for class Movie. We do so by referring to it by 
the scoped name Movie: :Film. For instance, in a declaration of a class of 
cameras, we could have a line: 

a t t r i bu te  Movie::Film uses; 

This line declares attribute uses to be of the same enumerated type with 
the values color and blackAndWhite. 

Another reason for giving names to enumerated types (and structures 
as well, which are declared in a manner similar to enumerations) is that we 
can declare them in a Umodule" outside the declaration of any particular 
class, and have that type available to all the classes in the module. 
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4.2.5 Inverse Relationships 

~ u s t  as we might like to access the stars of a given movie, we might like to 
know the movies in which a given star acted. To get this information into S ta r  
objects, we can add the line 

re lat ionship Set<Movie> s tar red In ;  

to the declaration of class S ta r  in Example 4.3. However, this line and a similar 
declaration for Movie omits a very important aspect of the relationship between 
movies and stars. We expect that if a star S is in the s t a r s  set for movie M ,  
then movie M is in the s tar red In  set for star S. We indicate this connection 
between the relationships stars and s tar red In  by placing in each of their 
declarations the keyword inverse and the name of the other relationship. If 
the other relationship is in some other class, as it usually is, then we refer to 
that relationship by the name of its class, followed by a double colori (: :) and 
the name of the relationship. 

Example 4.5: To define the relationship s tar red In  of class Star  to be the 
inverse of the relationship s t a r s  in class Movie, we revise the declarations of 

the list of field names and their types. Like enumerations, structure types must these classes, as shown in Fig. 4.3 (which also contains a definition of class 
have a name, which can be used ~lsemhere to refer to the same structure type. 
U 

Studio to be discussed later). Line (6) shows the declaration of relationship 
stars of movies, and says that its inverse is Star: : starredIn. Since relation- 
ship starredIn is defined in another class, the relationship name is. preceded 

4.2.4 Relationships in ODL by the name of that class (s ta r )  and a double colon. Recall the double colon is 
used whenever we refer to something defined in another class, such as a property 

IQhile we can learn much about an object by examining its attributes, some- or type name. 
times a critical fact about an object is the way it connects to other objects in Similarly, relationship s tar red In  is declared in line (11). Its inverse is 
the same or another class. declared by that line to be s t a r s  of class Movie, as it must be, because inverses 

always are linked in pairs. 
Example 4.4: Now, suppose we want to add to t.he declaration of the Movie 
class from Example 4.2 a property that is a set of stars. More precisely, we -1s a general rule: if a relationship R for class C associates with object x of 
want each Movie object to connect the set of Star  objects that are its stars. class C with objects yl$ yg, . . . , yn of class Dl then the inverse relationship of R 
The best way to represent this connection between the Movie and S ta r  classes associates with each of the yi's the object x (perhaps along with other objects). 
is with a relationship. We may represent this relationship in Movie by a line: Sometimes, it helps to visualize a relationship R from class C to class D as a 

list of pairs, or tuples, of a relation. The idea is the same as the "relationship 
re lat ionship Set<Star> s ta rs ;  set" we used to describe E/R relationships in Section 2.1.5. Each pair consists 

of an object x from class C and an associated object y of class D: as: 
in the declaration of class Movie. This line may appear in Fig. 4.2 after any 
of the lines numbered (1) through (5). It says that in each object of class 
Movie there is a set of references to Star  objects. The set of references is called 
stars. The keyword re lat ionship specifies that stars contains references to 
other objects, while the keyword Set preceding <Star> indicates that stars 
rekrences a set of S ta r  objects, rather than a single object, In general, a type 
that  is a Set of elements of some other type T is defined in ODL by the keyword Then the inverse relationship for R is the set of pairs with the components 
S e t  and angle brackets around the type T .  o 



CHAPTER 4. OTHER DATA MODELS 4.2. INTRODUCTION TO ODL 141 

1. If we have a many-many relationship between classes C and D, then in 
1) c l ass  Movie C class C the type of the relationship is Set<D>, and in class D the type is 
2) attr ibute s t r ing  t i t l e ;  
3) at tr ibute integer year; 
4) at t r ibute integer length; 2. If the relationship is many-one from C to D,  then the type of the rela- 

5) attr ibute enum F i l m  {color,black~ndWhite~ filmType; tionship in C is just D, while the type of the relationship in D is Set<C>. 
6) relat ionship Set<Star> s ta rs  

inverse Star::starredIn; 3. If the relationship is many-one from D to C,  then the roles of C and D 

7) relat ionship Studio ownedBy are reversed in (2) above. 

inverse Studio::owns; 4. If the relationship is one-one, then the type of the relationship in C is just 
1; D, and in D it is just C. 

8) c l ass  Star C Note, that as in the E/R model, we allow a many-one or one-one relationship 
9) at t r ibute s t r ing  name; to include the case where for some objects the "one" is actually "none." For 

10) at t r ibute Struct Addr instance, a many-one relationship from C to D might have a missing or "null" 
(s t r ing s t r ee t ,  s t r ing  c i t y )  address; value of the relationship in some of the C objects. Of course, since a D object 

11) relat ionship Set<Movie> starredIn could be associated with any set of C objects, it is also permissible for that set 
inverse Movie::stars; to be empty for some D objects. 

3 ;  
Example 4.6 : In Fig. 4.3 we have the declaration of three classes, Movie, Star, 

12) c l ass  Studio i and Studio. The first two of these have already been introduced in Examples 

13) attr ibute s t r ing  name; 4.2 and 4.3. ?Ve also discussed the relationship pair s ta rs  and starredIn. 

14) at tr ibute s t r ing address; Since each of their types uses Set ,  we see that this pair  represent.^ a many- 

15) re la t ionship Set<Movie> owns many relationship between Star and Movie. 

inverse Movie::ownedBy; Studio objects have attributes name and address; these appear in lines (13) 

1;  and (14). Notice that the type of addresses here is a string, rather than a 
structure as was used for the address attribute of class Star on line (10). 
There is nothing wrong with using attributes of the same name but different 

Figure 4.3: Some ODL classes and their relationships types in different classes. 
In line (7) we see a relationship ownedBy from movies to studios. Since the 

DIC 
type of the relationship is Studio, and not Set<Studio>, we are declaring that 
for each movie there is one studio that owns it. The inverse of this relationship 
is found on line (15). There we see the relationship owns from studios to movies. 
The type of this relationship is Set<Movie>, indicating that each studio o~vns a 
set of movies-perhaps 0, perhaps 1, or perhaps a large number of movies. 

Notice that this rule works even if C and D are the same class. There are some 4.2.7 Methods in ODL 
relationships that logically run from a class to itself, such as "child of" from 
the class "Persons" to itself. The third kind of property of ODL classes is the method. As in other object- 

oriented languages, a method is a piece of executable code that may be applied 
to the objects of the class. 

4.2.6 Multiplicity of Relationships In ODL, we can declare the names of the methods associated with a class and 
the input /output types of those methods. These declarations, called signatures, 

Like the binary relationships of the E/R model, a pair of inverse relationships ' ~ c t u a l l ~ ,  the Set could be replaced by another "collection type," such as list or bag, 
in ODL can be classified as either many-many, many-one in either direction, or as discussed in Section 4.2.8. We shall assume all collections are sets in our exposition of 
one-one. The type declarations for the pair of relationships tells us which. relationships, however. 



Why Signatures? 

The value of providing signatures is that when we implement the schema 
in a real programming language, we can check automatically that the 
implementation matches the design as was expressed in the schema. We 
cannot check that the implementation correctly implements the "meaning" 
of the operations, but we can at least check that the input and output 
parameters are of the correct number and of the correct type. 
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Line (8) declares a method 1engthInHours. We might imagine that it pro- 
uces as a return value the length of the movie object to which it is applied, but 

erted from minutes (as in the attribute length) to a floating-point number 
is the equivalent in hours. Note that this method takes no parameters. 
Movie object to which the method is applied is the "hidden" argument, 
it is from this object that a possible implementation of 1engthInHours 

ould obtain the length of the movie in  minute^.^ 
thod 1engthInHours may raise an exception called noLengthFound, Pre- 
ly this exception would be raised if the length attribute of the object 

ue that could not represent a valid length (e.g., a negative number). 

are like function declarations in C or C++ (as opposed to function definitions, 
which are the code to implement the function). The code for a method would 1) c lass  Movie { 
be written in the host language; this code is not part of ODL. 2) a t t r i b u t e  s t r i ng  t i t l e ;  

Declarations of methods appear along with the attributes and relationships 3) a t t r i bu te  integer year; 
in a class declaration. As is normal for object-oriented languages, each method . 4) a t t r i bu te  integer length; 
is associated with a class, and methods are invoked on an object of that class. 5) a t t r i bu te  enumeration(color,blackAndWhite) filmType; 
Thus, the object is a "hidden" argument of the method. This style allows the 6 )  re lat ionship Set<Star> stars 
same method name to be used for several different classes, because the object inverse Star : :s tarredIn;  
upon which the operation is performed determines the particular method meant. 7) re lat ionship Studio ownedBy 
Such a method name is said to be overloaded. inverse Studio::oms; 

The syntax of method declarations is similar to that of function declarations 8) f l o a t  lengthInHours() raises(noLengthF0und); 
in C, with two important additions: 9) void starNames(out Set<Str ing>); 

LO) void otherMovies(in Star ,  out Set<Movie>) 
1. Method parameters are specified to be in, out, or inout, meaning that raises(noSuchStar); 

they are used as input parameters, output parameters, or both, respec- 
tively. The last two types of parameters can be modified by the method; 
i n  parameters cannot be modified. In effect, out and inout parameters 
are passed by reference, while i n  parameters may be passed by value. Figure 4.4: Adding method signatures to the Movie class 
Note that a method may also have a return value, which is a way that a 
result can be produced by a method other than by assigning a value to In line (9) we see another method signature, for a method called starNames. 
an out or inout parameter. This method has no return value but has an output parameter whose type is a 

set of strings. We presume that the value of the output paramet,er is computed 
2. Methods may raise ezceptions, which are special responses that are out- by starNames to be the set of strings that are the values of the attribute name 

side the normal parameter-passing and return-value mechanisms by which for the stars of the movie to which the method is applied. However, as always 
methods communicate. An exception usually indicates an abnormal or there is no guarantee that t,he method definition behaves in this particular way. 
unexpected condition that will be "handled" by some method that called Finally, at line (10) is a third method, otherMovies. This method has an 
it (perhaps indirectly through a sequence of calls). Division by zero is an input parameter of type Star. A possible implementation of this method is as 
example of a condition that might be treated as an exception. In ODL: a follows. We may suppose that otherMovies expects this star to be one of the 
method declaration can be follo~ved by the keyword ra ises,  followed by stars of the movie; if it is not, then the exception nosuchstar is raised. If it is 
a parenthesized list of one or more exceptions that the method can raise. one of the stars of the movie to which the method is applied, then the output 

parameter, whose type is a set of movies, is given as its value the set of all the 
Example 4.7: In Fig. 4.4 we see an evolution of the definition for class Movie, 

the actual definition of the method 1engthInHours a special term such as self would 
last seen in Fig. 4.3. The methods included with the class declaration are as be used to refer to the object to which the method is appUed. This matter is of no concern 
follows. as far as declarations of method signatures is concerned. 
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other movies of this star. 0 

I Sets, Bags, and Lists 
4.2.8 Types in ODL To understand the distinction between sets, bags, and lists, remember that 

i ODL offers the database designer a type system similar to that found in C or a set has unordered elements, and only one occurrence of each element. A 
i 1 other conventional programming languages. A type system is built from a basis bag allows more than one occurrence of an element, but the elements and 

of types that are defined by themselves and certain recursive rules whereby their occurrences are unordered. A list allows more than one occurrence of 

complex types are built from simpler types. In ODL, the basis consists of: an element, but the occurrences are ordered. Thus, {1,2,1) and {2,1,1) 
are the same bag, but (1,2,1) and (2,1,1) are not the same list. 

1. Atomic types: integer, float, character, character string, boolean, and 
enumerations. The latter are lists of names declared to be abstract values. 
We saw an example of an enumeration in line (5) of Fig. 4.3, where the 
names are color  and blackAndWhite. 

Struct  N {TI FI , T2 F2,. . . , Tn Fn) 

2. Class names, such as Movie, or Star, which represent types that are denotes the type named N whose elements are structures with n fields. 
actually structures, with components for each of the attributes and rela- The ith field is named F, and has type T,. For example, line (10) of 
tionships of that class. Fig. 4.3 showed a structure type named Addr, with t ~ o  fields. Both fields 

are of type s t r i n g  and have names s t r e e t  and c i t y ,  respectively. 
These basic types are combined into structured types using the follo\ving 

I type constructors: The first five types - set, bag, list, array, and dictionary - are called 
I collection types. There are different rules about which types may be associated 
it 1. Set. If T is any type, then Set<T> denotes the type whose values are finite with attributes and which with relationships. 

" i sets of elements of type T. Examples using the set type-constructor occur 
in lines (6), ( l l ) ,  and (15) of Fig. 4.3. 

$ti The type of a relationship 1s either a class type or a (single use of a) 
?! 2. Bag. If T is any type, then Bag<T> denotes the type whose values are collection type constructor applied to a class type. :/ finite bags or rnultisets of elements of type T. A bag allows an element The type of an attribute is built starting with an atomic type or types. 

to appear more than once. For example, {1,2,1} is a bag but not a set. Class types may also be used, but typically these will be classes that 
because 1 appears more than once. are used as "structures," much as the Addr structure was used in Exam- 

3. List. If T is any type, then L i s t < T >  denotes the type whose values are ple 4.3. We generally prefer to connect classes with relationships, because 
finite lists of zero or more elements of type T. As a special case, the type relationships are two-way, which makes queries about the database easier 
s t r i n g  is a shorthand for the type List<char>. to express. In contrast, we can go from an object to its attributes, but 

not vice-versa. After beginning with atomic or class types. we may then 
4. Array. If T is a type and i is an integer, then Array<T,i> denotes the apply the structure and collection type constructors as we vewsh, as many 

type whose elements are arrays of i elements of type T. For example, times as we wish. 

Array<char, 10> denotes character strings of length 10. 

5. Dictionary. If T and S are types, then Dictionary<T,S> denotes a type Example 4.8: Some of the possible types of attributes are: 
whose values are finite sets of pairs. Each pair consists of a d u e  of the 
key type T and a value of the range type S. The dictionary may not 
contain two pairs with the same key value. Presumably, the dictionary is 
implemented in a way that makes it very efficient, given a value t of the 2. Struct  N {s t r ing f i e l d l ,  in teger f ie ld23 
key type T ,  to find the associated value of the range type S. 

3. List<real>. 
6. Stmctures. If T I ,  T2,. . . , T, are types, and FI, F2,. . . , F,, are names of 

fields, then 4. ArrayCStruct N {s t r ing f i e l d l  , in teger f 1eld23, lo>. 
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Example (1) is an atomic type; (2) is a structure of atomic types, (3) a collection this definition. Each modification can be described by mentioning a line or 
of an atomic type, and (4) a collection of structures built from atomic types. es to be changed and giving the replacement, or by inserting one or more 

N ~ ~ ,  suppose the class names Movie and Star are available basic types. 
Th6n we may construct relationship types such as Movie or Bag<Star>. How- 
ever, the following are illegal as relationship types: a) The type of the attribute commander is changed to be a pair of strings, 

the first of which is the rank and the second of which is the name. 
1. Struct N {Novie f i e l d l ,  Star f ield2).  Relationship t ype  cannot 

involve structures. 
Sister ships are identical ships made from the same plans. We wish to 

2. Set<integer>. Relationship types cannot involve atomic types. represent, for each ship, the set of its sister ships (other than itself). You 

3. Set<Array<Star, lo>>. Relationship types cannot involve two applica- may assume that each ship's sister ships are Ship objects. 

tions of collection types. 

1) c lass  Ship { 
attr ibute str ing name; 

4.2.9 Exercises for Section 4.2 attr ibute integer yearlaunched; 

* Exercise 4.2.1 : In Exercise 2.1.1 was the informal description of a bank data- 
base. Render this design in ODL. 

5) c lass  TG { 
Exercise 4.2.2 : Modify your design of Exercise 4.2.1 in the ways enumerated attr ibute real number; 
in Exercise 2.1.2. Describe the changes; do not write a complete, new schema. attr ibute s t r ing commander; 

relationship Set<Ship> unitsOf 
Exercise 4.2.3: Render the teams-players-fans database of Exercise 2.1.3 in inverse Ship::assignedTo; 
ODL. Why does the complication about sets of team colors, which was men- 
tioned in the original exercise, not present a problem in ODL? 

* ! Exercise 4.2.4 : Suppose we wish to keep a genealogy. We shall have one class, Figure 4.5: An ODL description of ships and task groups 
Person. The information we wish to record about persons includes their name 
(an atbribute) and the following relationships: mother, father, and children. 
Give an ODL design for the Person class. Be sure to indicate the inverses of 
the relationships that, like mother, father, and children, are also relationships Hint: Thiik about the relationship as a set of pairs, as discussed in Sec- 

from Person to itself. Is t,he inverse of the mother relationship the children 
relationship? Khy or why not? Describe each of the relationships and their 
inverses as sets of pairs. 4.3 Additional ODL Concepts . 

! Exercise 4.2.5: Let us add to the design of Exercise 4.2.4 the attribute 
education. The value of this attribute is intended to be a collection of the There are a number of othcr features of ODL that we must learn if wve are to 

degrees obtained by each person, including the name of the degree (e.g., B.S.): ex-press in ODL the things that we can express in the E/R or relational models. 

the school. and the date. This collection of structs could be a set, bag, list, In this section, we shall cover: 

or array. Describe the consequences of each of these four choices. What infor- 1. Representing multiway relationships. Notice that all ODL relationships 
mation could be gained or lost by making each choice? Is the information lost are binary, and we have to go to some lengths to represent 3-way or 
likely to be important in practice? higher arity relationships that are simple to represent in E/R diagrams 

or relations. 
Exercise 4.2.6: En Fig. 4.5 is an ODL definition for the classes Ship and TG 
(task group, a collection of ships). We would like to make some modifications 2. Subclasses and inheritance. 
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3. Keys, which are optional in ODL. m each of these to Contract. For instance, the inverse of theMovie might 
named contractsfor. Itre would then replace line (3) of Fig. 4.6 by 

4. Extents, the set of objects of a given class that exist in a database. These 
are the ODL equivalent of entity sets or relations, and must not be con- 3) relat ionship Movie theMovie 
fused with the class itself, which is a schema. inverse Movie::contractsFor; 

4.3.1 Multiway Relationships in ODL nd add to the declaration of Movie the statement: 

ODL supports only binary relationships. There is a trick, which we introduced relat ionship Set<Contract> contractsFor 

in Section 2.1.7, to replace a multiway relationship by several binary, many-one inverse C0ntract::theMovie; 

relationships. Suppose we have a multiway relationship R among classes or tice that in Movie, the relationship contractsFor gives us a set of contracts, 
entity sets Cl, C2, . . . , C,. We may replace R by a class C and n many-one ce there may be several contracts associated with one movie. Each contract 
binary relationships from C to each of the Ci5s. Each object of class C may be the set is essentially a triple consisting of that movie, a star, and a studio, 
thought of as a tuple t in the relationship set for R. Object t is related, by the us the salary that is paid to the star by the studio for acting in that movie. 
n many-one relationships, to  the objects of the classes Ci that participate in 
the relationship-set tuple t. 

Example 4.9: Let us consider how we would represent in ODL the 3-way 3.2 Subclasses in ODL 
relationship Contracts, whose E/R diag~am was given in Fig. 2.7. We may 
start wid1 the class defiriliions for Novie, Star, and Studio, the three classes Let us recall the discussion of subclasses in the E/R model from Section 2.1.11. 

There is a similar capability in ODL to declare one class C to be a subclass that are related by Contracts, that we saw in Fig. 4.3. 
of another class D. We follow the name C in its declaration with the keyword We must create a class Contract that corresponds to the 3-way relationship 
extends and the name D. Contracts. The three many-one relationships from Contract to the other three 

classes we shall call thenovie, thes tar ,  and thestudio. Figure 4.6 shows the Example 4.10: Recall Example 2.10, where we declared cartoons to be a 
definition of the class Saritract. subclass of movies, with the additional property of a relationship from a cartoon 

t: a set of stars that are its "voices." I r e  can create a subclass Cartoon for 
1) c lass  Contract i hlovie with the ODL declaration: 
2) a t t r i b u t e  integer salary;  
3) re la t ionsh ip  Movie theMovie c lass  Cartoon extends Movie i 

re lat ionship Set<Star> voices; inverse ... ; 
4) re la t ionsh ip  S ta r  thes tar  

inverse ... ; ITe have not indicated the name of the inverse of relationship voices, although 
5) re la t ionsh ip  Studio thestudio technically we must do so. 

inverse . . . ; A subclass inherits all the properties of its superclass. Thus, each cartoon 
1; object has attributes t i t l e ,  year, length, and f ilmType inherited from ~ o v i e  

(recall Fig. 4.3), and it inherits relationships s t a r s  and ownedBy from Movie, 

Figure 4.6: A class Contract to represent the 3-way relationship Contracts in addition to its own relationship voices. 
Also in that esample. we defined a class of murder mysteries with additional 

attribute weapon. There is one attribute of the class Contract, the salary, since that quantity is 
associated with the contract itself, not with any of the three part,icipants. Recall c l ass  MurderMystery extends Movie 
that in Fig. 2.7 we made an analogous decision to place the attribute salary on a t t r i b u t e  s t r ing  weapon; 
the relationship Contracts, rather than on one of the participating entity sets. 
The other properties of Contract objects are the three relationships mentioned. 

Note that we have not named the inverses of these relationships. need is a suitable declaration of this subclass. Again, all t,he properties of movies are 
to modify the declarations of Movie, Star, and Studio to include relationships inherited by MurderMystery. 

\ 

\ 
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4.3.3 Multiple Inheritance in ODL 
sometimes, as in the case of a movie like "Roger Rabbit," we need a class that 
is a subclass of two or more other classes at the same time. In the E/R model, 
n,e were able to imagine that "Roger Rabbit" was represented by components in 
all three of the Movies, Cartoons, and fdurder-Mysren'es entity sets, which were 
connected in an isa-hierarchy. However, a principle of object-oriented systems e ODL standard does not dictate how such conflicts are to be resolved. 
is that objects belong to one and only one class. Thus, to represent movies ome possible approaches to handling conflicts that arise from multiple inheri- 
that are both cartoons and murder mysteries, we need a fourth class for these 
movies. 

The class CartoonMurderMystery must inherit properties from both Car- . Disallow multiple inheritance altogether. This approach is generally re- 
toon and MurderMystery, as suggested by Fig. 4.7. That is, a ~artoonMurder- garded as too limiting. 
Mystery object has all the properties of a Movie object, plus the relationship 
voices and the attribute weapon. . Indicate which of the candidate definitions of the property applies to the 

subclass. For instance, in Example 4.11 we may decide that in a courtroom 
Movie romance we are more interested in whether the movie has a happy or sad 

ending than we are in the verdict of the courtroom trial. In this case, we 
would specify that class Courtroom-Romance inherits attribute ending 

Cartoon MurderMystery 
from superclass Romance, and not from superclass Courtroom. 

3. Give a new name in the subclass for one of the identically named proper- 
ties in the superclasses. For instance, in Example 4.11, if C ~ u r t ~ o ~ ~ - ~ ~ ~ -  

CartoonMurderMyster~ ance inherits attrihute ending from superclass Romance, then we may 
specify that class Courtroom-Romance has an additional attribute called 

Figure 4.7: Diagram showing multiple inheritance verdict,  which is a renaming of the attribute ending inherited from class 
Courtroom. 

In ODL, we may follow the keyword extends by several classes, separated 
by colons.3 Thus, we may declare the fourth class by: 4.3.4 Extents 

c lass  CartoonMurderMystery When an ODL class is part of the database being defined, we need to distinguish 

extends MurderMystery : Cartoon; the class definition itself from the set of objects of that class that exist at a 
given time. The distinction is the same as that between a relation scllema 

When a class C inherits from several classes, there is t,he potential for con- and a relation instance, even though both can be referred to by the name 

fiiets among property names. Two or more of the superclasses of C may have a 
property of the same name, and the types of these properties may differ. Class 
CmoonMurderMystery did not present such a problem, since the only prop- 
erties in common between Cartoon and ~ u r d e r ~ y s t e r y '  are the  ropert ties of In ODL, the distinction is made explicit by giving the class and its eztent, 
Movie, which are the same property in both superclasses of CartoonMurder- or set of existing objects, different names. Thus, the class name is a schema 
Mystery. Here is an example where we are not so lucky. for t,he class, while the extent is the name of the currellt set of objects of that 

class. We provide a name for the extent of a class by follo-~ing the class name 
Example 4.11: Suppose we have subclasses of Movie called Romance and by a parenthesized expression consisting of the keyword extent and the name 
Courtroom. Further suppose that each of these subclasses has an attribute chosen for the extent. 
called ending. h class Romance, attribute ending draws its'values from the 

3Technically, the second and subsequent names must be "interfaces," rather than classes. 
Example 4.12 : In general, we find it a useful convention to name classes by a 

Roughly, an interface in ODL is a class definition without an associated set of objects, or singular noun and name the corresponding extent by the same noun in plural. 
' 'e~tent.~ We discuss the distinction further in Section 4.3.4. Following this convention, we could call the extent for class Movie by the name 
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tributes forming keys. If there is more than one attribute in a key, the 
Interfaces of attributes must be surrounded by parentheses. The key declaration itself 

ears, along with the extent declaration, inside parentheses that may follow 
ODL provides for the definition of interfaces, which are essentially class name of the class itself in the first line of its declaration. 
definitions with no associated extent (and therefore, with no associated 
objects). We first mentioned interfaces in Section 4.3.3, where we pointed mple 4.13 : To declare that the set of two attributes t i t l e  and year form 
out that they could support inheritance by one class from several classes. y for class Movie, we could begin its declaration: 
Interfaces also are useful if we have several classes that have different 
extents, but the same properties; the situation is analogous to several c lass  Movie 

relations that have the same schema but different sets of tuples. (extent Movies key ( t i t l e ,  year)) 

If we define an interface I, we can then define several classes that 
inherit their properties from I. Each of those classes has a distinct extent, a t t r i b u t e  s t r i ng  t i t l e ;  

so we can maintain in our database several sets of objects that have the 
. . . 

same type, yet belong to distinct classes. could have used keys in place of key, even though only one key is declared. 
Similarly, if name is a key for class Star, then we could begin its declaration: 

c l ass  S ta r  
Movies. To declare this name for the extent, we would begin the declaration of (extent S tars  key name) 
class Movie by: 

a t t r i b u t e  s t r i n g  name; 
c lass  Movie (extent Movies) 1 . . .  

a t t r i b u t e  s t r i ng  t i t l e ;  
. . . 

As we sliall see when we study the query language OQL that is designed for It is possible that several sets of attributes are keys. If so, then following 
querying ODL data, we refer to the extent Movies, not to the class Movie, when the word key(s) we may place several keys separated by commas. As usual, a 
we want to examine the movies currently stored in our database. Remember key that consists of more than one attribute must have parentheses around the 
that the choice of a name for the extent of a class is entirely arbitrary, although list of its attributes, so we can disambiguate a key of several attributes from 
we shall follow the "make it plural" convention in this book. 0 several keys of one attribute each. 

Example 4.14 : As an example of a situation where it is appropriate to have 
more than one key, consider a class Employee, whose complete set of attributes 

4.3.5 Declaring Keys in ODL and relationships we shall not describe here. However, suppose that two of its 
attributes are empID, the employee ID, and ssNo, the Social Security number. 

ODL differs from the other models studied so far in that the declaration and Then we can declare each of these attributes to be a key by itself with 
use of keys is optional. That is, in the E/R model, entity sets need keys to 
distinguish members of the entity set from one another. In the relational model, c lass  Employee 
where relations are sets, all attributes together form a key unless some proper (extent Employees key empID, ssNo) 
subset of the attributes for a given relat.ion can serve as a key. Either way, there . . . 
must be a t  least one key for a relation. 

However, objects have a unique object identity, as we discussed in Sec- 
Because there are no parentheses around the list of attributes, ODL interprets 

tion 4.1.3. Consequently, in ODL, the declaration of a key or keys is optional. 
the above as saying that each of the two attributes is a key by itself. If we put 

It is entirely appropriate for there to be several objects of a class that are in- 
parentheses around the list (empID, ssNo) , then ODL would interpret the two 

distinguishable by any properties i e  can observe; the system still keeps them 
attributes together as forming one key. That is, the implication of writing 

distinct by their internal object identity. class Employee 
In ODL we may declare one or more attributes to be a key for a class by using (extent Employees key (empID, ssNo)) 

the keyword key or keys (it doesn't matter which) followed by the attribute . . . 
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6 Exercises for Section 4.3 

attributes. .P 

The ODL standard also allows properties other than attributes to appear se  4.3.2: Add suitable extents and keys to your ODL schema from 

in keys. There is no fundamental problem with a method or relationship being 
declared a key or part of a key, since keys are advisory statements that the ercise 4.3.3: Suppose we wish to modify the ODL declarations of Exer- DBMS can take advantage of or not, as it wishes. For instance, one could 
declare a method to be a key, meaning that on distinct objects of the class the 
method is guaranteed to return distinct values. ople who are parents. In addition, we want the relationships mother, 

When we allow many-one relationships to appear in key declarations, we er, and children to run between the smallest classes for which all pos- 
can get an effect similar to that of weak entity sets in the E/R model. We can 
declare that the object O1 referred to by an object O2 on the "many" side of the 
relationship, perhaps together with other properties of 0 2  that are included in 
the key, is unique for different objects 02. However, we should remember that 
there is no requirement that classes have keys; we are never obliged to handle, 
in some special way, classes that lack attributes of their own to form a key, as ' 
we did for weak entity sets. Exercise 4.3.5: In Exercise 2.4.4 we saw two examples of situations where 

weak entity sets were essential. Render these databases in ODL, including 
Example 4.15: Let us review the example of a weak entity set Crews in declarations for extents and suitable keys. 
Fig. 2.20. Recall that we hypothesized that crews were identified by their 
number, and the studio for which they worked, although two studios might Exercise 4.3.6: Give an ODL design for the registrar's database described in 
have crews with the same number. We might declare the class Crew as in 
Fig. 4.8. Note that we need to modify the declaration of Studio to include the 
relationship crewsOf that is an inverse to the relationship unitof in Crew; we 
omit this change. 4.4 From ODL Designs to Relational Designs 

While the E/R model is intended to be converted into a model such as the 

class Crew relational model when we implement the design as an actual database, ODL 
(extent C r e w s  key (number, unit0f)) was originally intended to be used as the specification language for real, object- 

oriented DBMS's. However ODL, like all object-oriented design systems, can 

a t t r i bu te  integer number; also be used for preliminary design and converted to relations prior to imple- 
re lat ionship Studio unitof mentation. In this section we shall consider how to convert ODL designs into 

inverse Studio::crewsOf; relational designs. The process is similar in many ways to  what we introduced 
in Section 3.2 for converting E/R diagrams to relational database schemas. Yet 
some new problems arise for ODL, including: 

Figure 4.8: A ODL declaration for crews 1. Entity sets must have keys, but there is no such guarantee for ODL classes. 
Therefore, in some situations we must in~ent  a new attribute to serve as 
a key when Fe construct a relation for the class. 

What this key declaration asserts is that there cannot be two crews that 
both have the same value for the number attribute and are related to the same 2. While n-e have required E/R attributes and relational attributes to be 
studio by unitof. Notice how this assertion resembles the implication of the atomic, there is no such constraint for ODL attributes. The conversion 
E/R diagram in Fig. 2.20, which is that the number of a crew and the name of of attributes that have collection types to relations is tricky and ad-hoc, 
the related studio (i.e., the key for studios) uniquely determine a crew entity. often resulting in unnormalized relations that must be redesigned by the 

techniques of Section 3.6. 
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3. ODL allows us to  specify methods as part of a design, but there is no .2 Nonatomic Attributes in Classes 
simple way to convert methods directly into a relational schema. We 
shall visit the issue of methods in relational schemas in Section 4.5.5 and fortunately, even when a class' properties are all attributes we may have 

again in Chapter 9 covering the SQG99 standard. For now, let us assume me difficulty converting the class to a relation. The reason is that attributes 

that any ODL design we wish to convert into a relational design does not ODL can have complex types such as structures, sets, bags, or lists. On the 

include methods. her hand, a fundamental principle of the relational model is that a relation's 
tributes have an atomic type, such as numbers and strings. Thus, are must 

nd some way of representing nonatomic attribute types as relations. 
4.4.1 &om ODL Attributes to Relational Attributes Record structures whose fields are themselves atomic are the easiest to han- 

As a starting point, let us assume that our goal is to have one relation for each 
class and for that relation to have one attribute for each property. We shall see 
many ways in which this approach must be modified, but for the moment, let 
us consider the simplest possible case, where we can indeed convert classes to 
relations and properties to attributes. The restrictions we assume are: 

c lass  Star (extent Stars) { 
1. All properties of the class are attributes (not relationships or methods). at t r ibute s t r ing name; 

attr ibute Struct Addr 
2. The types of the attributes are atomic (not structures or sets). {string s t ree t ,  s t r ing c i t y )  address; 

Example 4.16: Figure 4.9 is an exampIe of such a class. There are b u r  
attributes and no other properties. These attributes each have an atomic type; 
t i t l e  is a string, year and length are integers, and f ilmType is an enumeration Figure 4.10: Class with a struct,ured attribute 
of two values. 

class Movie (extent Movies) { Example 4.17 : In Fig. 4.10 is a declaration for class Star, with only attributes 

attr ibute s t r ing t i t l e ;  as properties. The attribute name is atomic, but attribute address is a structure 

attr ibute integer year; with two fields, street  and c i t y .  Thus, we can represent this class by a 

attr ibute integer length; relation with three attributes. The first attribute, name, corresponds to the 

attr ibute enum Film {color,blackAndWhite) filmType; ODL attribute of the same name. The second and third attributes we shall call 
s t ree t  and ci ty ;  they correspond to the two fields of the address struct,ure 
and together represent an address. Thus, the schema for our relation is 

Figure 4.9: Attributes of t,he class Movie Stars(name, s t ree t ,  c i t y )  

We create a relation with the same name as the extent of the class, Movies Figure 4.11 shows some typical tuples of this relation. 0 

in this case. The relation has four attributes, one for each attribute of the 
class. The names of the relational attributes can be the same as the names of 
the corresponding class attributes. Thus, the schema for this relation is name street city 

Carrie Fisher 123 Maple St .  Hollywood 
Movies(tit le, year, length, f ilmType) Mark Hamill 456 Oak Rd. Brentwood 

Harrison Ford 789 Palm Dr. Beverly H i l l s  
For each object in the extent Movies, there is one tuple in the relation 

Movies. This tuple has a component for each of the four attributes, and the 
value of each component is the same as the value of the corresponding attribute Figure 4.11: A relation representing stars 
of the object. 0 
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4.4.3 Representing Set-Valued Attributes 
However, record structures are not the most complex kind of attribute that can 
appear in ODL class definitions. Values can also be built using type constructors 
Set, Bag, List,  Array, and Dictionary from Section 4.2.8. Each presents its 
own problems when migrating to the relational model. We shall only discuss 
the Set constructor, which is the most common, in detail. 

One approach to representing a set of values for an attribute A is to make 
one tuple for each value. That tuple includes the appropriate values for all the 
other attributes besides A. Let us first see an example where this approach 
works well, and then we shall see a pitfall. 

c lass Star  (extent Stars)  1 
at t r ibu te  s t r i ng  name; 
a t t r ibu te  Set< 

Struct Addr {str ing s t r e e t ,  s t r i ng  city) 
> address; 

1; 

Figure 4.12: Stars with a set of addresses 

Example 4.18: Suppose that class Star  were defined so that for each star 
we could record a set of addresses, as in Fig. 4.12. Suppose next that Carrie 
Fisher also has a beach home, but the other two stars mentioned in Fig. 4.11 
each have only one home. Then ure may create two tuples with name attribute 
equal to "Carrie Fisher", as shown in Fig. 4.13. Other tuples remain as they 
were in Fig. 4.11. 

name I street ( city 
Carrie Fisher 1 123 Maple St .  1 Hollywood 
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It seems that the relational model puts obstacles in our way, while ODL 
is more flexible in allowing structured values as properties. One might be 
tempted to dismiss the relational model altogether or regard it as a prim- 
itive concept that has been superseded by more elegant "object-orientedn 
approaches such as ODL. Howvever, the reality is that database systems 
based on the relational model are dominant in the marketplace. One 
of the reasons is that the simplicity of the model makes possible powerful 
programming languages for querying databases, especially SQL (see Chap- 
ter 6), the standard language used in most of today's database systems. 

c lass S ta r  (extent Stars) ( 
a t t r i b u t e  s t r i ng  name; 
a t t r i b u t e  Set< 

Struct Addr {st r ing s t r e e t ,  s t r i n g  c i ty)  
> address; 

a t t r i b u t e  Date bir thdate;  

Figure 4.14: Stars with a set of addresses and a birthdate 

Example 4.19 : Suppose that we add birthdate as an attribute in the defi- 
nition of the Star  class; that is, we use the definition shown in Fig. 4.14. We 
have added to Fig. 4.12 the attribute birthdate of type Date, which is one 
of ODL's atomic types. The bi r thdate attribut.e can be an attribute of the 
Stars  relation, whose schema now becomes: 

Stars(name, s t r e e t ,  c i t y ,  birthdate) 

Let us make another change to the data of Fig. 4.13. Since a set of addresses 
can be empty, let us assume that Harrison Ford has no address in the database. 
Then the revised relation is shown in Fig. 4.15. Two bad things have happened: 

Figure 4.13: Allorving a set of addresses 1. Carrie Fisher's birthdate has been repeated in each tuple, causing redun- 
dancy. Xote that her name is also repeated, but that repetition is not 

Unfortunately, this technique of replacing objects with one or more set- true redundancy, because without the name appearing in each tuple we 

valued attributes by collections of tuples, one for each combination of values for could not know that both addresses were associated with Carrie Fisher. 

these attributes, can lead to unnormalized relations, of the type discussed in 2. Because Harrison Ford has an empty set of addresses, we have lost all 
Section 3.6. In fact, even one set-valued attribute can lead to a BCNF violation, information about him. This situation is an example of a deletion anomaly 
as the next example shows. that we discussed in Section 3.6.1. 
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name I street I city 1 birthdate 
Carr ie Fisher 1 123 Maple S t .  I Hollyuood 1 9/9/99 
Carr ie Fisher 5 Locust Ln. Malibu 9/9/99 
Mark Hamill I 456 Oak Rd. I Brentvood I 8/8/88 

Figure 4.15: Adding birthdates 

Although name is a key for the class Star, our need to have several tuples 
for one star to represent all their addresses means that name is not a key for 
the relation Stars. In fact, the key for that relation is {name, s t r e e t ,  ci ty).  
Thus, the i,. ,: tional dependency 

i. ~e -+ bir thdate 

is a BCNF violation. This fact explains why the anomalies mentioned above 
are able to occur. 0 

There are several options regarding how to handle set-valued attributes that 
appear in a class declaration along with other attributes, set-valued or not. 
First, we may simply place all attributes, set-valued or not, in the schema for 
the relation, then use the normalization techniques of Sections 3.6 and 3.7 to 
eliminate the resulting BCNF and 4NF violations. Notice that a set-valued at- 
tribute in conjunction with a single-valued attribute leads to a BNCF violation, 
as in Example 4.19. Two set-valued attributes in the same class declaration will 
lead to a 4NF violation. 

The second approach is to  separate out each set-valued attribute as if it 
were a many-many relationship between the objects of the class and the values 
that appear in the sets. %'e shall discuss this approach for relationships in 
Section 4.4.5. 

4.4.4 Representing Other Type Constructors 

Besides record structures and sets, an ODL class definition could use Bag, L is t ,  
Array, or Dictionary to construct values. To represent a bag (multiset), in 
which a single object can be a member of the bag n times, we cannot simply 
introduce into a relation n identical tuples.4 Instead, we could add to the 
relation schema another attribute count representing the number of times that 
each t t .cnt is a member of the bag. For instance, suppose that address 
in F;l 4.1- sere a bag instead of a set. We could say that 123 Maple St., 

4 T ~  be precist. we cannot introduce identical tuples into relations of the abstract relational 
model described ln Chapter 3. However, SQL-based relational DBMS's do allow duplicate 
tuples; i.e., relations are bags rather than sets in SQL. See Sections 5.3 and 6.4. If queries 
are likely to ask for tuple counts, we advise using a scheme such as that described here, even 
if your DBMS allows duplicate tuples. 

.4. FROM ODL DESIGNS TO RELATIONAL DESIGNS 161 

Hollywood is Carrie Fisher's address twice and 5 Locust Ln., Malibu is her 
address 3 times (whatever that may mean) by 

name I street I city I count 
Carrie Fisher 1 123 Maple S t .  I Hollywood 1 2  
Carrie Fisher 1 5 Locust Ln. I Malibu 1 3 

A list of addresses could be represented by a new attribute posit ion, in- 
icating the position in the list. For instance, we could show Carrie Fisher's 
ddresses as a list, with Hollywood first, by: 

name street city 1 position 
Carrie Fisher 123 Maple S t .  Hollywood 1 1 

F Carrie Fisher 1 5 Locust Ln. I Malibu 1 2 
$ 
!; A fixed-length array of addresses could be represented by attributes for 

each position in the array. For instance, if address were to be an array of two 
$, street-city structures, we could represent Star objects as: 
t. 

name I street1 1 city1 I street2 I ~itwf? --- I ir- 

Carrie Fisher ] 123 Maple St. I Hollywood 1 5 Locust Ln. I Malibu 

Finally, a dictionary could be represented as a set, but with attributes for 
both the key-value and range-value components of the pairs that are members of 
the dictionary. For instance, suppose that instead of star's addresses, we really 
wanted to keep, for each star, a dictionary giving the mortgage holder for each 
of their homes. Then the dictionary would have address as the key value and 
bank name as the range vdue. A hypothetical rendering of the Carrie-Fisher 
object with a dictionary attribute is: 

name I street 1 city I mortgage-holder 
Carrie Fisher 1 123 Maple St .  I Hollywood I Bank of Burbank 
Carr ie Fisher 1 5 Locust Ln. I Malibu I Torrance Trust 

Of course attribute types in ODL may involve more than one type construc- 
tor. If a type is any collection type besides dictionary applied to a structure 
(e.g., a set of structs), then we may apply the techniques from Sections 4.4.3 or 
4.4.4 as if the struct were an atomic value, and then replace the single attribute 
representing the atomic value by several attributes, one for each field of the 
struct. This strategy was used in the examples abo~e,  where the address is 
a struct. The case of a dictionary applied to structs is similar and left as an 
exercise. 

There are many reasons to limit the complexity of attribute types to an 
optional struct followed by an optional collection type. We mentioned in See- 
tion 2.1.1 that some versions of the E/R model allow exactly this much gen- 
erality in the types of attributes, although we restricted ourselves to atomic 
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Utes in the E/R model. We recommend that, if you are going to use an StudioOf ( t i t l e ,  year, studioName) 
design for the purpose of eventual translation to a relational database typical tuples that would be in this relation are: 

4.4.5 Representing ODL Relationships 

Usually, an ODL class definition will contain relationships to other ODL classes. 
As in the E/R model, 'we can create for each relationship a new relation that 
connects the keys of the two related classes. However, in ODL, relationships 
come in inverse pairs, and we must create only one relation for each pair. 

c lass  Movie 
(extent Movies key ( t i t l e ,  year)) 

a t t r i bu te  s t r i ng  t i t l e ;  
a t t r i bu te  integer year; 
a t t r i bu te  integer length; 
a t t r i bu te  enum Film {color,blackAndWhite> filmType; 
re lat ionship Set<Star> stars Movies(t i t le, year, length, filmType, studiolame) 

inverse Star::starredIn; and some typical tuples for this relation are: 
re lat ionship Studio ownedBy 

inverse Studio::ouns; year length f i lmape studzoName 
1 ; Star  Wars 1977 124 color Fox 

Mighty Ducks 1991 104 color Disney 
c lass Studio Wayne's World 1992 95 color Paramount 

(extent Studios key name) 
I Note that t i t l e  and year, the key for the Movie class, is also a key for relation 

a t t r i bu te  s t r i ng  name ; Movies, since each movie has a unique length, film type, and owning studio. 

a t t r i bu te  s t r i ng  address; 
re lat ionship Set<Movie> owns We should remember that it is possible but unwise to treat many-many 

inverse Movie::ownedBy; relationships as we did many-one relationships in Example 4.21. In fact, Ex- 
1 ;  ample 3.6 in Section 3.2.3 w a s  based on what happens if we try to combine the 

many-many stars relationship betnven movies and their stars with the other 

Figure 4.16: The complete definition of the Movie and Studio classes information in the relation Movies to get a relation with schema: 

Movies(t i t le, year, length, filmType, studioName, starName) 

Example 4.20: Consider the declarations of the classes Movie and Studio, There is a resulting BCNF violation, since { t i t l e ,  year, starName) is the 
which we repeat in Fig. 4.16. We see that t i t l e  and year form the key for key, yet attributes length, f ilmType, and studioName each are functionally 
Movie and name is a key for class Studio. We may create a relation for the pair determined by only t i t l e  and year. 
of relationships owns and ownedBy. The relation needs a name, which can be Likewise, if we do combine a many-one relationship with the relation for a 
arbitrary; we shall pick StudioOf as the name. The schema for StudioOf has class, it must be the class of the "many." For instance, combining owns and 
attributes for the key of Movie, that is, t i t l e  and year, and an attribute that its inverse ownedBy with relation Studios will lead to a BCXF violation (see 
we shall call studioName for the key of Studio. This relation schema is thus: 
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4.4.6 What 1f There IS NO Key? ! Exercise 4.4.3 : Consider an attribute of type dictionary with key and range 

Since keys are optional in ODL, we may face a situation where the attributes types both structs of atomic types. Show how to convert a class with an at- 

available to us cannot serve to represent objects of a class C uniquely. That tribute of this type to a relation. 

situation can be a problem if the class C participates in one or more relation- * Exercise 4.4.4 : Jt7e claimed that if you combine the relation for class Studio, 
ships. as defined in Fig. 4.16; with the relation for the relationship pair owns and 

1% recommend creating a new attribute or "certificate" that can sen7e as ownedBy. then there is a BCNF violation. Do the combination and show that 
an identifier for objects of class C in relational designs, much as the hidden there is, in fact, a BCXF violation. 
object-ID serves to identify those objects in an object-oriented system. The 
certificate becomes an additional attribute of the relation for the class C, as Exercise 4.4.5 : \ire mentioned that when attributes are of a type more com- 
well as representing objects of class C in each of the relations that come from plex than a collection of structs, it becomes tricky to convert them to relations; 
relationships involving class C. Notice that in practice, many important classes in particular, it becomes necessary to create some intermediate concepts and re- 
are represented by such certificates: university ID'S for students, driver's-license lations for them. The following sequence of questions will examine increasingly 
numbers for drivers, and so on. more complex types and how to represent them as relations. 

Example 4.22 : Suppose we accept that names are not a reliable key for movie * a) A card can be represented as a struct with fields rank (2,3,. . . , lo ,  Jack, 
stars, and we decide instead to adopt a "certificate number" to be assigned to Queen, Icing, and Ace) and s u i t  (Clubs, Diamonds, Hearts, and Spades). 
each star as a way of identifying them uniquely. Then the Stars relation would Give a suitable definition of a structured type Card. This definition should 
have schema: be independent of any class declarations but available to them all. 

Stars(cert#,  n a w ,  s t r ee t ,  c i t y ,  birthdate) * b) A hand is a set of cards. The number of cards may vary. Give a declaration 
of a class Hand whose objects are hands. That is, this class declaration 

If we wish to i. (-sent the many-iii,i.:~:\. relationship between movies and their 
has an attribute theHand, whose type is a hand. 

stars by a rc.! ... on StarsIn, u-e can use the t i t l e  and year attributes from 
Movie and I.:., t crtificate to represent stars, giving us a relation with schema: *! c) Con\-ert your class declaration Hand from (b) to a relation schema. 

Stars In ( t i t l e ,  year, cert#) d) A poker hard is a set of five cards. Repeat (b) and (c)  for poker hands. 

0 *! e) A deal is a set of pairs, each pair consisting of the name of a player and a 
hand for that player. Declare a class Deal, whose objects are deals. That 

4.4.7 Exercises for Section 4.4 is, this class declaration has an attribute theDeal, whose type is a deal. 

Exercise 4.4.1: Convert your ODL designs from the following exercises to f) Reprat (e): but restrict hands of a deal to be hands of exactly five cards. 

relational database schema. g) Repeat (e). using a dictionary for a deal. You may assume the names of 

* a) Exercise 4.2.1. players in a deal are unique. 

b) Exercise 4.2.2 (include all four of the modifications specified by that ex- *!! h) Convert your class declaration from (e) to a relational database schema. 

ercise). *! i) Suppose we d~ f i~ led  deals to be sets of sets of cards, ~vith no player as- 

c) Exercise 4.2.3. sociated ~ ~ i t l i  each hand (set of cards). It is proposed that we represent 
such deals by a relation schema 

* d) Esercise 4.2.4. 

e) Es(,rcise 4.2.5. Deals(dealID, card) 

Exercise 4.4.2: Convert the ODL description of Fig. 4.5 to a relational data- meaning that the card was a member of one of the hands in the deal with 
base schema. How does each of the three modifications of Exercise 4.2,6 affect the given ID. \That, if anything, is wrong with this representation? How 
your relational schema? ~vould you fix the problem'? 

\\ 
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Exercise 4.4.6 : Suppose we have a class C defined by 

c lass  C (key a) C 
a t t r i bu te  s t r i n g  a ;  
a t t r i bu te  T b; 

3 

where T is some type. Give the relation schema for the relation derived from 
C and indicate its key attributes if T is: 

a) SetcStruct S {s t r ing  f ,  s t r i ng  g)> 

*! b) BagcStruct S ( s t r i ng  f ,  s t r i ng  g}> 

! c) List<Struct S {st r ing f ,  s t r i n g  g}> 

! d) Dictionary<Struct K {s t r ing  f ,  s t r ing  g}, Struct R {s t r ing i ,  . 
s t r i ng  j)> 

4.5 The Object-Relational Model 
The relational model and the object-oriented model typified by ODL are tn.0 
important points in a spectrum of options that could underlie a DBXIS. For an 
extended period, the relational model was dominant i11 the commercial DBXS 
world. Object-oriented DBMS's made limited inroads during the 1990's. but 
have since died off. Instead of a migration from relational to object-oriented 
systems, as was uidely predicted around 1990. the vendors of relational systems 
have moved to incorporate many of the ideas found in ODL or other object- 
oriented-database proposals. As a result, many DBMS products that used to 
be called "relational" are now called "object-relational." 

In Chapter9 we shall meet the new SQL standard for object-relational data- 
bases. In this chapter, we cover the topic more a1,stractly. \Ye introduce 
the concept of object-relations in Section 4.2.1, then discuss one of its earliest 
embodiments - nested relations - in Section 4.5.2. ODL-like references for 
object-relations are discussed in Section 4.5.3, and in Section 4.5.1 we compare 
the object-relational model against the pure object-oriented approach. 

4.5.1 From Relatioils to Object-Relations 

IVhile thr relation remains the fundamental conccpt, the relational illode1 has 
been extended to the object-relationul model bv illcorporation of features such 
as: 

1. Structured types for attributes. Instead of allowing only atomic types for 
attributes, object-relational systems support a type system like ODL's: 
types built from atomic types and type constructors for structs. sets. and 
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bags, for instance. Especially important is a type that is a set5 of structs, 
which is essentially a relation. That is, a value of one component of a 
tuple can be an entire relation. 

2. Methods. Special operations can be defined for, and applied to, values 
of a user-defined type. While we haven't yet addressed the question of 
how values or tuples are manipulated in the relational or object-oriented 
models, we shall find few surprises when we take up the subject beginning 
in Chapter 3. For example, values of numeric type are operated on by 
arithmetic operators such as addition or less-than. However, in the object- 
relational model, we have the option to define specialized operations for 
a type, such as those discussed in Example 4.7 on ODL methods for the 
Movie class. 

3. Identifiers for tuples. In object-relational systems, tuples play the role of 
objects. It therefore becomes useful in some situations for each tuple to 
have a unique ID that distinguishes it from other tuples, even from tuples 
that have the same values in all components. This ID, like the object- 
identifier assumed in ODL, is generally invisible to the user, although 
there are even some circumstances where users can see the identifier for 
a tuple in an object-relational system. 

4. References. While the pure relational model has no notion of references 
or pointers to tuples, object-relational systems can use these references in 
various Tvays. 

In the next sections, we shall elaborate and illustrate each of these additional 
capabilities of object-relational systems. 

4.5.2 Nested Relations 

Relations extended by point (1) above are often called "nested relations.'' In 
the nested-relational model, we allow attributes of relations to haye a type that 
is not atomic: in particular. a type can be a relation schema. As a result, there 
is a convenient, recursive definition of the types of attributes and the types 
(schemas) of relations: 

BASIS: An atomic type (integer, real. string. etc.) can be the type of an 
attribute. 

INDUCTION: -1 relation's type can be any schemn consisting of names for one 
or more attributes. and any legal type for each attribute. In addition. a schema 
can also be the type of any attribute. 

In our discussio~~ of the relational model, we did not specify the particular 
atomic type associated with each attribute, because the distinctions among 

'Strictly speaking, a bag rather than a set, since commercial relational DB?rIS's prefer to 
support relations with duplicate tuples, i.e. bags, rather than sets. 
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integers, reals, strings, and SO on had little to do with the issues discussed, 
such as functional dependencies and normalization. We shall continue to avoid 
this distinction, but when describing the schema of a nested relation, we must 
indicate which attributes have relation schemas as types. To do so, we shall 
treat these attributes as if they were the names of relations and follow them 
by a parenthesized list of their attributes. Those attributes, in turn, may haye 
associated lists of attributes, down for as many levels as we wish. 

Example 4.23: Let us design a nested relation schema for stars that incor- 
porates within the relation an attribute movies, which will be a relation rep- 
resenting all the movies in which the star has appeared. The relation schema 
for attribute movies will include the title, year, and length of the movie. The 
re1atio:i schem? +r the relation Stars mill include the name, address, and birth- 
date, as well a:, :e information found in movies. Additionally, the address 
attribute will have a relation type with attributes street and city. We can 
record in this relation several addresses for the star. The schema for Stars can 
be written: 

Stars(name, address(street, city), birthdate, 
movies(title, y .>r , length)) 

An exampl(s F a possible relation for nested relation Stars is shown in 
Fig. 4.17. We srv in this relation two tuples, one for Carrie Fisher and one 
for Mark Warnill. The valucs of components are abbreviated to conserve space, 
and the dashed lines separating tuples are only for convenience and have no 
notational significance. 

riame address birthdate rnovies 
I I I 

street city 9 / 9 / 9  9 1 Fisher 1 
r:-% 

1 rifle 1 year 1 ~ ~ r ~ ~ ~ j  1 
Star Wars 1977 124 

. - - - - - - - - - - - - - - - - - -  mi 
Star Wars 1977 124 - - - - - - - - - - - -  - - -  
Empire 1980 127 - - - - - - - - - - - -  - - -  
Return 1983 133 

Figure 4.17: A nested relation for stars and their movies 
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attributes, street and city, and there are two tuples, corresponding to her 
two houses. Next comes the birthdate, another atomic value. Finally, there is a 
component for the movies attribute; this attribute has a relation schema as its 
type, with components for the title, year, and length of a movie. The relation 
for the movies component of the Carrie Fisher tuple has tuples for her three 
best-known movies. 

The second tuple, for Mark Hamill, has the same components. His relation 
for address has only one tuple, because in our imaginary data, he has only 
one house. His relation for movies looks just like Carrie Fisher's because their 
best-known movies happen, by coincidence, to be the same. Note that these 
two relations are two different tuple-components. These components happen to 
be identical, just like two components that happened to have the same integer 
value, e.g., 124. 0 

4.5.3 References 

The fact that movies like Star Wars will appear in several relations that are 
values of the movies attribute in the nested relation Stars is a cause of redun- 
dancy. In effect, the schema of Example 4.23 has the nested-relation analog of 
not being in BCNF. However, decomposing this Stars relation will not elimi- 
nate the redundancy. Rather, we need to arrange that among all the tuples of 
all the movies relations, a movie appears only once. 

To cure the problem, object-relations need the ability for one tuple t to refer 
to another tuple s: rather than incorporating s directly in t .  lye thus add to 
our model an additional inductive rule: the type of an attribute can also be a 
reference to a tuple with a given schema. 

If an attribute .I has a type that is a reference to a single tuple with a 
relation schema named R, we show the attribute d in a schema as ,-l(*R). 
Xotice that this situation is analogous to an ODL relationship .4 whose type is 
R; i.e., it connects to a single object of type R. Similarly, if an attribute .4 has 
a type that is a set of references to tuples of schema R. then .-I will be shown 
in a schema as A({*R)). This situation resembles an ODL relationship .A that 
has type Set<R>. 

Examp le  4.24: An appropriate way to fix the redundancy- in Fig. 4.17 is 
to use t~vo relations. one for stars and one For movies. The relation Movies 
will be an ordinary relation ~vith the same schema as the attribute movies in 
Example 4.23. The relation Stars xvill have a schema similar to the nested 
relation Stars of that example. but the movies attribute will have a type that 
is a set of references to Movies tuples. The schemas of the tn-o relations are 
thus: 

Movies (title, year, length) 
\ In the Carrie Fisher tuple, we see her name. an atomic value, follo~ved Stars (name, address (street, city), birthdate, 
3p a relation for the value of the address component. That relation has two movies(i*Movies3> 1 . 

\ 
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interfaces, which are essentially class declarations without an extent (see the box 
on "Interfaces" in Section 4.3.4). Then, ODL allows you to define any number 
of classes that inherit this interface, while each class has a distinct extent. In 
that manner, ODL offers the same opportunity the object-relational approach 
when it comes to sharing the same declaration among several collections. 

i r e  did not discuss the use of methods as part of an object-relational schema. 
However, in practice, the SQL-99 standard and all irnplementations of object- 
relational ideas allow the same ability as ODL to declare and define methods 
associated with any class. 

Stars Movies 
Type Systems 

Figure 4.18: Sets of references as the wlue of a,n attribute The type systems of the object-oriented and object-relational models are quite 
similar. Each is based on atomic types and construction of new types by struct- 

~h~ data of Fig. 4.17, converted to this new schema, is shown in Fig. 4.18. and collection-type-constructors. The selection of collection types may vary, but 
Sotice that, because each movie has only one tuple, although it can have man!. all variants include at least sets and bags. AIoreover, the set (or bag) of structs 
references, \ye have eliminated the redundancy inherent in the schema of Ex- type plays a special role in both models. It is the type of classes in ODL, and 

ample 4.23. the type of relations in the object-relational model. 

4.5.4 object-Oriented Versus Object-Relational References and  Object-ID'S 

~ 1 , ~  object-oriented data model, as typified by ODL, and the object-relational .A pure object-oriented model uses object-ID'S that are completely hidden from 

model discussed here, are remarkably similar. Some of the salient points of the user, and thus cannot be seen or queried. The object-relational model allows 
references to be part of a type, and thus it is possible under some circumstances 

comparison follow. for the user to see their values and even remember them for future use. You 
may regard this situation as anything from a serious bug to a stroke of genius, 

Objects and Tuples depending on your point of view, but in practice it appears to make little 

An object's value is really a struct with components for its attributes alld re- 
lationships. ~t is not specified in the ODL standard how relationships are to 
be represented, but we may assume that an object is connected to related ob- Backwards Compatibility 
jects by some collection of pointers. -1 tuple is likewise a struct, but in the 
conventional relational model, it has colnponents for only the attributes. Re- With little difference in essential features of the two models, it is interesting to 

lationsllips would be represented by tuples in another relation, as suggested in consider ~ rhy  object-relational systems have dominated the pure ~ b j e c t - ~ r i ~ ~ t ~ d  

Sectioll 3.2.2. Ho~vever the object-relational model, by allo\ving sets of refer- systems in the marketplace. The reason, we believe, is that there -? by the 

cncfs to be a compollent of tuples, also allo\x-s relationships to be incorporated time object-oriented systems were seriously proposed, an enormous number 

directly into the tuples that represent an "object" or entity. of installations running a relational database system. -4s relational DBlIS's 
evolved into object-relational DBMS's, the vendors were careful to maint.ain 

Extents and Relations 
back~vards compatibility. That is. nen-er versions of the system would still run 
the old code and accept the same schemas, should the user not care to adopt 

ODL treats all objects in a class as living in an "extent" for that class. The any of the object-oriented features. On the other hand, miflation to a pure 
object-relational model allorvs several different relations with identical schemas. object-oriented DBMS would require the installations to rewrite and reorganize 
so it might appear that there is more opportunity in the object-relational model , extensively. Thus, whatever competitive advantage existed was not enough to 
to distinguish members of the same class. However, ODL allows the definition of , convert many databases to a pure object-oriented DBXIS. 
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4.5.5 From ODL Designs to Object-Relational Designs Exercise 4.5.5 : Render the genealogy of Exercise 2.1.6 in the object-relational 

In Section 4.4 we learned how to convert designs in ODL into schemas of the 
relational model. Difficulties arose primarily because of the richer modeling 
constructs of ODL: nonatomic attribute types, relationships, and methods. 
Some - but not all - of these difficulties are alleviated when we translate 

4.6 Semistructured Data 
an ODL design into an object-relat,ional design. Depending on the specific The semistmctured-data model plays a special role in database systems: 
object-relational model used (we shall consider the concrete SQL-99 model in 
Chapter 9), we may be able to convert most of the nonatomic types of ODL 1. It serves as a model suitable for integration of databases, that is, for de- 
directly into a corresponding object-relational type; structs, sets, bags, lists, scribing the data contained in two or more databases that contain similar 
and arrays all fall into this category. data with different schemas. 

If a type in an ODL design is not available in our object-relational model, 
we can fall back on the techniques from Sections 4.4.2 through 4.4.4. The rep- 2. It serves as a document model in notations such as XML, to be taken up 
resentation of relationships in an object-relational model is essentially the same in Section 4.7, that are being used to share information on the Web. 
as in the relational model (see Section 4.4.5), although we may prefer to use ref- 
erences in place of keys. Finally, although we were not able to translate ODL In this section, we shall introduce the basic ideas behind "semistructured data" 
designs with methods into the pure relational model, most object-relat,ional and how it can represent information more flexibly than the other models we 
models include methods, so this restriction can be lifted. have met preciously. 

4.5.6 Exercises for Section 4.5 4.6.1 Motivation for the Semistructured-Data Model 

Exercise 4.5.1: Using the notation developed for nested relations and re- 
lations with referenw. give one or more relation schemas that represent the 
follo\ring infornl'tt~c 111 each case. you may exercise some discretion regard- 
ing xvh,it attributes of a relation arc included, but try to keep close to the 
attributes found in our running movie example. Also, indicate whether your 
schemas exhibit redundancy, and if so, what could be done to avoid it. 

* a) Navies, with the usual attributes plus all their stars and the usual infor- 
mation about the stars. 

*! h) Studios, all the movies made by that studio, and all the stars of each 
mo\?ie, including all the usual attributes of studios, movies, and stars. 

c )  .\lovies with their studio, their stars, and all the usual attributes of these. 

Let us begin by recalling the E/R model, and its two fundamental kinds of 
data - the entity set and the relationship. Remember also that the relational 
model has only one kind of data - the relation, yet we saw in Section 3.2 
how both entity sets and relationships could be represented by relations. There 
is an ad~antage to having two concepts: we could tailor an E/R design to 
the real-xvorld situation we were modeling, using whichever of entity sets or 
relationships most closely matched the concept being modeled. There is also 
some advantage to replacing two concepts by one: the notation in which we 
express schemas is thereby simplified. and implementation techniques that make 
querying of the database more efficient can be applied to all sorts of data. We 
shall begin to appreciate these advantages of the relational model when we 
study implementation of the DBhIS, starting in Chapter 11. 

Now. let us consider the object-oriented model we introduced in Section 4.2. 
There are two principal concepts: the class (or its extent) and the relationship. ' Exercise 4.5.2: Represent the banking information of Exerclse 2.1.1 in the 
Likewise, the object-relational model of Section 4.5 has two similar concepts: 

object-relational model developed in this section .\lake sure that it is easy, the attribute type (n-hich includes classes) and the relation. given the tuple for a customer, to find their accoumt(s) and also easy, given the 
We ma? see the semistructured-data model as blending the two concepts. tuple for an account to find thc customci(s) that hold that account. Also, try 

class-and-relationship or class-and-relation. niuch as the relational model blends to avoid redundancy. 
entity sets and relationships. However. the motivation for the blending appears 

Exercise 4.5.3 : If the data of Exercise -1.5.2 \\-ere modified so that an accoullt to be different in each case. While: as we mentioned, the relational model owes 
could be held by only one custonler [as in Exercise 2.1.2(a)], how could your some of its success to the fact that it facilitates efficient implementation, interest 
answer to Exercise 4.5.2 be simplified? in the semistructured-data model appears motivated primarily by its flexibility. 

While the other models seen so far each start from a notion of a schema - E/R 
Exercise 4.5.4: Rendcr the players: teams, and fans of Exercise 2.1.3 in tlle diagrams, relation schemas, or ODL declarations, for instance - semistructured 
3bject-relational model. data is "schemaless." ]lore properly, the data itself carries information about 
>\ 
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The grant diagram is a useful way to remember enough about the history 
of grants and revocations to keep track of who has what privilege and 
from whom they obtained those privileges. 

8.9 References for Chapter 8 

Again, the reader is referred to the bibliographic notes of Chapter G for infor- 
mation on obtaining the SQL standards. The PSkl standard is [4], and 151 is a 
comprehensive book on the subject. [6] is a popular reference on JDBC. 

There is a discussion of problems with this standard in the area of transac- 
tions and cursors in [I]. More about transactions and how they are implementcd 
can be found in the bibliographic notes to Chapter 18. 

The ideas behind the SQL authorization mechanism originated in [3] and 
PI. 

1. Berenson, H., P. A. Bernstein, J. N. Gray, J. Melton, E. O'Neil, and P. 
O'Neil, "A critique of ANSI SQL isolation levels," Proceedings of ACM 
SIGMOD IntE. Conf. on Management of Data, pp. 1-10, 1995. 

2. Fagin, R., "On an authorization mechanism," ACM Transactions on Dn- 
tabase Systems 3:3, pp. 310-319,1978. 

3. Griffiths, P. P. and B. W. Wade, ':.In authorization mechanism for a 
relational database system," ACM Tkansactions on Database Systems 1:3, 
pp. 242-235,1976. 

4. ISO/IEC Report 9075-4, 1996. 

5. llelton, J., Understanding SQL's Stored Procedures: A Complete Guide 
to SQL/PSM, Morgan-Kaufmann, San Francisco, 1998. 

6. U-hite, S., &I. Fisher, R. Cattell, G. Hamilton, and hl. Hapner, JDBC 
API Tutorial and Reference, Addison-Wesley, Boston, 1999. 

Chapter 9 

Object-Orientation in 
Query Languages 

I11 this chapter, we shall discuss two ways in which object-oriented program- 
ming enters the world of query languages. OQL, or Object Query Language, is 
a standardized query language for object-oriented databases. It combines the 
high-level, declarative programming of SQL with the object-oriented program- 
ming paradigm. OQL is designed to operate on data described in ODL. the 
object-oriented data-description language that we introduced in Section 4.2. 

If OQL is an attempt to bring the best of SQL into the object-oriented world, 
then the relatively new, object-relational features of the SQL-99 standard can 
be characterized as bringing the bcst of object-orientation into the relational 
xvorld. In some senses, the two languages "meet in the middle." but there are 
differences in approach that make certain things easier in one language than 
the other. 

In essence, the two approaches to object-orientation differ in their answer 
to the question: "how important is the relation?" For the object-oriented 
community centered around ODL and OQL. the answer is "not very." Thus. in 
OQL we find objects of all types. some of which are sets or bags of structures 
(i.e., relations). For the SQL community, the answer is that relations are still 
the fundamental data-structuring concept. In the object-relational approach 
that we introduced in Section 4.5. the relational model i's extended by allowing 
more complex tjpes for the tuples of relations and for attributes. Thus. objects 
and classes are introduced into the relational model, but always in the contest 
of relations. 

9.1 Introduction to OQL 

OQL, the Object Query Language, gives us an SQL-like notation for espress- 
ing queries. It is intended that OQL will be used as an extension to some 
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object-oriented host language, such as C++, Smalltalk, or Java. Objects will 
be manipulated both by OQL queries and by the conventional statements of the 
host language. The ability to mix host-language statements and OQL queries 
without explicitly transferring values between the two languages is an  advance 
over the way SQL is embedded into a host language, as was discussed in Sec- 
tion 8.1. 

9.1.1 An Object-Oriented Movie Example 

In order to  illustrate the dictions of OQL, we need a running example. It 
will involve the familiar classes Movie, S ta r ,  and Studio. We shall use the 
definitions of Movie, S t a r ,  and Stud io  from Fig. 4.3, augmenting them with 
key and extent declarations. Only Movie has methods, gathered from Fig. 4.4. 
The complete example schema is in Fig. 9.1. 

9.1.2 Path Expressions 

IVe access components of objects and structures using a dot notation that is 
similar to  the dot used in C and also related to the dot used in SQL. The 
general rule is as follows. If a denotes an  object belonging to class C. and p 
is some property of the class - either an  attribute, relationship, or method of 
the class - then a.p denotes the result of "applying" p to a. That is: 

1. If p is an attribute, then a.p is the value of that attribute in object a. 

2. If p is a relationship, then a.p is the object or collection of objects related 
to a by relationship p. 

3. If p is a method (perhaps with parameters), then a.p( . .) is the result of 
applying p t o  a. 

Example 9.1 : Let myMovie denote an object of type Movie. Then: 

The value of myMovie . length is the length of the movie, that is, the value 
of the length attribute for the Movie object denoted by myMovie. 

The value of myMovie. lengthInHours0 is a real number, the length of 
the movie in hours, computed by applying the method 1engthInHours to 

, object mynovie. 

The value of myMovie.stars is the set of S t a r  objects related to the 
movie myMovie by the relationship stars. 

Expression myMovie . starNames(myStars) returns no value (LC., in C++ 
the type of this expression is void). As a side effect, however, i t  sets the 
value of the output variable mystars of the method starNames to be a 
set of strings; those strings are the names of the stars of the mol-ic. 

INTRODUCTION TO OQL 

c l a s s  Movie 
(extent  Movies key ( t i t l e ,  year) )  

C 
a t t r i b u t e  s t r i n g  t i t l e ;  
a t t r i b u t e  i n t e g e r  year ;  
a t t r i b u t e  i n t e g e r  l eng th ;  
a t t r i b u t e  enum Film (color,blackAndWhite> filmType; 
r e l a t i o n s h i p  Set<Star> s t a r s  

inve rse  S t a r : : s t a r r e d I n ;  
r e l a t i o n s h i p  Stud io  ownedBy 

inverse  Studio::owns; 
f l o a t  lengthInHours()  ra ises(no~engthF0und) ;  
void starNames(out Se t<St r ing>) ;  
void otherMovies( in S t a r ,  out  Set<Movie>) 

ra ises(noSuchStar ) ;  
I ;  

c l a s s  S t a r  
(ex tent  S t a r s  key name) 

< 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  S t r u c t  Addr 

{ s t r i n g  s t r e e t ,  s t r i n g  c i t y )  address;  
r e l a t i o n s h i p  Set<Movie> s t a r r e d I n  

inve rse  Movie : :s tars ;  
1; 

c l a s s  Stud io  
(extent  Stud ios key name) 

C 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  s t r i n g  address ;  
r e l a t i o n s h i p  Set<Movie> owns 

inve rse  Movie::ownedBy; 
I ; 

Figure 9.1: Part  of a n  object-oriented inovie database 
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Arrows and Dots 

OQL allows the arrow -> as a synonym for the dot. This convention is 
partly in the spirit of C, where the dot and arrow both obtain compo- 
nents of a structure. However, in C, the arrow and dot operators have 
slightly different meanings; in OQL they are the same. 111 C, expression 
a.f expects a to be a structure, while p->f expects p to be a pointer to a 
structure. Both produce the value of the field f of that structure. 

If it makes sense, we can form expressions with several dots. For example, 
if myMovie denotes a movie object, then myMovie. ownedBy denotes the Studio 
object that owns the movie, and mynovie. ownedBy .name denotes the string 
that is the name of that studio. 

9.1.3 Select-From-Where Expressions in OQL 

OQL permits us to write expressions using a select-from-where syntas similar 
. to SQL's familiar query form. Here is an example asking for the year of the 

movie Gone IVzth the Wind. 

SELECT m. year 
FROM Movies m 
WHERE m.tit le = "Gone With the Wind" 

Xotice that, escept for the double-quotes around the string constant, this query 
could be SQL rather than OQL. 

In general, the OQL select-from-where expression consists of: 

1. The keylvord SELECT follolved by a list of expressions. 

2. The keyrvord FROM followed by a list of one or more variable declarations. 
d variable is declared by giving 

(a) .An expression whose value has a collection type, e.g. a set or bag. 

(b) The optional keyn-ord AS, and 

(c) The name of the variable. 

Typically. the expression of (a) is the extent of some class, such as the 
extent Movies for class Movie in the example above. An extent is the 
analog of a relation in an SQL FROM clause. However, it is possible to 
use in a variable declaration any collection-producing expression, such as 
another select-from-where expression. 
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3. The keyword WHERE and a boolean-valued expression. This expression, like 
the expression following the SELECT, may only use as operands constants 
and those variables declared in the FROM clause. The comparison operators 
are like SQL's, except that ! =, rather than <>, is used for "not equal to." 
The logical operators are AND, OR, and NOT, like SQL's. 

The query produces a bag of objects. We compute this bag by considering 
all possible values of the variables in the FROM clause, in nested loops. If any 
combination of values for these variables satisfies the condition of the WHERE 
clause, then the object described by the SELECT clause is added to the bag that 
is the result of the select-from-where statement. 

Example 9.2 : Here is a more complex OQL query: 

SELECT s.name 
FROM Movies m, m.stars s 
WHERE m. t i t l e  = "Casablanca" 

This query asks for the names of the stars of Casablanca. Notice the sequence 
of terms in the FROM clause. First we define m to be an arbitrary object in the 
class Movie, by saying m is in the extent of that class, which is Movies. Then, 
for each value of m we let s be a S ta r  object in the set m.stars of stars of 
movie m. That is, n-e consider in two nested loops all pairs (m, s )  such that m is 
a movie and s a star of that movie. The evaluation can be sketched as: 

FOR each m i n  Movies DO 
FOR each s i n  m.stars DO 

IF m . t i t l e  = "Casablanca" THEN 
add s.name t o  the  output bag 

The WHERE clause restricts our consideration to those pairs that have m equal 
to the Movie object whose title is Casablanca. Then, the SELECT clause produces 
the bag ( ~ h i c h  should be a set in this case) of all the name attributes of star 
objects s in the (my s )  pairs that satisfy the WHERE clause. These names are 
the names of the stars in the set m,. s ta rs ,  where m, is the Casablanca movie 
object. 0 

9.1.4 Modifying the Type of the Result 

.A query like Example 9.2 produces a hag of strings as a result. That is, OQL 
follows the SQL default of not eliminating duplicates in its answer unless &- 
rected to do so. However, we can force the result to be a set or a list if we 
wish. 

To make the result a set, use the keyword DISTINCT after SELECT, as in 
SQL. 
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Alternative Form of FROM Lists 

In addition to the SQL-style elements of FROM clauses, where the collection 
is follo~ved by a name for a typical element, OQL allo~vs a completely 
equivalent, more logical, yet less SQL-is11 form. We can give the typical 
element name, then the keyword I N ,  and finally the name of the collection. 
For instance, 

FROM m I N  Movies, s I N  m.stars 

is an equivalent FROM clause for the query in Example 9.2. 

To make the result a list, add an ORDER BY clause at the end of the query, 
again as in SQL. 

The following examples will illustrate the correct syntax. 

Example 9.3: Let us ask for the names of the stars of Disney movies. The 
following query does the job, eliminating duplicate names in the situation where 
a star appeared in several Disney movies. 

SELECT DISTINCT s.name 
FROM Movies m ,  m.stars s 
WHERE m. ownedBy. name = "Disney" 

The strategy of this query is similar to that of Example 9.2. We again 
consider all pairs of a movie and a star of that movie in two nested loops as in 
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the 
name of the studio whose Studio object is m. ownedBy. 

The ORDER BY clause in OQL is quite similar to the same clause in SQL. 
Keywords ORDER BY are followed by a list of expressions. The first of these 
expressions is evaluated for each object in the result of the query, and objects 
are ordered by this value. Ties, if any, are broken by the value of the second 
expression. then the third, and so on. By default, the order is ascending. but 
a choice of ascending or descending order can be indicated by the keyword ASC 
or DESC, respectively. following an attribute. as in SQL. 

Example 9.4 : Let us find the set of Disney movies, but let the result be a list 
of movies. ordered by length. If there are ties, let the movies of equal length be 
ordered alphabetically. The query is: 

SELECT m 
FROM Movies m 
WHERE m.ownedBy.name = "Disney" 
ORDER BY m.length, m . t i t l e  
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In the first three lines, we consider each Movie object m. If the name of the 
studio that oxns this movie is "Disney," then the complete object m becomes 
a member of the output bag. The fourth line specifies that the object,s m 
produced by the select-from-where query are to be ordered first by the value of 
m.  l eng th  (i.e., the length of the movie) and then, if there are ties, by the value 
of m. t i t l e  (i.e., the title of the movie). The value produced by this query is 
thus a list of Movie objects. 

9.1.5 Complex Output Types 

The elements in the SELECT clause need not be simple variables. They can 
be any expression, including expressions built using type constructors. For 
example, we can apply the St ruc t  type constructor to several expressions and 
get a select-from-where query that produces a set or bag of structures. 

Example 9.5: Suppose we want the set of pairs of stars living at the same 
address. \ire can get this set with the query: 

SELECT DISTINCT St ruc t  ( s t a r l  : sl, s ta r2 :  s2) 
FROM S ta rs  sl ,  Sta rs  s 2  
WHERE s l .address = s2.address AND s1.name < s2.name 

That is, 1%-e consider all pairs of stars, sl  and s2. The WHERE clause checks 
that they have the same address. It also checks that the name of the first star 
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs 
consisting of the same star t~vice and we don't produce the same pair of stars 
in two different orders. 

For every pair that passes the t ~ o  tests, we produce a record structure. The 
type of this structure is a record with two fields, named s t a r l  and s ta r2 .  The 
type of each field is the class Star .  since that is the type of the variables sl 
and s2  that provide values for the two fields. That is. formally, the type of the 
structure is 

Struct (s tar1:  S ta r ,  s t a r2 :  star) 

The type of the result of the query is a set of these structures, that is: 

Set<Struct {s tar l :  S t a r ,  s t a r2 :  Star)> 

9.1.6 Subqueries 

Ure can use a select-from-where expression anywhere a collection is appropriate. 
\Ye shall give one example: in the FROM clause. Sereral other examples of 
subquery use appear in Section 9.2. 
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SELECT Lists of Length One Are Special 

Notice that when a SELECT list has only a single expression, the type of 
the result is a collection of values of the type of that expression. However: 
if we have more than one expression in the SELECT list, there is an implicit 
stucture formed with components for each expression. Thus, even had we 
started the query of Example 9.5 with 

SELECT DISTINCT starl: sl, star2: s2 

the type of the result would be 

Set<Struct{starl: Star, star2: star)> 

Honrever, in Example 9.3, the type of the result is Set<String>, not 
Set<Struct{name: string)>. 

In the FROM clause, we may use a subquery to form a collection. We then 
allow a variable representing a typical element of that collection to range over 
each member of the collection. 

Example 9.6 : Let us redo the query of Example 9.3, which asked for the stars 
of the movies made by Disney. First, the set of Disney movies could be obtained 
by the query, as was used in Example 9.4. 

SELECT m 
FROM Movies m 
WHERE m.ownedBy.name = "Disney" 

We can now use this query as a subquery to define the set over which a variable 
d. representing the Disney movies; can range. 

SELECT DISTINCT s.name 
FROM (SELECT m 

FROM Movies m 
WHERE m.ownedBy.name = "Disney") d, 

d. stars s 

This expression of the query "Find the stars of Disney movies" is no Inore 
succinct than that of Example 9.3. and perhaps less so. However, it does 
illustrate a new form of building queries available in OQL. In the query above. 
the FROM clause has two nested loops. In the first, the variable d ranges over 
all Disney movies, the result of the subquery in the FROM clause. In the second 
loop, nested within the first, the variable s ranges over all stars of the Disney 

' lnovie d. Sotice that no WHERE clause is needed in the outer query. 
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9.1.7 Exercises for Section 9.1 

Exercise 9.1.1: In Fig. 9.2 is an ODL description of our running products 
exercise. \Ire have made each of the three types of products subclasses of the 
main Product class. The reader should observe that a type of a product can 
be obtained either from the attribute type or from the subclass to ~ h i c h  it 
belongs. This arrangement is not an excellent design, since it allows for the 
possibility that, say, a PC object will haye its type attribute equal to "laptop" 
or "printer". However, the arrangement gives you some interesting options 
regarding how one expresses queries. 

Because type is inherited by Printer from the superclass Product, we have 
had to rename the type attribute of Printer to be printerType. The latter 
attribute gives the process used by the printer (e.g., laser or inkjet), while type 
of Product will have values such as PC, laptop, or printer. 

Add to the ODL code of Fig. 9.2 method signatures (see Section 1.2.7) 
appropriate for functions that do the following: 

* a) Subtract x from the price of a product. Assume x is provided as an input 
parameter of the function. 

* b) Return the speed of a product if the product is a PC or laptop and raise 
the exception notcomputer if not. 

c) Set the screen size of a laptop to a specified input value x. 

! d) Given an input product p, determine whether the product q to which the 
method is applied has a higher speed and a lower price than p. Raise the 
exception badInput if p is not a product with a speed (i.e., neither a PC 
nor laptop) and the exception nospeed if q is not a product with a speed. 

Exercise 9.1.2 : Using the ODL schema of Exercise 9.1.1 and Fig. 9.2, write 
the follo~ving queries in OQL: 

" a) Find the model numbers of all products that are PC's with a price under 
$2000. 

b) Find the model numbers of all the PC's with at least 128 megabytes of 
R-411. 

*! c) Find the manufacturers that makk at least two different models of laser 
printer. 

d) Find tlle set of pairs (r. h )  such that some PC or laptop has r megabytes 
of RAM and h gigabytes of hard disk. 

e) Create a list of the PC's (objects, not model numbers) in ascending order 
of processor speed. 

! f) Create a list of the model numbers of tlle laptops n-ith a t  least 64 xnega- 
bytes of R.411: in descending order of screen size. 
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c lass  Product 
(extent Products 
key model) 

C 
a t t r i bu te  integer model; 
a t t r i bu te  s t r i ng  manufacturer ; 
a t t r i bu te  s t r i ng  type; 
a t t r i bu te  rea l  pr ice;  

I ;  

c l ass  PC extends Product 
(extent PCs) 

I 
a t t r i bu te  integer speed; 
a t t r i bu te  integer ram; 
a t t r i bu te  integer hd; 
a t t r i bu te  s t r i ng  rd ;  

1; 

c lass  Laptop extends Product 
(extent Laptops) 

E 
a t t r i bu te  integer speed; 
a t t r i bu te  integer ram; 
a t t r i bu te  integer hd; 
a t t r i bu te  r e a l  screen; 

I; 

c lass  Pr in ter  extends Product 
(extent Pr in ters)  

I 
a t t r i bu te  boolean color;  
a t t r i bu te  s t r i ng  printerType; 

I ;  

c l ass  Class 
(extent  Classes 
key name) 

.E 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  s t r i n g  country; 
a t t r i b u t e  in teger  numCuns; 
a t t r i b u t e  in teger  bore; 
a t t r i b u t e  in teger  displacement; 
r e l a t i onsh ip  Set<Ship> ships inverse Ship::classOf; 

3; 

c lass  Ship 
(extent  Ships 
key name) 

C 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  in teger  launched; 
r e l a t i onsh ip  Class classof inverse C1ass::ships; 
r e l a t i onsh ip  Set<Outcome> inBat t les  

inverse Outcome: : theship; 

I ;  

c l ass  Ba t t l e  
(extent  Ba t t l es  
key name) 

E 
a t t r i b u t e  s t r i n g  name; 
a t t r i b u t e  Date dateFought; 
r e l a t i onsh ip  Set<Outcome> r e s u l t s  

inverse 0utcome::theBattle; 
1;  

c l a s s  Outcome 
(extent  Outcomes) 

C 
a t t r i b u t e  enum S t a t  Cok, sunk ,damaged) s ta tus ;  
r e l a t i onsh ip  Ship theship inverse Ship: : inBat t les;  
r e l a t i onsh ip  Ba t t l e  theBat t le  inverse Bat t1e : : resu l ts ;  

1; 
Figure 9.2: Product schema in ODL 

Figure 9.3: Battleships database in ODL 
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Exercise 9.1.3 : In Fig. 9.3 is an ODL description of our running "battleships" 
database. Add the following method signatures: 

a) Compute the firepower of a ship, that is, the number of guns times the 
cube of the bore. 

b) Find the sister ships of a ship. Raise the exception nosisters if the ship 
is the only one of its class. 

c) Given a battle b as a parameter, and applying the method to a ship s, 
find the ships sunk in the battle b, provided s participated in that battle. 
Raise the exception didNotParticipate if ship s did not fight in battle 
b. 

d) Given a name and a year launched as parameters, add a ship of this name 
and year to the class to which the method is applied. 

! Exercise 9.1.4: Repeat each part of Exercise 9.1.2 using at least one subquery 
in each of your queries. 

Exercise 9.1.5: Using the ODL schema of Exercise 9.1.3 and Fig. 9.3, xvritc 
. the follolving queries in OQL: 

a) Find the names of the classes of ships with at least nine guns. 

b) Find the ships (objects, not ship names) with at least nine guns. 

c) Find the names of the ships with a displacement under 30,000 tons. Nake 
the result a list, ordered by earliest launch year first, and if there are ties. 
alphabetically by ship name. 

d) Find the pairs of objects that are sister ships (i.e., ships of the same class). 
3ote that the objects themselves are wanted, not the names of the ships. 

! e) Find the names of the battles in which ships of at least two different 
countries were sunk. 

!! f )  Find the names of the batt~les in which no ship was listed as damaged. 

9.2 Additional Forms of QQL Expressions 

In this section we shall see some of the other operators, besides select-from- 
where, that OQL provides to help us build expressions. These operators in- 
clude logical quantifiers - for-all and there-exists - aggregation operators, 
'the goup-by operator, and set operators - union, intersection, and difference. 
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9.2.1 Quantifier Expressions 

l i e  can test whether all members of a collection satisfy some condition, and we 
can test whether a t  least one member of a collection satisfies a condition. To 
test whether all members x of a collection S satisfy condition C(x), we use the 
OQL expression: 

FOR ALL x IN S : C(x) 

The result of this expression is TRUE if every x in S satisfies C(x) and is FALSE 
otherwise. Similarly, the expression 

EXISTS x I N  S : C(x) 

has value TRUE if there is at least one x in S such that C(X) is TRUE and it has 
value FALSE otherwise. 

Example 9.7 : Another way to express the query "find all the stars of Disney 
movies" is shown in Fig. 9.4. Here, we focus on a star s and ask if they are 
the star of some movie rn that is a Disney movie. Line (3) tells us to consider 
all movies m in the set of movies s. starredIn, which is the set of movies in 
which star s appeared. Line (1) then asks whether movie m is a Disney movie. 
If we find even one such movie m, the value of the EXISTS expression in lines 
(3) and (4) is TRUE; otherwise it is FALSE. 

1) SELECT s 
2) FROM Stars  s 
3) WHERE EXISTS m IN s .s tar red In  : 
4) m. ownedBy .name = "Disney" 

Figure 9.4: Using an existential subquery 

Example 9.8 : Let us use the for-all operator to write a query asking for the 
stars that have appeared only in Disney movies. Technically, that set includes 
.'stars" who appear in no movies at all (as far as we can tell from our database). 
It is possible to add another condition to our query, requiring that the star 
appear in at least one rnovie. but TW lealr that improvement as ail exercise. 
Figure 9.5 shows the query. 

9.2.2 Aggregation Expressions 

OQL uses the same five aggregation operators that SQL does: AVG, COUNT. SUM. 
MIN. and MAX. However, while these operators in SQL may be thought of as 
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SELECT s 
FROM Stars  s 
WHERE FOR ALL m I N  s.starredIn : 

m. ownedBy . name = "Disney" 

Figure 9.5: Using a subquery with universal quantification 

applying to a designated column of a table, the same operators in OQL apply 
to all collections whose members are of a suitable type. That is, COUNT can 
apply to any collection; SUM and AVG can be applied to collections of arithmetic 
types such as integers, and MIN and MAX can be applied to collections of any 
type that can be compared, e.g., arithmetic values or strings. 

Example 9.9: To compute the average length of all movies, we need to create 
a bag of all movie lengths. Note that we don't want the set of movie lengths, 
because then two movies t,hat had the same length would count as one. The 
query is: 

AVG(SELECT m.length FROM Movies m) 

That is, we use a subquery to extract the length components from movies. Its 
result is the bag of lengths of movies, and we apply the AVG operator to this 
bag. giving the desired answer. 0 

9.2.3 Group-By Expressions 

The GROUP BY clause of SQL carries over to OQL, but with an interesting twist 
in perspective. The form of a GROUP BY clause in OQL is: 

1. The keywords GROUP BY. 

2. .I comma-separated list of one or more partition attributes. Each of these 
consists of 

(a) A field name, 

(b) A colon, and 

(c) An expression. 

That is. the form of a GROUP BY clalisc is: 

GROUP BY fl:el, f2:e2,. . . . f,:e,, 

Each GROUP BY clause follows a select-from-where query. The expressions 
el. e?. . . . ,en may refer to variables mentioned in the FROM clause. To facilitate 

' the explanation of how GROUP BY works, let us restrict ourselves to the common 
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case where there is only one variable x in the FROM clause. The value of x ranges 
over some collection, C. For each member of C, say i, that satisfies the condition 
of the WHERE clause, we evaluate all the expressions that follow the GROUP BY, 
to obtain values el (i), ea(i), . , . , en (i). This list of values is the group to which 
value i belongs. 

T h e  Intermediate Collection 

The actual value returned by the GROUP BY is a set of structures, which we shall 
call the intermediate collection. The members of the intermediate collection 
have the form 

The first n fields indicate the group. That is, (vl, vz, . . . , v,) must be the list 
of values (el(i), ez(i), . . . ,en(i)) for a t  least one value of i in the collection C 
that meets the condition of the WHERE clause. 

The last field has the special name par t i t ion .  Its value is, intuitively, 
the values i that belong in this group. ,\Iore precisely. P is a bag consisting of 
structures of the form St ruc t  (x: i), m-here x is the variable of the FROM clause. 

The  Output  Collection 

The SELECT clause of a select-from- here expression that has a GROUP BY clause 
may refer only to the fields in the structures of the intermediate collection. 
namely f l .  f 2 .  . . . , f n  and par t i t ion .  Through par t i t ion ,  we may refer to the 
field x that is present in the structures that are members of the bag P that forms 
the value of par t i t ion.  Thus, we may refer to the variable x that appears in 
the FROM clause, but we may only do so within an aggregation operator that 
aggregates over all the menibers of a bag P. The result of the SELECT clause 
will be referred to as the output collection. 

Example 9.10: Let us build a table of the total length of movies for each 
studio and for each pear. In OQL. what we actually construct is a bag of 
structures. each xvith three componellts - a studio, a year: and the total length 
of movies for that studio and year. The query is shown in Fig. 9.6. 

SELECT stdo,  y r ,  sumlength: SUM(SELECT p.m.length 
FROM par t i t i on  p) 

FROM Movies m 
GROUP BY stdo: m.ownedBy.name, yr:  m.year 

Figure 9.6: Grouping movies by studio and year 

To understand this query, let us start at the FROM clause. There, we find 
that variable m ranges over all Movie objects. Thus. m here plays the role of x 
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in our general discussion. In the GROUP BY clause are two fields s t d o  and yr.  
corresponding to the expressions m. ownedBy . name and m .  year,  respectively. 

For instance, Pretty Woman is a movie made by Disney in 1990. [Vhen nl 
is the object for this movie, the value of m .  ownedBy. name is "Disney" and the 
value of m. year is 1990. As a result, the intermediate collection has, as one 
member, the structure: 

S t ruc t  (stdo: "Disney", y r :  1990, p a r t i t i o n : P )  

Here, P is a set of structures. It contains, for example, 

S t ruc t  (m: mpw) 

where mPW is the Movie object for Pretty Woman. Also in P are one-component 
structures with field name m for every other Disney movie of 1990. 

Now, let us examine the SELECT clause. For each structure in the intermedi- 
ate collection, we build one structure that is in the output collection. The first 
component of each output structure is s tdo.  That is, the field name is s tdo  
and its value is the value of the s t d o  field of the corresponding structure in the 
intermediate collection. Similarly, the second component of the result has ficltl 
name y r  and a value equal to the y r  con~ponent of the intermediate collection. 

The third component of each structure in the output is 

SUM(SELECT p.m.length FROM p a r t i t i o n  p) 

To understand this select-from expression we first realize that variable p rangcs 
over the members of the p a r t i t i o n  field of the structure in the GROUP BY 
result. Each d u e  of p, recall, is a structure of the form S t r u c t  (m: o) ,  t+-here o 
is a movie object. The expression p.m therefore refers to this object o. Thus. 
p.m. leng th  refers to the length component of this Movie object 

.is a result, the select-from query produces the bag of lengths of the movies 
in a particular group. For instance, if s t d o  has the value "Disney" and y r  has 
the value 1990, then the result of the select-from is the bag of the lengths of the 
movies made by Disney in 1990. When we apply the SUM operator to this bag 
we get the sum of the lengths of the movies in the group. Thus, one member 
of the output collection might be 

if 123-1 is the correct total length of all the Disney movies of 1990. 

Grouping W h e n  t h e  FROM Clause h a s  Mu l t i p le  Col lect ions 

In the event that there is more than one variable in the FROM clause. a f e ~  
changes to the interpretation of the query are necessary, but the principles 
remain the same as in the one-variable case above. Suppose that the variables 
appearing in the FROM clause are XI,  22, . . . : xk. Then: 
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1. All variables xl ,  xz,. . . , xk may be used in the expressions el ,  e2, . . . ,en 
of the GROUP BY clause. 

2. Structures in the bag that is the value of the p a r t i t i o n  field have fields 
named x l ,  22,. . . , xk. 

3. Suppose i l ,  iz, . . . : ik are values for variables x i ,  x2,. . . ,xk, respectively, 
that niake the WHERE clause true. Then there is a structure in the inter- 
mediate collection of the form 

and in bag P is the structure: 

S t r u c t  (xl : i l  , x2 : iZ, . . . , xk : i k )  

9.2.4 HAVING Clauses 

A GROUP BY clause of OQL may be followed by a HAVING clause, with a meaning 
like that of SQL's HAVING clause. That is, a clause of the form 

HAVING <condition> 

serves to eliminate some of the groups created by the GROUP BY. The condition 
applies to  the value of the p a r t i t i o n  field of each structure in the intermedi- 
ate collection. If true, then this structure is processed as in Section 9.2.3, t o  
form a structure of the output collection. If false, then this structure does not 
contribute to  the output collection. 

E x a m p l e  9.11 : Let us repeat Example 9.10, but ask for the sum of the lengths 
of movies for only those studios and years such that the studio produced a t  lewt 
one movie of over 120 minutes. The query of Fig. 9.7 does the job. Notice that 
in the HAVING clause we used the same query as in the SELECT clause to obtain 
the bag of le~lgtlis of movies for a given studio and year. In the HAVING clause, 
tve take the maximum of those lengths and compare it to 120. 

SELECT s t d o ,  y r ,  sumlength: SUM(SELECT p.m.length 
FROM p a r t i t i o n  p) 

FROM Movies m 

GROUP BY s tdo :  m.ownedBy.name, y r :  m.year 
HAVING MAX(SELECT p.m.length FROM p a r t i t i o n  p) > 120 

Figure 9.7: Restricting the groups considered 
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9.2.5 Union, Intersection, and Difference 
\lj, may apply the union, intersection, and difference operators to two objects 
of set or bag type. These three operators are represented, as in SQL, by the 
keywords UNION, INTERSECT, and EXCEPT, respectively. 

1) (SELECT DISTINCT m 
2) FROM Movies m, m.stars s 
3) WHERE s.name = "Harrison Ford") 
4) EXCEPT 
5) (SELECT DISTINCT m 
6) FROM Movies m 
7) WHERE m.ownedBy.name = "Disney") 

Figure 9.8: Query using the difference of two sets 

Example 9.12: We can find the set of movies starring Harrison Ford that 
were not made by Disney with the difference of two select-from-where queries 
shown in Fig. 9.8. Lines (1) through (3) find the set of movies starring Ford. 
and lines (5) through (7) find the set of movies made by Disney. The EXCEPT 
at line (4) takes their difference. 

We should notice the DISTINCT keywords in lines (1) and (5) of Fig. 9.8. 
This keyword forces the results of the two queries to be of set type; without 
DISTINCT. the result would be of bag (multiset) type. In OQL, the operators 
UNION, INTERSECT, and EXCEPT operate on either sets or bags. When both 
arguments are sets, then the operators have their usual set meaning. 

However, when both arguments are of bag type, or one is a bag and one is a 
set. then the bag meaning of the operators is used. Recall Section 5.3.2, where 
the definitions of union, intersection, and difference for bags was explained. 

For the particular query of Fig. 9.8, the number of times a movie appears in 
the result of either subquery is zero or one, so the result is the same regardless of 
whether DISTINCT is used. However, the type of the result differs. If DISTINCT 
is used, then the type of the result is Set<Movie>, while if DISTINCT is omitted 
in one or both places, then the result is of type Bag<Movie>. 

9.2.6 Exercises for Section 9.2 

Exercise 9.2.1: Using the ODL schema of Exercise 9.1.1 and Fig. 9.2. wite 
the follolving queries in OQL: 

* a) Find the manufacturers that make both PC's and printers. 

, * b) Find the manufacturers of PC's, all of whose PC's have at least 20 giga- 
bytes of hard disk. 
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c) Find the manufacturers that make PC's but not laptops. 

* d) Find the average speed of PC's. 

* e) For each CD or DVD speed: find the average amount of R.i\hI on a PC. 

! f) Find the manufacturers that make some product with at least 64 mega- 
bytes of RAXI and also make a product costing under $1000. 

!! g) For each manufacturer that makes PC's with an average speed of a t  least 
1200, find the maximum amount of RAM that they offer on a PC. 

Exercise 9.2.2: Using the ODL schema of Exercise 9.1.3 and Fig. 9.3, write 
the following queries in OQL: 

a) Find those classes of ship all of whose ships were launched prior to 1919. 

b) Find the maximum displacement of any class. 

! c) For each gun bore, find the earliest year in which any ship with that bore 
was launched. 

*!! d) For each class of ships at least one of which was launched prior to 1919, 
find the number of ships of that class sunk in battle. 

! e) Find the average number of ships in a class. 

! f) Find the average displacement of a ship. 

!! g) Find the battles (objects. not names) in which at least one ship from 
Great Britain took part and in which at least two ships were sunk. 

! Exercise 9.2.3 : lye mentioned in Example 9.8 that the OQL query of Fig. 9.5 
\vould return stars li-110 starred in no mo~ies at all, and therefore, technically 
appeared .-onl: in Disney ~novi~s." Rewrite the query to return only those stars 
xho have appeared in at least one movie and all movies in which they appeared 
15-here Disney movies. 

! Exercise 9.2.4: Is it ever possible for FOR ALL x I N  S : C(z) to be true. 
nhile EXISTS s I N  S : C(x) is false? Explain your reasoning. 

9.3 Object Assignment and Creation in OQL 

In this section we shall consider how OQL connects to its host language, which 
a e  shall take to he C++ in examples, although another object-oriented, general- 
purpose progranlming language (e.g. Java) might be the host language in some 
systems. 
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9.3.1 Assigning Values to Host-Language Variables 
Unlike SQL, which needs to move data between components of tuples and host- 
language variables, OQL fits naturally into its host language. That is: the 
expressions of OQL that we have learned, such as select-from-where, produce 
objects as values. It is possible to assign to any host-language variable of the 
proper type a value that is the result of one of these OQL expressions. 

Example 9.13 : The OQL expression 

SELECT DISTINCT m 
FROM Movies m 
WHERE m.year < 1920 

produces the set of all those movies made before 1920. Its type is Set<Movie>. 
If oldMovies is a host-language variable of the same type, then we may write 
(in C++ extended with OQL): 

oldMovies = SELECT DISTINCT m 
FROM Movies m 
WHERE m.year < 1920; 

and the value of oldMovies will become the set of these Movie objects. 

9.3.2 Extracting Elements of Collections 

Since the select-from-where and group-by expressions each produce collections 
- either sets, bags, or lists - we must do something extra if we want a single 
element of that collection. This statement is true even if we have a collection 
that n-e are sure contains only one element. OQL provides the operator ELEMENT 
to turn a singleton collection into its lone member. This operator can be applied. 
for instance, to the result of a query that is known to return a singleton. 

Example 9.14 : Suppose we would like to assign to the variable gwtw. of type 
Movie (i.e., the Movie class is its type) the object representing the movie Gone 
l l l th the Wind. The result of the query 

SELECT m 
FROM Movies m 
WHERE m.title = "Gone With the Wind" 

is the bag containing just this one object. 11-e cannot assign this bag to variable 
gv tv  directly, because we n-ould get a type error. However. if xe  apply the 
ELEMENT operator first, 

gwtw = ELEMENT(SELECT m 
FROM Movies m 
WHERE m.title = "Gone With the Wind" 

1; 
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then the type of the variable and the expression match, and the assignment is 
legal. 

9.3.3 Obtaining Each Member of a Collection 

Obtaining each member of a set or bag is more complex, but still simpler than 
the cursor-based algorithms we needed in SQL. First, we need to turn our set 
or bag into a list. \Ye do so with a select-from-where expression that uses 
ORDER BY. Recall from Section 9.1.4 that the result of such an expression is a 
list of the selected objects or values. 

Example 9.15: Suppose we want a list of all the movie objects in the class 
Movie. We can use the title and (to break ties) the year of the movie, since 
(title, year) is a key for Movie. The statement 

movieList = SELECT m 
FROM Movies m 
ORDER BY m.title, m.year; 

assigns to host-language variable movieList a list of all the Movie objects, 
sorted by title and year. 

Once x-e haye a list, sorted or not. we can access each element by number; 
the ith element of the list L is obtained by L[i - 11. Note that lists and arrays 
are assunled numbered starting at 0, as in C or C++. 

Example 9.16 : Suppose we want to write a C++ function that prints the 
title. year, and length of each movie. -1 sketch of the function is shown in 
Fig. 9.9. 

1) movieList = SELECT m 
FROM Movies m 
ORDER BY m.title, m.year; 

2) number0fMovies = ~0UNT(Movies); 
3) for(i=O; i<numberOfMovies; i++) ( 
4) movie = movieList [i] ; 
5) cout << movie.title << " 'I << movie. year << I' " 
6 << movie. length << "\nl' ; 

1 

Figure 9.9: Exanlining and printing each movie 

Line (1) sorts the Movie class, placing the result into variable movielist, 
~vhose type is List<Movie>. Line (2) computes the number of movies. using 
the OQL operator COUNT. Lines (3) through (6 )  are a for-loop in which integer 



446 CHAPTER 9. OBJECT-ORIENTATION I N  QUERY LAhTG U.4GES 

variable i ranges over each position of the list. For convenience, the i th element 
of the list is assigned to variable movie. Then, a t  lines (5) and (6) the relevant 
attributes of the movie are printed. 

9.3.4 Constants in OQL 

Constants in OQL (sometimes referred to  as immutable objects) are constructed 
from a basis and recursive constructors, in a manner analogous to the way ODL 
types are constructed. 

1. Basic values, which are either 

(a) Atomic values: integers, floats, characters, strings, and booleans. 
These are represented as in SQL, with the exception that double- 
quotes are used to surround strings. 

(b) Enumerations. The values in an  enumeration are actually declared 
in ODL. Any one of these values may be used as a constant. 

2. Complex values built using the following type constructors: 

(a) Set ( .  . .). 
(b) Bag(...). 

(c) L is t ( .  . .). 
(d) Array(. . .). 
(e) St ruc t ( .  . .). 

The first four of these are called collection types. The collection types and 
Struct  may be applied a t  mill t o  any values of the appropriate type(s), 
basic or complex. However, when applying the St ruc t  operator, one 
needs to specify the field names and their corresponding values. Each 
field name is followed by a colon and the value, and field-value pairs are 
separated by commas. Note that the same type constructors are used in 
ODL, but here we use round, rather than triangular, brackets. 

Example 9.17: The expression Bag(2, I ,2 )  denotes the bag in which integer 
2 appears twice and integer 1 appears once. The expression 

Struct  (foo: bag(2,1,2), bar:  "baz") 

denotes a structure with two fields. Field f oo, has the bag described above as 
its value, and bar, has the string "baz" for its value. 
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9.3.5 Creating New Objects 

m e  have seen that OQL expressions such as select-from-where allow us to  create 
new objects. It is also possible to create objects by assembling constaiits or 
other expressions into structures and collections explicitly. We saw an  example 
of this convention in Example 9.5, where the line 

SELECT DISTINCT St ruc t  ( s t a r l :  sl ,  s ta r2 :  s2) 

was used to specify that the result of the query is a set of objects whose type 
is St ruc t ( s t a r1 :  S t a r ,  s t a r2 :  s ta r ) .  We gave the field names starl and 
s t a r 2  t o  specify the structure, while the types of these fields could be deduced 
from the types of the variables s l  and s2. 

Example  9.18: The construction of constants that we saw in Section 9.3.4 
can be used with assignments to variables, in a manner similar to  that of other 
programming languages. For instance: consider the following sequence of as- 
signments: 

The first line gives variable x a value of type 

a structure with two integer-valued fields named a and b. We may represent 
values of this type as pairs, with just the integers as components and not the 
field names a and b. Thus, the value of x may be represented by (1,2). The 
second line defines y to be a bag whose members are structures of the same 
type as x, above. The pair (1.2) appears twice in this bag, and (3,4) appears 
once. 0 

Classes or other defined types call have instances created by constructor 
fi~nctzons. Classes typically haw several different forms of constructor functions, 
depending on which properties are initialized explicitly and which are given 
some default value. For example, methods are not initialized, most attributes 
\\-ill get initial values. and relationships might be initialized to  the empty set 
and augmented later. The name for each of these constructor functions is the 
name of the class. and they are distinguished by the field names mentioned in 
their arguments. The details of holv these constructor functions are defined 
depend on the host language. 

Example  9.19 : Let us consider a possible constructor function for Movie ob- 
jects. This function, we suppose, takes values for the attributes t i t l e .  year, 
length, and ownedBy. producing an  object that has these values in the listed 
fields and an empty set of stars. Then, if mgm is a variable whose value is the 
NGl I  Studio object. we might create a Gone With the Wind object by: 
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gwtw = Movie(tit1e: "Gone With t h e  Wind", 
year:  1939, 
length: 239, 
ownedBy: mgm) ; 

This statenlent has two effects: 

1. It creates a new Movie object, which becomes part of the extent Movies. 

2. It makes this object the value of host-language variable gwtw. 

9.3.6 Exercises for Section 9.3 

Exercise 9.3.1 : Assign to a host-language variable x the following constants: 

* a) The set. {I, 2,3). 

b) The bag {1,2,3,1). 

c) The list (1,2,3,1). 

d) The structure whose first component, named a, is the set {1,2) and ~vhose 
second component, named b, is the bag { l , l ) .  

e) The bag of structures, each with two fields named a and b. The respective 
pairs of values for the three structures in the bag are (1,2), (2,l). and 
(1% 2). 

Exercise 9.3.2: Using the ODL schema of Exercise 9.1.1 and Fig. 9.2. mite 
statements of C++ (or an object-oriented host language of your choice) es- 
tended with OQL to do the following: 

* a) Assign to host-language variable x the object for the PC with model 
number 1000. 

b) Assign to host-language variable y the set of all laptop objects with at 
least 64 megabytes of RAN. 

c) Assign to host-language variable z the average speed of PC's selling foi 
less than $1500. 

! d) Find all the laser printers. print a list of their model numbers and prices. 
and follow it by a message indicating the model number with the IOTI-est 
price. 

!! e) Print a table giving, for each manufacturer of PC's, the minimum and 
maximum price. 
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Exercise 9.3.3 : In this exercise, we shall use the ODL schema of Exercise 9.1.3 
and Fig. 9.3. \Ire shall assume that for each of the four classes of that schema, 
there is a constructor function of the same name that takes values for each of the 
attributes and single-valued relationships, but not the ~nultivalued relationships, 
which are initialized to be empty. For the single-valued relationships to other 
classes, you may postulate a host-language variable whose current value is the 
related object. Create the following objects and assign the object to be the 
value of a host-language variable in each case. 

* a) The battleship Colorado of the Maryland class, launched in 1923. 

b) The battleship Graf Spee of the Liitzo~v class, launched in 1936. 

c) An outcome of the battle of Malaya was that the battleship Prince of 
\Vales was sunk. 

d) The battle of Malaya was fought Dec. 10, 1941. 

e) The Hood class of British battlecrujsers had eight 13-inch guns and a 
displacement of 41.000 tons. 

9.4 User-Defined Types in SQL 

We now turn to the n-ay SQL-99 incorporates many of the object-oriented fca- 
tures that \ve hare seen in ODL and OQL. Because of these recent estensioris 
to SQL. a DBMS that follorvs this standard is often referred to as "object- 
relational." n'e met many of the object-relational conce~~ts abstractly in Sec- 
tion 1.3. Son-, it is time for us to study the details of the standard. 

OQL has no specific notion of a relation: it is just a set (or bag) of structures. 
Hen-ever. the relation is so central to SQL that objects in SQL keep relations 
as the core concept. The classes of ODL are transmogrified into user-defined 
types. or UDT's. in SQL. \Ye find CDT's used in two distinct ways: 

1. A UDT can be the type of a table. 

2. A UDT can be the type of an attribute belonging to some table. 

9.4.1 Defining Types in SQL 

A user-defined type declaration in SQL can be thought of as roughly analogous 
to a class declaration in ODL. \vith some distinctions. First. key declarations 
for a relation rvith a user-defined type are part of the table definition. not the 
type definition: that is. many SQL relations can be declared to have the same 
(user-defined) type but different keys and other constraints. Second, in SQL n-e 
do not treat relationships as properties. -1 relationship must be represented by 
a separate relation. as was discussed in Section 1.4.3. X simple form of UDT 
definition is: 
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1. The keywords CREATE TYPE, 

2. A name for the type, 

3. The keyword AS, 

4. A parenthesized, comma-separated list of attributes and their types. 

5. A comma-separated list of methods, including their argument ty pe(s) , 
and return type. 

That is, the definition of a type T has the form 

CREATE TYPE T AS <attribute and method declarations> ; 

Example 9.20: ?Ve can create a type representing movie stars, analogous to 
the class Star found in the OQL example of Fig. 9.1. However, we cannot 
represent directly a set of movies as a field within Star tuples. Thus, we shall 
start with only the name and address components of Star tuples. 

To begin, note that the type of an address in Fig. 9.1 is itself a tuple, 
with components street and city. Thus, we need two type definitions, one 
for addresses and the other for stars. The necessary definitions are shown in 
Fig. 9.10. 

CREATE TYPE AddressType AS ( 
street CHAR(~O), 
city CHAR(20) 

) ;  

CREATE TYPE StarType AS ( 
name CHAR(30) , 
address AddressType 

) ;  

Figure 9.10: Two type definitions 

h tuple of type AddressType has two components, whose attributes are 
street and city. The types of these components are character strings of length 
50 and 20, respectively. A tuple of type StarType also has tn-o components. 
The first is attribute name, whose type is a 30-character string, and the second is 
address, whose type is itself a UDT AddressType. that is, a tuple with street 
and city components. C] 
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9.4.2 Methods in User-Defined Types 

The declaration of a method resembles the way a function in PSM is introdnced; 
see Section 8.2.1. There is no analog of PSI1 procedures as methods. That is, 
every method returns a value of some type. While function declarations and 
definitions in PShf are combined, a method needs both a declaration, within the 
definition of its type, and a separate definition, in a CREATE METHOD statement. 

X method declaration looks like a PSI1 function declaration, with the key- 
word METHOD replacing CREATE FUNCTION. However, SQL methods typically 
have no arguments; they are applied to rows, just as ODL methods are ap- 
plied to objects. In the definition of the method, SELF refers to this tuple, if 
necessary. 

Example 9.21: Let us extend the definition of the type AddressType of 
Fig. 9.10 with a method houseNumber that extracts from the street com- 
ponent the portion devoted to the house address. For instance, if the street 
component \-ere '123 Maple St. ', then houseNumber should return '123'. 
The revised type definition is thus: 

CREATE TYPE AddressType AS ( 
street CHAR(501, 
city CHAR(20) 
1 
METHOD houseNumber () RETURNS  CHAR(^^) ; 

We see the keyword METHOD, follon-ed by the name of the method and a parnithe- 
sized list of its arguments and their types. In this case, there are no arguments, 
but the parentheses are still needed. Had there bee11 arguments, they would 
have appeared, follo~ved by their types. such as (a INT, b  CHAR(^)). 0 

Separately, we need to define the metliod. -1 simple form of method defini- 
tion consists of: 

1. The keywords CREATE METHOD. 

2. The method name. arguments and their types, and the RETURNS clause, 
as in the declaration of the method. 

3. The keyword FOR and tlic name of the UDT in which the method is 
declarcd. 

4. The body of the method. \vhich is ~vrittcn in the same language as the 
bodies of PSJI functions. 

For instance, we could define the method houseNumber from Example 9.21 as: 

CREATE METHOD houseNmber RETURNS CHAR (10) 
FOR AddressType 
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BEGIN 
. . . 

END ; 

\Ve have omitted the body of the method because accomplishing the intended 
separation of the string s t r ing  as intended is nontrivial, even in PSM. 

9.4.3 Declaring Relations with a UDT 
Having declared a type, we may declare one or more relations whose tuples are 
of that type. The form of relation declarations is like that of Section 6.6.2, but 
we use 

in place of the list of attribute declarations in a normal SQL table declaration. 
Other elements of a table declaration, such as keys, foreign keys, and tuple- 
based constraints, may be added to the table declaration if desired, and apply 
only to this table, not to the UDT itself. 

Example 9.22 : We could declare MovieStar to be a relation whose tuples 
were of type StarType by 

CREATE TABLE MovieStar OF StarType; 

As a result, table MovieStar has two attributes, name and address. The first 
attribute, name, is an ordinary character string, but the second, address. has 
a type that is itself a UDT, namely the type AddressType. 

It is colrimon to have one relation for each type, and to think of that relation 
as the extent (in the sense of Section 1.3.4) of the class corresponding to that 
type. However, it is permissible to have many relations or none of a given type. 

9.4.4 References 

The effect of object identity in object-oriented languages is obtained in SQL 
through the notion of a reference. Tables whose type is a UDT may have 
a reference column that serves as its "identity." This column could be the 
primary key of the table, if there is one, or it could be a colurhn whose values 
are generated and maintained unique by the DBMS, for example. \Ve shall 
defer the matter of defining reference columns until we first see how reference 
types are used. 

To refer to the tuples of a table with a reference column, an attribute may 
have as its type a reference to another type. If T is a UDT, then REF(T) is the 
type of a reference to a tuple of type T. Further, the reference may be given 
a scope, which is the name of the relation whose tuples are referred to. Thus, 
an attribute -4 whose values are references to tuples in relation R, where R is 
a table whose type is the UDT T, would be declared by: 
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A REF(T) SCOPE R 

If no scope is specified, the reference can go to any relation of type T 

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar 
the set of all movies they starred in, but they let us record the best movie for 
each star. Assume that we have declared a relation Movie, and that the type of 
this relation is the UDT MovieType; we shall define both MovieType and Movie 
later, in Fig. 9.11. The following is a new definition of StarType that includes 
a11 attribute bestMovie that is a reference to a movie. 

CREATE TYPE StarType AS ( 
name CHAR(30) , 
address AddressType, 
bestMovie REF(MovieType) SCOPE Movie 

> ; 
Sow, if relation MovieStar is defined to have the UDT above, then each star 
tuple will have a component that refers to a Movie tuple - the star's best 
movie. 

Sest ,  n-e must arrange that a table such as Movie in Example 9.23 will have 
a reference column. Such a table is said to be referenceable. In a CREATE TABLE 
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may 
append a clause of the form: 

REF IS tattribute name> <how generated, 

The attribute name is a name given to the column that will serve as an "object 
identifier" for tuples. The .-how generated" clause is typically either: 

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain- 
ing a unique value in this column of each tuple, or 

2. DERIVED. lneaning that the DBMS will use the primary key of the relation 
to produce unique values for this column. 

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation 
Movie could be declared so that Movie is referenceable. The C'DT is declared 
in lines (1) through (4). Then the relation Movie is defined to have this type in 
lines ( 5 )  through (7). Sotice that n-e have declared t i t l e  and year, together, 
to be the key for relation Movie in line (7). 

\\e see in line (6)  that the name of the "identity" coluln~l for Movie is 
movieID. This attribute. which automatically becomes a fourth attribute of 
Movie. along xith t i t l e ,  year, and incolor; may be used in queries like any 
other attribute of Movie. 

Line (6) also says that the DBMS is responsible for generating the value of 
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM 
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1) CREATE TYPE MovieType AS ( 

2 t i t l e  CHAR(30) , 
year INTEGER, 

3, 4) i nco lo r  BOOLEAN 
1 ; 

5) CREATE TABLE Movie OF MovieType ( 
6) REF IS  movieID SYSTEM GENERATED, 
7) PRIMARY KEY ( t i t l e ,  year)  

1; 

Figure 9.11: Creating a referenceable table 

GENERATED" by "DERIVED," then new tuples would get their value of movieID 
by some calculation, performed by the system, on the values of the primary-key 
attributes t i t l e  and year  from the same tuple. 

Example 9.25 : Now, let us see how to represent the many-many relationship 
between movies and stars using references. Previously, we represented this 
relationship by a relation like S t a r s I n  that contains tuples with the keys of 
Movie and MovieStar. As an alternative, we may define S t a r s I n  to have 
references to tuples from these-two relations. 

First, we need to redefine MovieStar so it is a referenceable table, thusly: 

CREATE TABLE MovieStar OF StarType ( 
REF IS s t a r I D  SYSTEM GENERATED 

1; 

Then, we may declare the relation S t a r s I n  to have two attributes, ~vhich 
are references, one to a movie tuple and one to a star tuple. Here is a direct 
definition of this relation: 

CREATE TABLE S t a r s I n  ( 
s t a r  REF(StarType1 SCOPE MovieStar, 
movie REF(MovieType1 SCOPE Movie 

1; 

Optionally, we could have defined a UDT as above, and then declared S t a r s I n  
to be a table of that type. 

9.4.5 Exercises for Section 9.4 

Exercise 9.4.1 : Write type declarations for the following types: 

a) NameType, with components for first, middle, and last names and a title. 
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* b) PersonType, with a name of the person and references to the persons that 
are their mother and father. You must use the type from part (a) in your 
declaration. 

c) MarriageType, with the date of the marriage and references to the hus- 
band and wife. 

Exercise 9.4.2: Redesign our running products database schema of Exer- 
cise 5.2.1 to use type declarations and reference attributes where appropriate. 
In particular, in the relations PC: Laptop, and P r i n t e r  make the model at- 
tribute be a reference to the Product tuple for that model. 

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the 
tables PC, Laptop, and P r i n t e r  could be references to tuples of the Product 
table. Is it also possible to make the model attribute in Product a reference to 
the tuple in the relation for that type of product? Why or why not? 

* Exercise 9.4.4: Redesign our running battleships database schema of Exer- 
cise 5.2.4 to use type declarations and reference attributes where appropriate. 
The schema from Exercise 9.1.3 should suggest where reference attributes are 
useful. Look for many-one relationships and try to represent them using an 
attribute with a reference type. 

9.5 Operations on Object-Relational Data 

-111 appropriate SQL operations from previous chapters apply to tables that are 
declared with a UDT or that have attributes whose type is a CDT. There are 
also some entirely new operations we can use, such as reference-follo~ving. How- 
ever, some familiar operations. especially those that access or modify columns 
\\-hose type is a UDT, involve new syntax. 

9.5.1 Following References 

Suppose x is a value of type REF(T). Then x refers to some tuple t of type T. 
We can obtain tuple t itself, or components of t: by two means: 

1. Operator -> has essentially the same meaning as this operator does in C. 
That is, if x is a reference to a tuple t. and a is an attribute of t, then 
x->a is the value of the attribute n in tuple t. 

2. The DEREF operator applies to a reference and produces the tuple refer- 
enced. 

Example 9.26: Let us use the relation S t a r s I n  from Example 9.25 to find 
the movies in which JIel Gibson starred. Recall that the schema is 

S t a r s I n ( s t a r ,  movie) 
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where star and movie are references to tuples of MovieStar and Movie, re- 
spectively. A possible query is: 

1) SELECT DEREF (movie) 
2) FROM StarsIn 
3) WHERE star->name = 'Me1 Gibson'; 

In line (3), the expression star->name produces the value of the name com- 
ponent of the MovieStar tuple referred to by the s t a r  component of any given 
StarsIn tuple. Thus, the WHERE clause identifies those StarsIn tuples whose 
star component are references to the Mel-Gibson MovieStar tuple. Line (1) 
then produces the movie tuple referred to by the movie component of those 
tuples. All three attributes - t i t l e ,  year, and incolor - will appear in the 
printed result. 

Note that we could have replaced line (1) by: 

1) SELECT movie 

Holyever, had n-e done so, we would have gotten a list of system-generated 
gibberish that serves as the internal unique identifiers for those tuples. We 
would not see the information in the referenced tuples. 0 

9.5.2 Accessing Attributes of Tuples with a UDT 

When wve define a relation to have a UDT, the tuples must be thought of as single 
objects, rather than lists with components corresponding to the attributes of 
the UDT. .4s a case in point, consider the relation Movie declared in Fig. 9.11. 
This relation has UDT MovieType, which has three attributes: t i t l e ,  year. 
and incolor. However, a tuple t in Movie has only one component, not th~ee. 
That component is the object itself. 

If R-e "drill down" into the object, we can extract the values of the three 
attributes in the type MovieType, as well as use any methods defined for that 
type. However, wve have to access these attributes properly, since they are not 
attributes of the tuple itself. Rather, every CDT has an iniplicitly defined 
observer method for each attribute of that UDT. The name of the observer 
method for an attribute x is x(). We apply this method as we would any other 
method for this UDT; we attach it with a dot to an expression that evaluates 
to an object of this type. Thus, if t is a variable whose value is of type T. and 
x is an attribute of T, then t .x() is the value of x in the tuple (objrct) denoted 
by t 

Example 9.27: Let us find, from the relation Movie of Fig. 9.11 the par (s )  
of movies with title King Kong. Here is one nay to do so: 

SELECT m. year 
FROM Movie m 
WHERE m.t i t le ( )  = 'King Kong'; 
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Even though the tuple variable m would appear not to be needed here, 
we need a variable whose value is an object of type MovieType - the UDT 
for relation Movie. The condition of the WHERE clause compares the constant 
'King Kong' to the value of m. t i t l e  0. The latter is the observer method for 
attribute t i t l e  of type MovieType. Similarly, the value in the SELECT clause 
is expressed m. year():  this expression applies the observer method for year to 
the object m. U 

9.5.3 Generator and Mutator Functions 

In order to create data that conforms to a UDT, or to change components 
of objects with a UDT, we can use two kinds of methods that are created 
automatically, along with the observer methods, whenever a UDT is defined. 
These are: 

1. A generator method. This method has the name of the type and no 
argument. It also has the unusual property that it may be invoked wirhout 
being applied to any object. That is, if T is a UDT, then T ( )  returns an 
object of type T, with no values in its various components. 

2. fifutator methods. For each attribute x of UDT T, there is a lniltator 
method x(v). \$?hen applied to an object of type T, it changes the x 
attribute of that object to have value v. Notice that the mutator and 
observer method for an attribute each have the name of the attribute, 
but differ in that the mutator has an argument. 

Example 9.28: We shall write a PSI1 procedure that takes as arguments a 
street, a city, and a name, and inserts into the relation MovieStar (of type 
StarType according to Example 9.22) an object constructed from these values, 
using calls to the proper generator and mutator functions. Recall from Esam- 
ple 9.20 that objects of StarType have a name component that is a character 
string, but an address component that is itself an object of type AddressType. 
The procedure Inse r t s ta r  is shown in Fig. 9.12. 

Lines (2) through (4) introduce the argunients s, c, and n, which will provide 
values for a street, city, and star name, respectively. Lines ( 5 )  and (6) declare 
two local variables. Each is of one of the UDT's involved in the type for objects 
that exist in the relation MovieStar. At lines (7) and (8) lve create empty 
objects of each of these tn-o types. 

Lines (9) and (10) put real values in the object neuAddr; these values are 
taken from the procedure arguments that provide a street and a city. Line (11) 
similarly installs the argument n as the value of the name component in the 
object newstar. Then line (12) takes the entire newAddr object and ~nakes it 
the value of the address component in newstar. Finally, line (13) inserts the 
constructed object into relation MovieStar. Notice that, as always. a relation 
that has a UDT as its type has but a single component, even if that component 
has several attributes. such as name and address in this example. 
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1) CREATE PROCEDURE Inser ts ta r (  
I N  s CHAR(5O), 

2, 3) I N  c CHAR(10). 
4) I N  n CHAR(30) 

1 
5) DECLARE newAddr AddressType; 
6) DECLARE newstar StarType; 

BEGIN 
7) SET newAddr = AddressTypeO; 
8) SET newstar = StarTypeO ; 
9 )  newAddr.street(s); 

10) newAddr. c i t y  (c) ; 
11) newstar .name(n) ; 
12) newstar. address(newAddr1; 
13) INSERT INTO Moviestar VALUES(newStar); 

END ; 

Figure 9.12: Creating and storing a StarType object 

To insert a star into MovieStar, we can call procedure Inser ts ta r .  

CALL InsertStar( '345 Spruce S t . ' ,  'Glendale', 'Gwyneth Paltrow'); 

is an example. 

It is much simpler to insert objects into a relation with a UDT if your 
DBMS provides, or if you create, a generator function that takes values for 
the attributes of the C'DT and returns a suitable object. For example, if we 
have functions AddressType(s , c) and StarType(n, a) that return objects of 
the indicated types, then we can make the insertion at the end of Example 9.28 
with an INSERT statement of a familiar form: 

INSERT INTO MovleStar VALUES ( 
StarType('Gwyneth Paltrow', 

AddressType('345 Spruce S t . ' ,  'Glendale'))) ;  

9.5.4 Ordering Relationships on UDT's 
Objects that are of some LDT are inherently abstract, in the sense that there 
is no way to compare two objects of the same UDT, either to test whether they 
are "equal' or whether one is less than another. Even two objects that have all 
components identical will not be considered equal unless we tell the system to 
regard them as equal. Similarly, there is no obvious way to sort the tuples of 
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a relation that has a UDT unless we define a function that tells which of two 
objects of that UDT precedes the other. 

Yet there are many SQL operations that require either an equality test or 
both an equality and a "less than" test. For instance, we cannot eliminate 
duplicates if we can't tell whether two tuples are equal. We cannot group by an 
attribute whose type is a UDT unless there is an equality test for that UDT. 
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause 
unless we can compare any two elements. 

To specify an ordering or comparison, SQL allows us to issue a CREATE 
ORDERING statement for any UDT. There are a number of forms this statement 
may take, and we shall only consider the two simplest options: 

1. The statement 

CREATE ORDERING FOR T EQUALS ONLY BY STATE; 

says that two members of UDT T are considered equal if all of their 
corresponding components are equal. There is no < defined on objects of 
UDT T. 

2. The following statement 

CREATE ORDERING FOR T 
ORDERING FULL BY RELATIVE WITH F ;  

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be 
performed on objects of UDT T. To tell how objects xl  and 2 2  compare, 
we apply the function F to these objects. This function must be writ- 
ten so that F(x1,z2) < 0 whenever we want to conclude that xl < x2; 
F(xl ,x2)  = 0 means that x1 = x2, and F(x1,x2) > 0 means that. x1 > 2 2 .  

If lve replace "ORDERING FULL" with "EQUALS ONLY," then F(x1,22) = 0 
indicates that x1 = x2, rvhile any other value of F(x1, xz) means that 
XI # 12. Comparison by < is impossible in this case. 

Example 9.29: Let us consider a possible ordering on the UDT StarType 
from Example 9.20. If we want only an equality on objects of this UDT, we 
could declare: 

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE; 

That state~nent says that t ~ - o  objects of StarType are equal if and only if their 
names are the same as character strings, and their addresses are the same as 
objects of UDT AddressType. 

The problem is that, unless we define an ordering for AddressType, an 
object of that type is not even equal to itself. Thus, we also need to create 
at least an equality test for AddressType. simple way to do So is to declare 
that two AddressType objects are equal if and only if their streets and cities 
are each the same. 11-e could do so by: 
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CREATE ORDERING FOR AddressType EQUALS ONLY BY STATE; 

Alternatively, we could define a conlplete ordering of AddressType objects. 
One reasonable ordering is to order addresses first by cities, alphabetically, and 
among addresses in the same city, by street address, alphabetically. To do so, I{-e 
have to define a function, say AddrLEG, that takes two AddressType arguments 
and returns a negative, zero, or positive value to indicate that the first is less 
than, equal to, or greater than the second. We declare: 

CREATE ORDERING FOR AddressType 
ORDER FULL BY RELATIVE WITH AddrLEG; 

The function AddrLEG is shown in Fig. 9.13. Notice that if we reach line (7),  
it must be that the two city components are the same, so we compare the 
street components. Likewise, if we reach line (9), the only remaining possi- 
bility is that the cities are the same and the first street precedes the second 
alphabetically. 13 

1) CREATE FUNCTION AddrLEG ( 
2) x1 AddressType, 
3) x2 AddressType 
4) ) RETURNS INTEGER 

5) IF xl.city() < x2.cityO THEN RETURN(-1) 

6) ELSEIF xl.city() > x2.cityO THEN RETURN(1) 

7) ELSEIF xl. street () < x2. street () THEN RETURN(-1) 
8) ELSEIF xl.street() = x2.streetO THEN RETURN(0) 
9) ELSE RETURN(1) 

END IF; 

Figure 9.13: A comparison function for address objects 

9.5.5 Exercises for Section 9.5 

Exercise 9.5.1: Using the StarsIn relation of Example 9.25, and the Movie 
and Moviestar relations accessihle through StarsIn, write the following quer- 
ies: 

* a) Find the names of the stars of Ishtar. 

*! b) Find the titles and years of all movies in which at least one star lives in 
lialibu. 

c) Find all the movies (objects of type MovieType) that starred Melanie 
Griffith. 
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! d) Find the movies (title and year) with a t  least five stars. 

Exercise 9.5.2: Using your schema from Exercise 9.4.2, write the following 
queries. Don't forget to use references whenever appropriate. 

a) Find the manufacturers of PC's with a hard disk larger than 60 gigabytes. 

b) Find the manufacturers of laser printers. 

! c) Produce a table giving for each model of laptop, the model of the lap- 
top having the highest processor speed of any laptop made by the same 
manufacturer. 

Exercise 9.5.3: Using your schema from Exercise 9.4.4, write the following 
queries. Don't forget to use references whenever appropriate and avoid joins 
(i.e., subqueries or more than one tuple variable in the FROM clause). 

* a) Find the ships with a displacement of more than 35,000 tons. 

b) Find the battles in which at least one ship was sunk. 

! c) Find the classes that had ships launched after 1930. 

!! d) Find the battles in n-hich at least one US ship was damaged. 

Exercise 9.5.4 : Assuming the function AddrLEG of Fig. 9.13 is available, write 
a suitable function to compare objects of type StarType, and declare your 
function to be the basis of the ordering of StarType objects. 

*! Exercise 9.5.5 : Write a procedure to take a star name as argument and delete 
from StarsIn and MovieStar all tuples involving that star. 

9.6 Summary of Chapter 9 

+ Select-From- Where Statements in OQL: OQL offers a select-from-where 
expression that resembles SQL's. In the FROM clause, we can declare 
variables that range over any collection, including both extents of classes 
(analogous to relations) and collections that are the values of attributes 
in objects. 

+ Common OQL Operators: OQL offers for-all, there-exists, IN: union, in- 
tersection, difference, and aggregation operators that are similar in spirit 
to SQL's. Ho~ever, aggregation is al~vays over a collection, not a colunln 
of a relation. 

+ OQL Group-By: OQL also offers a GROUP BY clause in select-from-where 
statements that is similar to SQL's. Howeyer, in OQL, the collection of 
objects in each group is explicitly accessible through a field name called 
partition. 
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+ Extracting Elements &om OQL Collections: We can obtain the lone mem- 
ber of a collection that is a singleton by applying the ELEMENT operator. 
The elements of a collection with more than one member can be accessed 
by first turning the collection into a list, using an ORDER BY clause in a 
select-from-where statement, and then using a loop in the surrounding 
host-language program to visit each element of the list in turn. 

+ User-Defined Types i n  SQL: Object-relational capabilities of SQL are cen- 
tered around the UDT, or user-defined type. These types may be declared 
by listing their attributes and other information, as in table declarations. 
In addition, methods may be declared for UDT's. 

+ Relations With a UDT as Type: Instead of declaring the attributes of a 
relation, we may declare that relation to have a UDT. If we do so, then 
its tuples have one component, and this component is an object of the 
UDT. 

+ Reference Types: A type of an attribute can be a reference to a UDT. 
Such attributes essentially are pointers to objects of that UDT. 

+ Object Identity for UDT's: When we create a relation whose type is a 
UDT, we declare an attribute to serve as the "object-ID" of each tuple. 
This component is a reference to the tuple itself. Unlike in object-oriented 
systems, this "OID" column may be accessed by the user, although it is 
rarely meaningful. 

+ Accessing components of a UDT: SQL provides observer and mutator 
functions for each attribute of a UDT. These functions, respectively, re- 
turn and change the value of that attribute when applied to any object 
of that UDT. 

9.7 References for Chapter 9 

The reference for OQL is the same as for ODL: [I]. Material on object-relational 
features of SQL can be obtained as described in the bibliographic notes to 
Chapter 6. 

1. Cattell, R. G. G. (ed.), The Object ~at'abase Standard: ODMG-99, Nor- 
gan-Kaufmann, San Francisco, 1999. 

Chapter 10 

Logical Query Languages 

Some query languages for the relational model resemble a logic more than they 
do the algebra that nre introduced in Section 5.2. However, logic-based lan- 
guages appear to be difficult for many programmers to grasp. Thus, ~ve  have 
delayed our coverage of logic until the end of our study of query languages. 

\Ye shall introduce Datalog, which is the simplest form of logic devised for 
the relational model. In its nonrecursive form, Datalog has the same power as 
the classical relational algebra. However, by allowing recursion, we can express 
queries in Datalog that cannot be expressed in SQL2 (except by adding proce- 
dural programming such as PSLI). We discuss the complexities that come up 
n-hen we allow recursive negation, and finally, we see how the solution provided 
by Datalog has been used to provide a way to allow meaningful recursion in the 
most recent SQL-99 standard. 

10.1 A Logic for Relations 

-1s an alternative to abstract query languages based on algebra, one can use a 
form of logic to express queries. The logical query language Datalog ("database 
logic") consists of if-then rules. Each of these rules expresses the idea that from 
certain combinations of tuples in certain relations we may infer that some other 
tuple is in some other relation, or in the answer to a query. 

10.1.1 Predicates and Atoms 

Relations are represented in Datalog by predicates. Each predicate t a b s  a fixed 
number of arguments. and a predicate follorsed by its arguments is called an 
atom. The syntax of atoms is just like that of function calls in conl-entional 
programming languages; for example P(xl, 22,. . . , x,) is an atom consisting of 
the predicate P with arguments XI, x t ,  . . . , x,. 

In essence, a predicate is the name of a function that returns a boolean 
value. If R is a relation with n attributes in some fixed order, then n-e shall 
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