
130 CHAPTER 3. THE RELATIONAL DATA MODEL

5. codd, E. F., lL&rther normalization of the data base relational model," in
Database Systems (R. Rustin, ed.), Prentice-Hall, Englewood Cliffs, NJ,
1972.

6. Delobel, C., "Normalization and hierarchical dependencies in the rela-
tional data model," ACM Transactions on Database Systems 3:3, pp. 201-
222, 1978.

7. Fagin, R., "Multivalued dependencies and a new normal form for rela-
tional databases," ACM lkansactions on Database Systerns 2:3, pp. 262-
278, 1977.

a. Ullman, J. D., Principles of Database and nowl ledge-~ase Systems, VOG ther Data Models
ume I, Computer Science Press, New York, 1988.

9. Zaniolo, C . and h4. A. Melkanoff, "On the design of relational database
schemata," ACM Transactions on Database Systems 6:1, pp. 1 4 7 , 1981. The entity-relationship and relational models are just two of the models that

have importance in database systems today. In this chapter we shall introduce
you to several other models of rising importance.

We begin with a discussion of object-oriented data models. One approach
to object-orientation for a database system is to extend the concepts of object-
oriented programming languages such as C++ or Java to include persistence.
That is, the presumption in ordinary programming is that objects go away af-
ter the program finishes, while an essential requirement of a DBMS is that the
objects are preserved indefinitely, unless changed by the user, as in a file sys-
tem. W e shall study a "pure" object-oriented data model, called ODL (object
definition language), which has been standardized by the ODMG (object data
management group).

Next, we consider a model called object-relational. This model, part of
t,he most recent SQL standard, called SQL-99 (or SQL:1999, or SQL3), is an
attempt to extend the relational model, as introduced in Chapter 3, to include
many of the common object-oriented concepts. This standard forms the basis
for object-relational DBMS's t,hat are now available from essentially all the
major vendors, although these vendors differ considerably in the details of how
the concepts are implemented and made available to users. Chapter 9 includes
a discussion of the object-relational model of SQL-99.

Then, we take up the "semistructured" data model. This recent innovation
is an attempt to deal with a number of database problems, including the need
to combine databases and other data sources, such as Web pages, that have
different schemas. While an essential of object-oriented or object-relational
systems is their insistence on a fixed schema for every class or every relation,
semistructured data is allowed much more flexibility in what components are
present. For instance, we could think of movie objects, some of which have a
director listed, some of which might have several different lengths for several
different versions, some of which may include textual reviews, and so on.

The most prominent implenientation of semistructured data is XML (exten-

131

132 CHAPTER 4. OTHER DATA h1ODELS EVIE W OF OBJECT-ORIENTED CONCEPTS 133

sible markup language). Essentially, XML is a specification for "documents," component has type Ti and is referred to by its field name fi. Record
which are really collections of nested data elements, each with a role indicated structures are exactly what C or C++ calls "structs," and we shall fie-
by a tag. \ve believe that XML data will serve as an essential component in quently use that term in what follows.
systems that mediate among data sources or that transmit data among sources.
XML may even become an important approach to flexible storage of data in 2. Collection types. Given a type T, one can construct new types by applying

databases.
a collection operator to type T. Different languages use different collection
Operators, but there are several common ones, including arrays, lists, and
sets. Thus, if T viere the atomic type integer, we might build the collection

4.1 Review of Object-Oriented Concepts types "array of integers," "list of integers," or "set of integers."

Before introducing object-oriented database models, let us review the major 3. Reference types. -A reference to a type T is a type whose values are suitable
object-oriented concepts themselves. Object-oriented programming has been for locating a value of the type T. In C or C++, a reference is a "pointer"
widely regarded as a tool for better program organization and, ultimately, more to a value, that is, the virtual-memory address of the value pointed to.
reliable software implementation. First popularized in the language Smallt,alk,
object-oriented programming received a big boost with the development of C++ Of course, record-structure and collection operators can be applied repeat-

and the to C++ of much software development that was formerly . e d l ~ to build ever more complex types. For instance, a bank might define a type

done in C. More recently, the language Java, suitable for sharing Programs that is a record structure with a first component named customer of type string

across the world Wide Web, has also focused attention on object-oriented Pro- and whose second component is of type set-of-integers and is named accounts.

gramming. Such a type is suitable for associating bank customers with the set of their

The database world has likewise been attracted to the object-oriented Para-
digm, particularly for database design and for extending relational DBMS's
with new features. In this section we shall review the ideas behind object 4.1.2 Classes and Objects
orientation:

class consists of a t.ype and possibly one or more fullctions or procedures
1. A powerful type system. (called methods; see below) that can be executed on objects of that class. The

objects of a class are either values of that type (called immutable object.$) or
2. Classes, which are types associated with an extent, or set of objects belong- variables whose value is of that type (called mutable objects). For example, if lye

ing to the class. An essential feature of classes, as opposed to conventional define a class C whose type is "set of integers," the11 {2,5,7) is an immutable
data types is that classes may include methods, which are procedures that object of class C, while variable s could be declared to be a mutable object of
are applicable to objects belonging to the class. class C and assigned a value such as {2,5,7).

3. Object Identity, the idea that each object has a unique identity, indepen-
dent of its value. 4.1.3 Object Identity

4. Inheritance, which is the organization of classes into hierarchies, where Objects are assumed to have an object identity (OID). No two objects can have

each class inherits the properties of the classes above it. the same OID, and no object has two different OID's. Object identity has
some interesting effects on how we model data. For instance, it is essential that

4.1.1 The Type System
an entity set have a key formed from values of attributes possessed by it or a
related entity set (in the case of weak entity sets). However, 13-ithin a class,

.i\n object-oriented programming language offers the user a rich collection of we assume we can distinguish two objects whose attributes all ha\-e identical

types. Starting with atomic types, such as integers, real numbers, booleans, values, because the OID's of the two objects are guaranteed to be different.

and character strings, one may build new types by using type c o n s t r ~ ~ t o r ~ .
Typically, the type constructors let us build: 4.1.4 Met hods

1. Record structures. Given a list of types TI, T2, . . . , T, and a corresponding Associated with a class there are usually certain functions, often called methods.
list of field names (called instance variables in Smalltalk) f i , f2,. . . , fn, A method for a class C has at least one argument that is an object of class C;
one can construct a record type consisting of n components. The ith it may have other arguments of any class, including C. For example, associated

134 CHAPTER 4. OTHER D.4TA MODELS 4.2. INTRODUCTION TO ODL 135

with a class whose type is "set of integers," we might have methods to sum the that takes an account a belonging to the subclass TimeDeposit and calculates
elements of a given set, to take the union of two sets, or to return a boolean the penalty for early withdrawal, as a function of the dueDate field in object a
indicating whether or not the set is empty.

In some situations, classes are referred to as "abstract data types," meaning
that they encapsulate, or restrict access to objects of the class so that only the
methods defined for the class can modify objects of the class directly. This
restriction assures that the objects of the class cannot be changed in ways that
were not anticipated by the designer of the class. Encapsulation is regarded as L (Object Definition Language) is a standardized language for specifying
one of the key tools for reliable software development. e structure of databases in object-oriented terms. It is an extension of IDL

terface Description Language), a component of CORBA (Common Object
4.1.5 Class Hierarchies quest Broker Architecture). The latter is a standard for distributed, object-

It is possible to declare one class C to be a subclass of another class D. If
so, then class C inherits all the properties of class D, including the type of D

4.2.1 Object-Oriented Design and any functions defined for class D. However, C may also have additional
. properties. For example, new methods may be defined for objects of class C, . In an object-oriented design, the world to be modeled is thought of as composed

and these methods may be either in addition to or in place of methods of D. of objects, which are observable entities of some sort. For example, people may
It may even be possible to extend the type of D in certain ways. In particular,

i
be thought of as objects; so may bank accounts, airline flights, courses a t a

i if the type of D is a record-structure type, then we can add new fields to this college, buildings, and so on. Objects are assumed to have a unique object
I type that are present only in objects of type C. identity (OID) that distinguishes them from any other object, as we discussed
I in Section 4.1.3.

Example 4.1 : Consider a class of bank account objects. We might describe To organize information, we usually want to group objects into classes of ob-
the type for this class informally as: jects with similar properties. However, when speaking of ODL object-oriented

designs, we should think of "similar properties" of the objects in a class in two
CLASS Account = CaccountNo: in teger;

balance: r e a l ;
owner: REF Customer; The real-world concepts represented by the objects of a class should be

similar. For instance, it makes sense to group all customers of a bank into
one class and all accounts at the bank into another class. I t would not

That is, the type for the Account class is a record structure wit,h three fields: make sense to group customers and accounts together in one class, because
an integer account number, a real-number balance, and an owner that is a they have little or nothing in common and play essentially different roles
reference to an object of class Customer (another class that we'd need for a in the world of banking.
banking database, but whose type we have not introduced here).

1

! We could also define some methods for the class. For example. we might
I have a method

deposit(a: Account, m: r ea l)

that increases the balance for Account object a by amount m. Account
Finally, 1.c might wish to have several subclasses of the Account subclass. object

For instance, a time-deposit account could have an additional field dueDate.
the date at which the account balance may be withdrawn by the owner. There Figure 4.1: An object representing an account
might also be an additional method for the subclass TimeDeposit

The properties of objects in a class must be the same. When programming
penalty(a: TimeDeposit) in an object-oriented language, we often think of objects as records, like

CHAPTER 4. OTHER DATA IVODELS 4.2. INTRODUCTION TO ODL 137

that suggested by Fig. 4.1. Objects have fields or slots in which values are Example 4.2: In Fig. 4.2 is an ODL declaration of the class of movies. I t
placed. These values may be of common types such as integers, strings, is not a complete declaration; we shall add more to it later. Line (1) declarw
or arrays, or they may be references to other objects. Movie to be a class. Following line (1) are the declarations of four attributes

that all Movie objects will have.
When specifying the design of ODL classes, we describe properties of three

1) c lass Movie {

1. Attributes, which are values associated with the object. We discuss the 2) a t t r i b u t e s t r i ng t i t l e ;

legal types of ODL attributes in Section 4.2.8. 3) a t t r i b u t e integer year;
4) a t t r i b u t e integer length;

2. Relationships, which are connections between the object at hand and an- 5) a t t r i b u t e enum Film Ccolor,blackAndMite) filmType;
other object or objects.

3. Methods, which are functions that may be applied to objects of the class.
Figure 4.2: An ODL declaration of the class Movie

Attributes, relationships, and methods are collectively referred to as properties.
The first attribute, on line (2), is named t i t l e . Its type is string-a

4.2.2 Class Declarations character string of unknown length. U'e expect the value of the t i t l e attribute
in any Movie object to be the name of the movie. The next two attributes, year

A declaration of a class in ODL, in its simplest form, consists of: and length declared on lines (3) and (4), have integer type and represent the
year in which the movie was made and its length in minutes, respectively. On

1. The keyword class, line (5) is another attribute f ilmType, which tells whether the movie was filmed
in color or black-and-white. Its type is an enumeration, and the name of the

2. The name of the class, and enumeration is Film. Values of enumeration attributes are chosen from a list

3. A bracketed list of properties of the class. These properties can be at- of le'terals, color and blackAndWhite in this example.
tributes, relationships, or methods, mixed in any order. An object in the class Movie as we have defined it so far can be thought of

as a record or tuple with four components, one for each of the four attributes.

That is, the simple form of a class declaration is

c l ass <name> { ("Gone With the Wind", 1939, 231, color)

<list of properties, is a Movie object. 0

Example 4.3 : In Example 4.2, all the attributes have atomic types. Here is

4.2.3 Attributes in ODL an example with a nonatomic type. We can define the class Star by

The simplest kind of property is the attribute. These properties describe some 1) c lass S ta r C
aspect of an object by associating a value of a fixed type with that object. 2) a t t r i b u t e s t r i n g name;
For example, person objects might each have an attribute name whose type is 3) a t t r i b u t e Struct Addr
string and whose value is the name of that person. Person objects might also {st r ing s t r e e t , s t r i n g c i ty) address;
have an attribute b i r thdate that is a triple of integers (i.e., a record structure)
representing the year, month, and day of their birth.

In ODL, unlike the E/R model, attributes need not be of simple types, such Line (2) specifies an attribute name (of the star) that is a string. Line (3)
as integers and strings. l i e just mentioned bi r thdate as an example of an specifies another attribute address. This attribute has a type that is a record
attribute with a structured type. For another example, an attribute such as structure. The name of this structure is Addr, and the type consists of two
phones might have a set of strings as its type, and even more complex types fields: s t r e e t and c i ty . Both fields are strings. In general, one can define
are possible. \Ire summarize the type system of ODL in Section 4.2.8. record structure types in ODL by the keyword Struct and curly braces around

Why Name Enumerations and Structures?

The name Film for the enumeration on line 5 of Fig. 4.2 doesn't seem to
be necessary. However, by giving it a name, we can refer to it outside the
scope of the declaration for class Movie. We do so by referring to it by
the scoped name Movie: :Film. For instance, in a declaration of a class of
cameras, we could have a line:

a t t r i bu te Movie::Film uses;

This line declares attribute uses to be of the same enumerated type with
the values color and blackAndWhite.

Another reason for giving names to enumerated types (and structures
as well, which are declared in a manner similar to enumerations) is that we
can declare them in a Umodule" outside the declaration of any particular
class, and have that type available to all the classes in the module.

138 CHAPTER 4. OTHER DATA MODELS 139

4.2.5 Inverse Relationships

~ u s t as we might like to access the stars of a given movie, we might like to
know the movies in which a given star acted. To get this information into S ta r
objects, we can add the line

re lat ionship Set<Movie> s tar red In ;

to the declaration of class S ta r in Example 4.3. However, this line and a similar
declaration for Movie omits a very important aspect of the relationship between
movies and stars. We expect that if a star S is in the s t a r s set for movie M ,
then movie M is in the s tar red In set for star S. We indicate this connection
between the relationships stars and s tar red In by placing in each of their
declarations the keyword inverse and the name of the other relationship. If
the other relationship is in some other class, as it usually is, then we refer to
that relationship by the name of its class, followed by a double colori (: :) and
the name of the relationship.

Example 4.5: To define the relationship s tar red In of class Star to be the
inverse of the relationship s t a r s in class Movie, we revise the declarations of

the list of field names and their types. Like enumerations, structure types must these classes, as shown in Fig. 4.3 (which also contains a definition of class
have a name, which can be used ~lsemhere to refer to the same structure type.
U

Studio to be discussed later). Line (6) shows the declaration of relationship
stars of movies, and says that its inverse is Star: : starredIn. Since relation-
ship starredIn is defined in another class, the relationship name is. preceded

4.2.4 Relationships in ODL by the name of that class (s ta r) and a double colon. Recall the double colon is
used whenever we refer to something defined in another class, such as a property

IQhile we can learn much about an object by examining its attributes, some- or type name.
times a critical fact about an object is the way it connects to other objects in Similarly, relationship s tar red In is declared in line (11). Its inverse is
the same or another class. declared by that line to be s t a r s of class Movie, as it must be, because inverses

always are linked in pairs.
Example 4.4: Now, suppose we want to add to t.he declaration of the Movie
class from Example 4.2 a property that is a set of stars. More precisely, we -1s a general rule: if a relationship R for class C associates with object x of
want each Movie object to connect the set of Star objects that are its stars. class C with objects yl$ yg, . . . , yn of class Dl then the inverse relationship of R
The best way to represent this connection between the Movie and S ta r classes associates with each of the yi's the object x (perhaps along with other objects).
is with a relationship. We may represent this relationship in Movie by a line: Sometimes, it helps to visualize a relationship R from class C to class D as a

list of pairs, or tuples, of a relation. The idea is the same as the "relationship
re lat ionship Set<Star> s ta rs ; set" we used to describe E/R relationships in Section 2.1.5. Each pair consists

of an object x from class C and an associated object y of class D: as:
in the declaration of class Movie. This line may appear in Fig. 4.2 after any
of the lines numbered (1) through (5). It says that in each object of class
Movie there is a set of references to Star objects. The set of references is called
stars. The keyword re lat ionship specifies that stars contains references to
other objects, while the keyword Set preceding <Star> indicates that stars
rekrences a set of S ta r objects, rather than a single object, In general, a type
that is a Set of elements of some other type T is defined in ODL by the keyword Then the inverse relationship for R is the set of pairs with the components
S e t and angle brackets around the type T . o

CHAPTER 4. OTHER DATA MODELS 4.2. INTRODUCTION TO ODL 141

1. If we have a many-many relationship between classes C and D, then in
1) c l ass Movie C class C the type of the relationship is Set<D>, and in class D the type is
2) attr ibute s t r ing t i t l e ;
3) at tr ibute integer year;
4) at t r ibute integer length; 2. If the relationship is many-one from C to D, then the type of the rela-

5) attr ibute enum F i l m {color,black~ndWhite~ filmType; tionship in C is just D, while the type of the relationship in D is Set<C>.
6) relat ionship Set<Star> s ta rs

inverse Star::starredIn; 3. If the relationship is many-one from D to C, then the roles of C and D

7) relat ionship Studio ownedBy are reversed in (2) above.

inverse Studio::owns; 4. If the relationship is one-one, then the type of the relationship in C is just
1; D, and in D it is just C.

8) c l ass Star C Note, that as in the E/R model, we allow a many-one or one-one relationship
9) at t r ibute s t r ing name; to include the case where for some objects the "one" is actually "none." For

10) at t r ibute Struct Addr instance, a many-one relationship from C to D might have a missing or "null"
(s t r ing s t r ee t , s t r ing c i t y) address; value of the relationship in some of the C objects. Of course, since a D object

11) relat ionship Set<Movie> starredIn could be associated with any set of C objects, it is also permissible for that set
inverse Movie::stars; to be empty for some D objects.

3 ;
Example 4.6 : In Fig. 4.3 we have the declaration of three classes, Movie, Star,

12) c l ass Studio i and Studio. The first two of these have already been introduced in Examples

13) attr ibute s t r ing name; 4.2 and 4.3. ?Ve also discussed the relationship pair s ta rs and starredIn.

14) at tr ibute s t r ing address; Since each of their types uses Set , we see that this pair represent.^ a many-

15) re la t ionship Set<Movie> owns many relationship between Star and Movie.

inverse Movie::ownedBy; Studio objects have attributes name and address; these appear in lines (13)

1; and (14). Notice that the type of addresses here is a string, rather than a
structure as was used for the address attribute of class Star on line (10).
There is nothing wrong with using attributes of the same name but different

Figure 4.3: Some ODL classes and their relationships types in different classes.
In line (7) we see a relationship ownedBy from movies to studios. Since the

DIC
type of the relationship is Studio, and not Set<Studio>, we are declaring that
for each movie there is one studio that owns it. The inverse of this relationship
is found on line (15). There we see the relationship owns from studios to movies.
The type of this relationship is Set<Movie>, indicating that each studio o~vns a
set of movies-perhaps 0, perhaps 1, or perhaps a large number of movies.

Notice that this rule works even if C and D are the same class. There are some 4.2.7 Methods in ODL
relationships that logically run from a class to itself, such as "child of" from
the class "Persons" to itself. The third kind of property of ODL classes is the method. As in other object-

oriented languages, a method is a piece of executable code that may be applied
to the objects of the class.

4.2.6 Multiplicity of Relationships In ODL, we can declare the names of the methods associated with a class and
the input /output types of those methods. These declarations, called signatures,

Like the binary relationships of the E/R model, a pair of inverse relationships ' ~ c t u a l l ~ , the Set could be replaced by another "collection type," such as list or bag,
in ODL can be classified as either many-many, many-one in either direction, or as discussed in Section 4.2.8. We shall assume all collections are sets in our exposition of
one-one. The type declarations for the pair of relationships tells us which. relationships, however.

Why Signatures?

The value of providing signatures is that when we implement the schema
in a real programming language, we can check automatically that the
implementation matches the design as was expressed in the schema. We
cannot check that the implementation correctly implements the "meaning"
of the operations, but we can at least check that the input and output
parameters are of the correct number and of the correct type.

142 CHAPTER 4. OTHER DATA MODELS 2. lXTRODUCTIOAr TO ODL 143

Line (8) declares a method 1engthInHours. We might imagine that it pro-
uces as a return value the length of the movie object to which it is applied, but

erted from minutes (as in the attribute length) to a floating-point number
is the equivalent in hours. Note that this method takes no parameters.
Movie object to which the method is applied is the "hidden" argument,
it is from this object that a possible implementation of 1engthInHours

ould obtain the length of the movie in minute^.^
thod 1engthInHours may raise an exception called noLengthFound, Pre-
ly this exception would be raised if the length attribute of the object

ue that could not represent a valid length (e.g., a negative number).

are like function declarations in C or C++ (as opposed to function definitions,
which are the code to implement the function). The code for a method would 1) c lass Movie {
be written in the host language; this code is not part of ODL. 2) a t t r i b u t e s t r i ng t i t l e ;

Declarations of methods appear along with the attributes and relationships 3) a t t r i bu te integer year;
in a class declaration. As is normal for object-oriented languages, each method . 4) a t t r i bu te integer length;
is associated with a class, and methods are invoked on an object of that class. 5) a t t r i bu te enumeration(color,blackAndWhite) filmType;
Thus, the object is a "hidden" argument of the method. This style allows the 6) re lat ionship Set<Star> stars
same method name to be used for several different classes, because the object inverse Star : :s tarredIn;
upon which the operation is performed determines the particular method meant. 7) re lat ionship Studio ownedBy
Such a method name is said to be overloaded. inverse Studio::oms;

The syntax of method declarations is similar to that of function declarations 8) f l o a t lengthInHours() raises(noLengthF0und);
in C, with two important additions: 9) void starNames(out Set<Str ing>);

LO) void otherMovies(in Star , out Set<Movie>)
1. Method parameters are specified to be in, out, or inout, meaning that raises(noSuchStar);

they are used as input parameters, output parameters, or both, respec-
tively. The last two types of parameters can be modified by the method;
i n parameters cannot be modified. In effect, out and inout parameters
are passed by reference, while i n parameters may be passed by value. Figure 4.4: Adding method signatures to the Movie class
Note that a method may also have a return value, which is a way that a
result can be produced by a method other than by assigning a value to In line (9) we see another method signature, for a method called starNames.
an out or inout parameter. This method has no return value but has an output parameter whose type is a

set of strings. We presume that the value of the output paramet,er is computed
2. Methods may raise ezceptions, which are special responses that are out- by starNames to be the set of strings that are the values of the attribute name

side the normal parameter-passing and return-value mechanisms by which for the stars of the movie to which the method is applied. However, as always
methods communicate. An exception usually indicates an abnormal or there is no guarantee that t,he method definition behaves in this particular way.
unexpected condition that will be "handled" by some method that called Finally, at line (10) is a third method, otherMovies. This method has an
it (perhaps indirectly through a sequence of calls). Division by zero is an input parameter of type Star. A possible implementation of this method is as
example of a condition that might be treated as an exception. In ODL: a follows. We may suppose that otherMovies expects this star to be one of the
method declaration can be follo~ved by the keyword ra ises, followed by stars of the movie; if it is not, then the exception nosuchstar is raised. If it is
a parenthesized list of one or more exceptions that the method can raise. one of the stars of the movie to which the method is applied, then the output

parameter, whose type is a set of movies, is given as its value the set of all the
Example 4.7: In Fig. 4.4 we see an evolution of the definition for class Movie,

the actual definition of the method 1engthInHours a special term such as self would
last seen in Fig. 4.3. The methods included with the class declaration are as be used to refer to the object to which the method is appUed. This matter is of no concern
follows. as far as declarations of method signatures is concerned.

144 CHAPTER 4. OTHER DATA MODELS , INTRODUCTION TO ODL 145

other movies of this star. 0

I Sets, Bags, and Lists
4.2.8 Types in ODL To understand the distinction between sets, bags, and lists, remember that

i ODL offers the database designer a type system similar to that found in C or a set has unordered elements, and only one occurrence of each element. A
i 1 other conventional programming languages. A type system is built from a basis bag allows more than one occurrence of an element, but the elements and

of types that are defined by themselves and certain recursive rules whereby their occurrences are unordered. A list allows more than one occurrence of

complex types are built from simpler types. In ODL, the basis consists of: an element, but the occurrences are ordered. Thus, {1,2,1) and {2,1,1)
are the same bag, but (1,2,1) and (2,1,1) are not the same list.

1. Atomic types: integer, float, character, character string, boolean, and
enumerations. The latter are lists of names declared to be abstract values.
We saw an example of an enumeration in line (5) of Fig. 4.3, where the
names are color and blackAndWhite.

Struct N {TI FI , T2 F2,. . . , Tn Fn)

2. Class names, such as Movie, or Star, which represent types that are denotes the type named N whose elements are structures with n fields.
actually structures, with components for each of the attributes and rela- The ith field is named F, and has type T,. For example, line (10) of
tionships of that class. Fig. 4.3 showed a structure type named Addr, with t ~ o fields. Both fields

are of type s t r i n g and have names s t r e e t and c i t y , respectively.
These basic types are combined into structured types using the follo\ving

I type constructors: The first five types - set, bag, list, array, and dictionary - are called
I collection types. There are different rules about which types may be associated
it 1. Set. If T is any type, then Set<T> denotes the type whose values are finite with attributes and which with relationships.

" i sets of elements of type T. Examples using the set type-constructor occur
in lines (6), (l l) , and (15) of Fig. 4.3.

$ti The type of a relationship 1s either a class type or a (single use of a)
?! 2. Bag. If T is any type, then Bag<T> denotes the type whose values are collection type constructor applied to a class type. :/ finite bags or rnultisets of elements of type T. A bag allows an element The type of an attribute is built starting with an atomic type or types.

to appear more than once. For example, {1,2,1} is a bag but not a set. Class types may also be used, but typically these will be classes that
because 1 appears more than once. are used as "structures," much as the Addr structure was used in Exam-

3. List. If T is any type, then L i s t < T > denotes the type whose values are ple 4.3. We generally prefer to connect classes with relationships, because
finite lists of zero or more elements of type T. As a special case, the type relationships are two-way, which makes queries about the database easier
s t r i n g is a shorthand for the type List<char>. to express. In contrast, we can go from an object to its attributes, but

not vice-versa. After beginning with atomic or class types. we may then
4. Array. If T is a type and i is an integer, then Array<T,i> denotes the apply the structure and collection type constructors as we vewsh, as many

type whose elements are arrays of i elements of type T. For example, times as we wish.

Array<char, 10> denotes character strings of length 10.

5. Dictionary. If T and S are types, then Dictionary<T,S> denotes a type Example 4.8: Some of the possible types of attributes are:
whose values are finite sets of pairs. Each pair consists of a d u e of the
key type T and a value of the range type S. The dictionary may not
contain two pairs with the same key value. Presumably, the dictionary is
implemented in a way that makes it very efficient, given a value t of the 2. Struct N {s t r ing f i e l d l , in teger f ie ld23
key type T , to find the associated value of the range type S.

3. List<real>.
6. Stmctures. If T I , T2,. . . , T, are types, and FI, F2,. . . , F,, are names of

fields, then 4. ArrayCStruct N {s t r ing f i e l d l , in teger f 1eld23, lo>.

CHAPTER 4. OTHER DATA MODELS 147

Example (1) is an atomic type; (2) is a structure of atomic types, (3) a collection this definition. Each modification can be described by mentioning a line or
of an atomic type, and (4) a collection of structures built from atomic types. es to be changed and giving the replacement, or by inserting one or more

N ~ ~ , suppose the class names Movie and Star are available basic types.
Th6n we may construct relationship types such as Movie or Bag<Star>. How-
ever, the following are illegal as relationship types: a) The type of the attribute commander is changed to be a pair of strings,

the first of which is the rank and the second of which is the name.
1. Struct N {Novie f i e l d l , Star f ield2). Relationship t ype cannot

involve structures.
Sister ships are identical ships made from the same plans. We wish to

2. Set<integer>. Relationship types cannot involve atomic types. represent, for each ship, the set of its sister ships (other than itself). You

3. Set<Array<Star, lo>>. Relationship types cannot involve two applica- may assume that each ship's sister ships are Ship objects.

tions of collection types.

1) c lass Ship {
attr ibute str ing name;

4.2.9 Exercises for Section 4.2 attr ibute integer yearlaunched;

* Exercise 4.2.1 : In Exercise 2.1.1 was the informal description of a bank data-
base. Render this design in ODL.

5) c lass TG {
Exercise 4.2.2 : Modify your design of Exercise 4.2.1 in the ways enumerated attr ibute real number;
in Exercise 2.1.2. Describe the changes; do not write a complete, new schema. attr ibute s t r ing commander;

relationship Set<Ship> unitsOf
Exercise 4.2.3: Render the teams-players-fans database of Exercise 2.1.3 in inverse Ship::assignedTo;
ODL. Why does the complication about sets of team colors, which was men-
tioned in the original exercise, not present a problem in ODL?

* ! Exercise 4.2.4 : Suppose we wish to keep a genealogy. We shall have one class, Figure 4.5: An ODL description of ships and task groups
Person. The information we wish to record about persons includes their name
(an atbribute) and the following relationships: mother, father, and children.
Give an ODL design for the Person class. Be sure to indicate the inverses of
the relationships that, like mother, father, and children, are also relationships Hint: Thiik about the relationship as a set of pairs, as discussed in Sec-

from Person to itself. Is t,he inverse of the mother relationship the children
relationship? Khy or why not? Describe each of the relationships and their
inverses as sets of pairs. 4.3 Additional ODL Concepts .

! Exercise 4.2.5: Let us add to the design of Exercise 4.2.4 the attribute
education. The value of this attribute is intended to be a collection of the There are a number of othcr features of ODL that we must learn if wve are to

degrees obtained by each person, including the name of the degree (e.g., B.S.): ex-press in ODL the things that we can express in the E/R or relational models.

the school. and the date. This collection of structs could be a set, bag, list, In this section, we shall cover:

or array. Describe the consequences of each of these four choices. What infor- 1. Representing multiway relationships. Notice that all ODL relationships
mation could be gained or lost by making each choice? Is the information lost are binary, and we have to go to some lengths to represent 3-way or
likely to be important in practice? higher arity relationships that are simple to represent in E/R diagrams

or relations.
Exercise 4.2.6: En Fig. 4.5 is an ODL definition for the classes Ship and TG
(task group, a collection of ships). We would like to make some modifications 2. Subclasses and inheritance.

148 CHAPTER 4. OTHER DATA MODELS . ADDITIONAL ODL CONCEPTS

3. Keys, which are optional in ODL. m each of these to Contract. For instance, the inverse of theMovie might
named contractsfor. Itre would then replace line (3) of Fig. 4.6 by

4. Extents, the set of objects of a given class that exist in a database. These
are the ODL equivalent of entity sets or relations, and must not be con- 3) relat ionship Movie theMovie
fused with the class itself, which is a schema. inverse Movie::contractsFor;

4.3.1 Multiway Relationships in ODL nd add to the declaration of Movie the statement:

ODL supports only binary relationships. There is a trick, which we introduced relat ionship Set<Contract> contractsFor

in Section 2.1.7, to replace a multiway relationship by several binary, many-one inverse C0ntract::theMovie;

relationships. Suppose we have a multiway relationship R among classes or tice that in Movie, the relationship contractsFor gives us a set of contracts,
entity sets Cl, C2, . . . , C,. We may replace R by a class C and n many-one ce there may be several contracts associated with one movie. Each contract
binary relationships from C to each of the Ci5s. Each object of class C may be the set is essentially a triple consisting of that movie, a star, and a studio,
thought of as a tuple t in the relationship set for R. Object t is related, by the us the salary that is paid to the star by the studio for acting in that movie.
n many-one relationships, to the objects of the classes Ci that participate in
the relationship-set tuple t.

Example 4.9: Let us consider how we would represent in ODL the 3-way 3.2 Subclasses in ODL
relationship Contracts, whose E/R diag~am was given in Fig. 2.7. We may
start wid1 the class defiriliions for Novie, Star, and Studio, the three classes Let us recall the discussion of subclasses in the E/R model from Section 2.1.11.

There is a similar capability in ODL to declare one class C to be a subclass that are related by Contracts, that we saw in Fig. 4.3.
of another class D. We follow the name C in its declaration with the keyword We must create a class Contract that corresponds to the 3-way relationship
extends and the name D. Contracts. The three many-one relationships from Contract to the other three

classes we shall call thenovie, thes tar , and thestudio. Figure 4.6 shows the Example 4.10: Recall Example 2.10, where we declared cartoons to be a
definition of the class Saritract. subclass of movies, with the additional property of a relationship from a cartoon

t: a set of stars that are its "voices." I r e can create a subclass Cartoon for
1) c lass Contract i hlovie with the ODL declaration:
2) a t t r i b u t e integer salary;
3) re la t ionsh ip Movie theMovie c lass Cartoon extends Movie i

re lat ionship Set<Star> voices; inverse ... ;
4) re la t ionsh ip S ta r thes tar

inverse ... ; ITe have not indicated the name of the inverse of relationship voices, although
5) re la t ionsh ip Studio thestudio technically we must do so.

inverse . . . ; A subclass inherits all the properties of its superclass. Thus, each cartoon
1; object has attributes t i t l e , year, length, and f ilmType inherited from ~ o v i e

(recall Fig. 4.3), and it inherits relationships s t a r s and ownedBy from Movie,

Figure 4.6: A class Contract to represent the 3-way relationship Contracts in addition to its own relationship voices.
Also in that esample. we defined a class of murder mysteries with additional

attribute weapon. There is one attribute of the class Contract, the salary, since that quantity is
associated with the contract itself, not with any of the three part,icipants. Recall c l ass MurderMystery extends Movie
that in Fig. 2.7 we made an analogous decision to place the attribute salary on a t t r i b u t e s t r ing weapon;
the relationship Contracts, rather than on one of the participating entity sets.
The other properties of Contract objects are the three relationships mentioned.

Note that we have not named the inverses of these relationships. need is a suitable declaration of this subclass. Again, all t,he properties of movies are
to modify the declarations of Movie, Star, and Studio to include relationships inherited by MurderMystery.

\

\

150 CHAPTER 4. OTHER DATA MODELS 3. ADDITIONAL ODL CONCEPTS . 151

4.3.3 Multiple Inheritance in ODL
sometimes, as in the case of a movie like "Roger Rabbit," we need a class that
is a subclass of two or more other classes at the same time. In the E/R model,
n,e were able to imagine that "Roger Rabbit" was represented by components in
all three of the Movies, Cartoons, and fdurder-Mysren'es entity sets, which were
connected in an isa-hierarchy. However, a principle of object-oriented systems e ODL standard does not dictate how such conflicts are to be resolved.
is that objects belong to one and only one class. Thus, to represent movies ome possible approaches to handling conflicts that arise from multiple inheri-
that are both cartoons and murder mysteries, we need a fourth class for these
movies.

The class CartoonMurderMystery must inherit properties from both Car- . Disallow multiple inheritance altogether. This approach is generally re-
toon and MurderMystery, as suggested by Fig. 4.7. That is, a ~artoonMurder- garded as too limiting.
Mystery object has all the properties of a Movie object, plus the relationship
voices and the attribute weapon. . Indicate which of the candidate definitions of the property applies to the

subclass. For instance, in Example 4.11 we may decide that in a courtroom
Movie romance we are more interested in whether the movie has a happy or sad

ending than we are in the verdict of the courtroom trial. In this case, we
would specify that class Courtroom-Romance inherits attribute ending

Cartoon MurderMystery
from superclass Romance, and not from superclass Courtroom.

3. Give a new name in the subclass for one of the identically named proper-
ties in the superclasses. For instance, in Example 4.11, if C ~ u r t ~ o ~ ~ - ~ ~ ~ -

CartoonMurderMyster~ ance inherits attrihute ending from superclass Romance, then we may
specify that class Courtroom-Romance has an additional attribute called

Figure 4.7: Diagram showing multiple inheritance verdict, which is a renaming of the attribute ending inherited from class
Courtroom.

In ODL, we may follow the keyword extends by several classes, separated
by colons.3 Thus, we may declare the fourth class by: 4.3.4 Extents

c lass CartoonMurderMystery When an ODL class is part of the database being defined, we need to distinguish

extends MurderMystery : Cartoon; the class definition itself from the set of objects of that class that exist at a
given time. The distinction is the same as that between a relation scllema

When a class C inherits from several classes, there is t,he potential for con- and a relation instance, even though both can be referred to by the name

fiiets among property names. Two or more of the superclasses of C may have a
property of the same name, and the types of these properties may differ. Class
CmoonMurderMystery did not present such a problem, since the only prop-
erties in common between Cartoon and ~ u r d e r ~ y s t e r y ' are the ropert ties of In ODL, the distinction is made explicit by giving the class and its eztent,
Movie, which are the same property in both superclasses of CartoonMurder- or set of existing objects, different names. Thus, the class name is a schema
Mystery. Here is an example where we are not so lucky. for t,he class, while the extent is the name of the currellt set of objects of that

class. We provide a name for the extent of a class by follo-~ing the class name
Example 4.11: Suppose we have subclasses of Movie called Romance and by a parenthesized expression consisting of the keyword extent and the name
Courtroom. Further suppose that each of these subclasses has an attribute chosen for the extent.
called ending. h class Romance, attribute ending draws its'values from the

3Technically, the second and subsequent names must be "interfaces," rather than classes.
Example 4.12 : In general, we find it a useful convention to name classes by a

Roughly, an interface in ODL is a class definition without an associated set of objects, or singular noun and name the corresponding extent by the same noun in plural.
' 'e~tent.~ We discuss the distinction further in Section 4.3.4. Following this convention, we could call the extent for class Movie by the name

CHAPTER 4. OTHER DATA MODELS DDITIONAL ODL. CONCEPTS 153

tributes forming keys. If there is more than one attribute in a key, the
Interfaces of attributes must be surrounded by parentheses. The key declaration itself

ears, along with the extent declaration, inside parentheses that may follow
ODL provides for the definition of interfaces, which are essentially class name of the class itself in the first line of its declaration.
definitions with no associated extent (and therefore, with no associated
objects). We first mentioned interfaces in Section 4.3.3, where we pointed mple 4.13 : To declare that the set of two attributes t i t l e and year form
out that they could support inheritance by one class from several classes. y for class Movie, we could begin its declaration:
Interfaces also are useful if we have several classes that have different
extents, but the same properties; the situation is analogous to several c lass Movie

relations that have the same schema but different sets of tuples. (extent Movies key (t i t l e , year))

If we define an interface I, we can then define several classes that
inherit their properties from I. Each of those classes has a distinct extent, a t t r i b u t e s t r i ng t i t l e ;

so we can maintain in our database several sets of objects that have the
. . .

same type, yet belong to distinct classes. could have used keys in place of key, even though only one key is declared.
Similarly, if name is a key for class Star, then we could begin its declaration:

c l ass S ta r
Movies. To declare this name for the extent, we would begin the declaration of (extent S tars key name)
class Movie by:

a t t r i b u t e s t r i n g name;
c lass Movie (extent Movies) 1 . . .

a t t r i b u t e s t r i ng t i t l e ;
. . .

As we sliall see when we study the query language OQL that is designed for It is possible that several sets of attributes are keys. If so, then following
querying ODL data, we refer to the extent Movies, not to the class Movie, when the word key(s) we may place several keys separated by commas. As usual, a
we want to examine the movies currently stored in our database. Remember key that consists of more than one attribute must have parentheses around the
that the choice of a name for the extent of a class is entirely arbitrary, although list of its attributes, so we can disambiguate a key of several attributes from
we shall follow the "make it plural" convention in this book. 0 several keys of one attribute each.

Example 4.14 : As an example of a situation where it is appropriate to have
more than one key, consider a class Employee, whose complete set of attributes

4.3.5 Declaring Keys in ODL and relationships we shall not describe here. However, suppose that two of its
attributes are empID, the employee ID, and ssNo, the Social Security number.

ODL differs from the other models studied so far in that the declaration and Then we can declare each of these attributes to be a key by itself with
use of keys is optional. That is, in the E/R model, entity sets need keys to
distinguish members of the entity set from one another. In the relational model, c lass Employee
where relations are sets, all attributes together form a key unless some proper (extent Employees key empID, ssNo)
subset of the attributes for a given relat.ion can serve as a key. Either way, there . . .
must be a t least one key for a relation.

However, objects have a unique object identity, as we discussed in Sec-
Because there are no parentheses around the list of attributes, ODL interprets

tion 4.1.3. Consequently, in ODL, the declaration of a key or keys is optional.
the above as saying that each of the two attributes is a key by itself. If we put

It is entirely appropriate for there to be several objects of a class that are in-
parentheses around the list (empID, ssNo) , then ODL would interpret the two

distinguishable by any properties i e can observe; the system still keeps them
attributes together as forming one key. That is, the implication of writing

distinct by their internal object identity. class Employee
In ODL we may declare one or more attributes to be a key for a class by using (extent Employees key (empID, ssNo))

the keyword key or keys (it doesn't matter which) followed by the attribute . . .

CHAPTER 4. OTHER DATA MOD FROM ODL DESIGlVS TO RELATIONAL DESIGNS 155

6 Exercises for Section 4.3

attributes. .P

The ODL standard also allows properties other than attributes to appear se 4.3.2: Add suitable extents and keys to your ODL schema from

in keys. There is no fundamental problem with a method or relationship being
declared a key or part of a key, since keys are advisory statements that the ercise 4.3.3: Suppose we wish to modify the ODL declarations of Exer- DBMS can take advantage of or not, as it wishes. For instance, one could
declare a method to be a key, meaning that on distinct objects of the class the
method is guaranteed to return distinct values. ople who are parents. In addition, we want the relationships mother,

When we allow many-one relationships to appear in key declarations, we er, and children to run between the smallest classes for which all pos-
can get an effect similar to that of weak entity sets in the E/R model. We can
declare that the object O1 referred to by an object O2 on the "many" side of the
relationship, perhaps together with other properties of 0 2 that are included in
the key, is unique for different objects 02. However, we should remember that
there is no requirement that classes have keys; we are never obliged to handle,
in some special way, classes that lack attributes of their own to form a key, as '
we did for weak entity sets. Exercise 4.3.5: In Exercise 2.4.4 we saw two examples of situations where

weak entity sets were essential. Render these databases in ODL, including
Example 4.15: Let us review the example of a weak entity set Crews in declarations for extents and suitable keys.
Fig. 2.20. Recall that we hypothesized that crews were identified by their
number, and the studio for which they worked, although two studios might Exercise 4.3.6: Give an ODL design for the registrar's database described in
have crews with the same number. We might declare the class Crew as in
Fig. 4.8. Note that we need to modify the declaration of Studio to include the
relationship crewsOf that is an inverse to the relationship unitof in Crew; we
omit this change. 4.4 From ODL Designs to Relational Designs

While the E/R model is intended to be converted into a model such as the

class Crew relational model when we implement the design as an actual database, ODL
(extent C r e w s key (number, unit0f)) was originally intended to be used as the specification language for real, object-

oriented DBMS's. However ODL, like all object-oriented design systems, can

a t t r i bu te integer number; also be used for preliminary design and converted to relations prior to imple-
re lat ionship Studio unitof mentation. In this section we shall consider how to convert ODL designs into

inverse Studio::crewsOf; relational designs. The process is similar in many ways to what we introduced
in Section 3.2 for converting E/R diagrams to relational database schemas. Yet
some new problems arise for ODL, including:

Figure 4.8: A ODL declaration for crews 1. Entity sets must have keys, but there is no such guarantee for ODL classes.
Therefore, in some situations we must in~ent a new attribute to serve as
a key when Fe construct a relation for the class.

What this key declaration asserts is that there cannot be two crews that
both have the same value for the number attribute and are related to the same 2. While n-e have required E/R attributes and relational attributes to be
studio by unitof. Notice how this assertion resembles the implication of the atomic, there is no such constraint for ODL attributes. The conversion
E/R diagram in Fig. 2.20, which is that the number of a crew and the name of of attributes that have collection types to relations is tricky and ad-hoc,
the related studio (i.e., the key for studios) uniquely determine a crew entity. often resulting in unnormalized relations that must be redesigned by the

techniques of Section 3.6.

CHAPTER 4. OTHER DATA MODELS OM ODL DESIGNS TO RELATIONAL DESIGNS 157

3. ODL allows us to specify methods as part of a design, but there is no .2 Nonatomic Attributes in Classes
simple way to convert methods directly into a relational schema. We
shall visit the issue of methods in relational schemas in Section 4.5.5 and fortunately, even when a class' properties are all attributes we may have

again in Chapter 9 covering the SQG99 standard. For now, let us assume me difficulty converting the class to a relation. The reason is that attributes

that any ODL design we wish to convert into a relational design does not ODL can have complex types such as structures, sets, bags, or lists. On the

include methods. her hand, a fundamental principle of the relational model is that a relation's
tributes have an atomic type, such as numbers and strings. Thus, are must

nd some way of representing nonatomic attribute types as relations.
4.4.1 &om ODL Attributes to Relational Attributes Record structures whose fields are themselves atomic are the easiest to han-

As a starting point, let us assume that our goal is to have one relation for each
class and for that relation to have one attribute for each property. We shall see
many ways in which this approach must be modified, but for the moment, let
us consider the simplest possible case, where we can indeed convert classes to
relations and properties to attributes. The restrictions we assume are:

c lass Star (extent Stars) {
1. All properties of the class are attributes (not relationships or methods). at t r ibute s t r ing name;

attr ibute Struct Addr
2. The types of the attributes are atomic (not structures or sets). {string s t ree t , s t r ing c i t y) address;

Example 4.16: Figure 4.9 is an exampIe of such a class. There are b u r
attributes and no other properties. These attributes each have an atomic type;
t i t l e is a string, year and length are integers, and f ilmType is an enumeration Figure 4.10: Class with a struct,ured attribute
of two values.

class Movie (extent Movies) { Example 4.17 : In Fig. 4.10 is a declaration for class Star, with only attributes

attr ibute s t r ing t i t l e ; as properties. The attribute name is atomic, but attribute address is a structure

attr ibute integer year; with two fields, street and c i t y . Thus, we can represent this class by a

attr ibute integer length; relation with three attributes. The first attribute, name, corresponds to the

attr ibute enum Film {color,blackAndWhite) filmType; ODL attribute of the same name. The second and third attributes we shall call
s t ree t and ci ty ; they correspond to the two fields of the address struct,ure
and together represent an address. Thus, the schema for our relation is

Figure 4.9: Attributes of t,he class Movie Stars(name, s t ree t , c i t y)

We create a relation with the same name as the extent of the class, Movies Figure 4.11 shows some typical tuples of this relation. 0

in this case. The relation has four attributes, one for each attribute of the
class. The names of the relational attributes can be the same as the names of
the corresponding class attributes. Thus, the schema for this relation is name street city

Carrie Fisher 123 Maple St . Hollywood
Movies(tit le, year, length, f ilmType) Mark Hamill 456 Oak Rd. Brentwood

Harrison Ford 789 Palm Dr. Beverly H i l l s
For each object in the extent Movies, there is one tuple in the relation

Movies. This tuple has a component for each of the four attributes, and the
value of each component is the same as the value of the corresponding attribute Figure 4.11: A relation representing stars
of the object. 0

158 CHAPTER 4. OTHER DATA MODELS

4.4.3 Representing Set-Valued Attributes
However, record structures are not the most complex kind of attribute that can
appear in ODL class definitions. Values can also be built using type constructors
Set, Bag, List, Array, and Dictionary from Section 4.2.8. Each presents its
own problems when migrating to the relational model. We shall only discuss
the Set constructor, which is the most common, in detail.

One approach to representing a set of values for an attribute A is to make
one tuple for each value. That tuple includes the appropriate values for all the
other attributes besides A. Let us first see an example where this approach
works well, and then we shall see a pitfall.

c lass Star (extent Stars) 1
at t r ibu te s t r i ng name;
a t t r ibu te Set<

Struct Addr {str ing s t r e e t , s t r i ng city)
> address;

1;

Figure 4.12: Stars with a set of addresses

Example 4.18: Suppose that class Star were defined so that for each star
we could record a set of addresses, as in Fig. 4.12. Suppose next that Carrie
Fisher also has a beach home, but the other two stars mentioned in Fig. 4.11
each have only one home. Then ure may create two tuples with name attribute
equal to "Carrie Fisher", as shown in Fig. 4.13. Other tuples remain as they
were in Fig. 4.11.

name I street (city
Carrie Fisher 1 123 Maple St . 1 Hollywood

FROM ODL DESIGNS TO RELATIONAL DESIGNS 159

It seems that the relational model puts obstacles in our way, while ODL
is more flexible in allowing structured values as properties. One might be
tempted to dismiss the relational model altogether or regard it as a prim-
itive concept that has been superseded by more elegant "object-orientedn
approaches such as ODL. Howvever, the reality is that database systems
based on the relational model are dominant in the marketplace. One
of the reasons is that the simplicity of the model makes possible powerful
programming languages for querying databases, especially SQL (see Chap-
ter 6), the standard language used in most of today's database systems.

c lass S ta r (extent Stars) (
a t t r i b u t e s t r i ng name;
a t t r i b u t e Set<

Struct Addr {st r ing s t r e e t , s t r i n g c i ty)
> address;

a t t r i b u t e Date bir thdate;

Figure 4.14: Stars with a set of addresses and a birthdate

Example 4.19 : Suppose that we add birthdate as an attribute in the defi-
nition of the Star class; that is, we use the definition shown in Fig. 4.14. We
have added to Fig. 4.12 the attribute birthdate of type Date, which is one
of ODL's atomic types. The bi r thdate attribut.e can be an attribute of the
Stars relation, whose schema now becomes:

Stars(name, s t r e e t , c i t y , birthdate)

Let us make another change to the data of Fig. 4.13. Since a set of addresses
can be empty, let us assume that Harrison Ford has no address in the database.
Then the revised relation is shown in Fig. 4.15. Two bad things have happened:

Figure 4.13: Allorving a set of addresses 1. Carrie Fisher's birthdate has been repeated in each tuple, causing redun-
dancy. Xote that her name is also repeated, but that repetition is not

Unfortunately, this technique of replacing objects with one or more set- true redundancy, because without the name appearing in each tuple we

valued attributes by collections of tuples, one for each combination of values for could not know that both addresses were associated with Carrie Fisher.

these attributes, can lead to unnormalized relations, of the type discussed in 2. Because Harrison Ford has an empty set of addresses, we have lost all
Section 3.6. In fact, even one set-valued attribute can lead to a BCNF violation, information about him. This situation is an example of a deletion anomaly
as the next example shows. that we discussed in Section 3.6.1.

160 CHAPTER 4. OTHER DATA MODELS

name I street I city 1 birthdate
Carr ie Fisher 1 123 Maple S t . I Hollyuood 1 9/9/99
Carr ie Fisher 5 Locust Ln. Malibu 9/9/99
Mark Hamill I 456 Oak Rd. I Brentvood I 8/8/88

Figure 4.15: Adding birthdates

Although name is a key for the class Star, our need to have several tuples
for one star to represent all their addresses means that name is not a key for
the relation Stars. In fact, the key for that relation is {name, s t r e e t , ci ty).
Thus, the i,. ,: tional dependency

i. ~e -+ bir thdate

is a BCNF violation. This fact explains why the anomalies mentioned above
are able to occur. 0

There are several options regarding how to handle set-valued attributes that
appear in a class declaration along with other attributes, set-valued or not.
First, we may simply place all attributes, set-valued or not, in the schema for
the relation, then use the normalization techniques of Sections 3.6 and 3.7 to
eliminate the resulting BCNF and 4NF violations. Notice that a set-valued at-
tribute in conjunction with a single-valued attribute leads to a BNCF violation,
as in Example 4.19. Two set-valued attributes in the same class declaration will
lead to a 4NF violation.

The second approach is to separate out each set-valued attribute as if it
were a many-many relationship between the objects of the class and the values
that appear in the sets. %'e shall discuss this approach for relationships in
Section 4.4.5.

4.4.4 Representing Other Type Constructors

Besides record structures and sets, an ODL class definition could use Bag, L is t ,
Array, or Dictionary to construct values. To represent a bag (multiset), in
which a single object can be a member of the bag n times, we cannot simply
introduce into a relation n identical tuples.4 Instead, we could add to the
relation schema another attribute count representing the number of times that
each t t .cnt is a member of the bag. For instance, suppose that address
in F;l 4.1- sere a bag instead of a set. We could say that 123 Maple St.,

4 T ~ be precist. we cannot introduce identical tuples into relations of the abstract relational
model described ln Chapter 3. However, SQL-based relational DBMS's do allow duplicate
tuples; i.e., relations are bags rather than sets in SQL. See Sections 5.3 and 6.4. If queries
are likely to ask for tuple counts, we advise using a scheme such as that described here, even
if your DBMS allows duplicate tuples.

.4. FROM ODL DESIGNS TO RELATIONAL DESIGNS 161

Hollywood is Carrie Fisher's address twice and 5 Locust Ln., Malibu is her
address 3 times (whatever that may mean) by

name I street I city I count
Carrie Fisher 1 123 Maple S t . I Hollywood 1 2
Carrie Fisher 1 5 Locust Ln. I Malibu 1 3

A list of addresses could be represented by a new attribute posit ion, in-
icating the position in the list. For instance, we could show Carrie Fisher's
ddresses as a list, with Hollywood first, by:

name street city 1 position
Carrie Fisher 123 Maple S t . Hollywood 1 1

F Carrie Fisher 1 5 Locust Ln. I Malibu 1 2
$
!; A fixed-length array of addresses could be represented by attributes for

each position in the array. For instance, if address were to be an array of two
$, street-city structures, we could represent Star objects as:
t.

name I street1 1 city1 I street2 I ~itwf? --- I ir-

Carrie Fisher] 123 Maple St. I Hollywood 1 5 Locust Ln. I Malibu

Finally, a dictionary could be represented as a set, but with attributes for
both the key-value and range-value components of the pairs that are members of
the dictionary. For instance, suppose that instead of star's addresses, we really
wanted to keep, for each star, a dictionary giving the mortgage holder for each
of their homes. Then the dictionary would have address as the key value and
bank name as the range vdue. A hypothetical rendering of the Carrie-Fisher
object with a dictionary attribute is:

name I street 1 city I mortgage-holder
Carrie Fisher 1 123 Maple St . I Hollywood I Bank of Burbank
Carr ie Fisher 1 5 Locust Ln. I Malibu I Torrance Trust

Of course attribute types in ODL may involve more than one type construc-
tor. If a type is any collection type besides dictionary applied to a structure
(e.g., a set of structs), then we may apply the techniques from Sections 4.4.3 or
4.4.4 as if the struct were an atomic value, and then replace the single attribute
representing the atomic value by several attributes, one for each field of the
struct. This strategy was used in the examples abo~e, where the address is
a struct. The case of a dictionary applied to structs is similar and left as an
exercise.

There are many reasons to limit the complexity of attribute types to an
optional struct followed by an optional collection type. We mentioned in See-
tion 2.1.1 that some versions of the E/R model allow exactly this much gen-
erality in the types of attributes, although we restricted ourselves to atomic

CHAPTER 4. OTHER DATA MODELS FROM ODL DESIGNS TO RELATIOlYAL DESIGNS

Utes in the E/R model. We recommend that, if you are going to use an StudioOf (t i t l e , year, studioName)
design for the purpose of eventual translation to a relational database typical tuples that would be in this relation are:

4.4.5 Representing ODL Relationships

Usually, an ODL class definition will contain relationships to other ODL classes.
As in the E/R model, 'we can create for each relationship a new relation that
connects the keys of the two related classes. However, in ODL, relationships
come in inverse pairs, and we must create only one relation for each pair.

c lass Movie
(extent Movies key (t i t l e , year))

a t t r i bu te s t r i ng t i t l e ;
a t t r i bu te integer year;
a t t r i bu te integer length;
a t t r i bu te enum Film {color,blackAndWhite> filmType;
re lat ionship Set<Star> stars Movies(t i t le, year, length, filmType, studiolame)

inverse Star::starredIn; and some typical tuples for this relation are:
re lat ionship Studio ownedBy

inverse Studio::ouns; year length f i lmape studzoName
1 ; Star Wars 1977 124 color Fox

Mighty Ducks 1991 104 color Disney
c lass Studio Wayne's World 1992 95 color Paramount

(extent Studios key name)
I Note that t i t l e and year, the key for the Movie class, is also a key for relation

a t t r i bu te s t r i ng name ; Movies, since each movie has a unique length, film type, and owning studio.

a t t r i bu te s t r i ng address;
re lat ionship Set<Movie> owns We should remember that it is possible but unwise to treat many-many

inverse Movie::ownedBy; relationships as we did many-one relationships in Example 4.21. In fact, Ex-
1 ; ample 3.6 in Section 3.2.3 w a s based on what happens if we try to combine the

many-many stars relationship betnven movies and their stars with the other

Figure 4.16: The complete definition of the Movie and Studio classes information in the relation Movies to get a relation with schema:

Movies(t i t le, year, length, filmType, studioName, starName)

Example 4.20: Consider the declarations of the classes Movie and Studio, There is a resulting BCNF violation, since { t i t l e , year, starName) is the
which we repeat in Fig. 4.16. We see that t i t l e and year form the key for key, yet attributes length, f ilmType, and studioName each are functionally
Movie and name is a key for class Studio. We may create a relation for the pair determined by only t i t l e and year.
of relationships owns and ownedBy. The relation needs a name, which can be Likewise, if we do combine a many-one relationship with the relation for a
arbitrary; we shall pick StudioOf as the name. The schema for StudioOf has class, it must be the class of the "many." For instance, combining owns and
attributes for the key of Movie, that is, t i t l e and year, and an attribute that its inverse ownedBy with relation Studios will lead to a BCXF violation (see
we shall call studioName for the key of Studio. This relation schema is thus:

164 CHAPTER 4. OTHER DATA A4ODELS 4.4. FROAI ODL DESIGA7S TO RELATIONAL DESIGNS 165

4.4.6 What 1f There IS NO Key? ! Exercise 4.4.3 : Consider an attribute of type dictionary with key and range

Since keys are optional in ODL, we may face a situation where the attributes types both structs of atomic types. Show how to convert a class with an at-

available to us cannot serve to represent objects of a class C uniquely. That tribute of this type to a relation.

situation can be a problem if the class C participates in one or more relation- * Exercise 4.4.4 : Jt7e claimed that if you combine the relation for class Studio,
ships. as defined in Fig. 4.16; with the relation for the relationship pair owns and

1% recommend creating a new attribute or "certificate" that can sen7e as ownedBy. then there is a BCNF violation. Do the combination and show that
an identifier for objects of class C in relational designs, much as the hidden there is, in fact, a BCXF violation.
object-ID serves to identify those objects in an object-oriented system. The
certificate becomes an additional attribute of the relation for the class C, as Exercise 4.4.5 : \ire mentioned that when attributes are of a type more com-
well as representing objects of class C in each of the relations that come from plex than a collection of structs, it becomes tricky to convert them to relations;
relationships involving class C. Notice that in practice, many important classes in particular, it becomes necessary to create some intermediate concepts and re-
are represented by such certificates: university ID'S for students, driver's-license lations for them. The following sequence of questions will examine increasingly
numbers for drivers, and so on. more complex types and how to represent them as relations.

Example 4.22 : Suppose we accept that names are not a reliable key for movie * a) A card can be represented as a struct with fields rank (2,3,. . . , lo , Jack,
stars, and we decide instead to adopt a "certificate number" to be assigned to Queen, Icing, and Ace) and s u i t (Clubs, Diamonds, Hearts, and Spades).
each star as a way of identifying them uniquely. Then the Stars relation would Give a suitable definition of a structured type Card. This definition should
have schema: be independent of any class declarations but available to them all.

Stars(cert#, n a w , s t r ee t , c i t y , birthdate) * b) A hand is a set of cards. The number of cards may vary. Give a declaration
of a class Hand whose objects are hands. That is, this class declaration

If we wish to i. (-sent the many-iii,i.:~:\. relationship between movies and their
has an attribute theHand, whose type is a hand.

stars by a rc.! ... on StarsIn, u-e can use the t i t l e and year attributes from
Movie and I.:., t crtificate to represent stars, giving us a relation with schema: *! c) Con\-ert your class declaration Hand from (b) to a relation schema.

Stars In (t i t l e , year, cert#) d) A poker hard is a set of five cards. Repeat (b) and (c) for poker hands.

0 *! e) A deal is a set of pairs, each pair consisting of the name of a player and a
hand for that player. Declare a class Deal, whose objects are deals. That

4.4.7 Exercises for Section 4.4 is, this class declaration has an attribute theDeal, whose type is a deal.

Exercise 4.4.1: Convert your ODL designs from the following exercises to f) Reprat (e): but restrict hands of a deal to be hands of exactly five cards.

relational database schema. g) Repeat (e). using a dictionary for a deal. You may assume the names of

* a) Exercise 4.2.1. players in a deal are unique.

b) Exercise 4.2.2 (include all four of the modifications specified by that ex- *!! h) Convert your class declaration from (e) to a relational database schema.

ercise). *! i) Suppose we d~ f i~ led deals to be sets of sets of cards, ~vith no player as-

c) Exercise 4.2.3. sociated ~ ~ i t l i each hand (set of cards). It is proposed that we represent
such deals by a relation schema

* d) Esercise 4.2.4.

e) Es(,rcise 4.2.5. Deals(dealID, card)

Exercise 4.4.2: Convert the ODL description of Fig. 4.5 to a relational data- meaning that the card was a member of one of the hands in the deal with
base schema. How does each of the three modifications of Exercise 4.2,6 affect the given ID. \That, if anything, is wrong with this representation? How
your relational schema? ~vould you fix the problem'?

\\

166 CHAPTER 4. OTHER D.4TA IIIODELS

Exercise 4.4.6 : Suppose we have a class C defined by

c lass C (key a) C
a t t r i bu te s t r i n g a ;
a t t r i bu te T b;

3

where T is some type. Give the relation schema for the relation derived from
C and indicate its key attributes if T is:

a) SetcStruct S {s t r ing f , s t r i ng g)>

*! b) BagcStruct S (s t r i ng f , s t r i ng g}>

! c) List<Struct S {st r ing f , s t r i n g g}>

! d) Dictionary<Struct K {s t r ing f , s t r ing g}, Struct R {s t r ing i , .
s t r i ng j)>

4.5 The Object-Relational Model
The relational model and the object-oriented model typified by ODL are tn.0
important points in a spectrum of options that could underlie a DBXIS. For an
extended period, the relational model was dominant i11 the commercial DBXS
world. Object-oriented DBMS's made limited inroads during the 1990's. but
have since died off. Instead of a migration from relational to object-oriented
systems, as was uidely predicted around 1990. the vendors of relational systems
have moved to incorporate many of the ideas found in ODL or other object-
oriented-database proposals. As a result, many DBMS products that used to
be called "relational" are now called "object-relational."

In Chapter9 we shall meet the new SQL standard for object-relational data-
bases. In this chapter, we cover the topic more a1,stractly. \Ye introduce
the concept of object-relations in Section 4.2.1, then discuss one of its earliest
embodiments - nested relations - in Section 4.5.2. ODL-like references for
object-relations are discussed in Section 4.5.3, and in Section 4.5.1 we compare
the object-relational model against the pure object-oriented approach.

4.5.1 From Relatioils to Object-Relations

IVhile thr relation remains the fundamental conccpt, the relational illode1 has
been extended to the object-relationul model bv illcorporation of features such
as:

1. Structured types for attributes. Instead of allowing only atomic types for
attributes, object-relational systems support a type system like ODL's:
types built from atomic types and type constructors for structs. sets. and

4.5. THE OBJECT-RELATIONAL MODEL 167

bags, for instance. Especially important is a type that is a set5 of structs,
which is essentially a relation. That is, a value of one component of a
tuple can be an entire relation.

2. Methods. Special operations can be defined for, and applied to, values
of a user-defined type. While we haven't yet addressed the question of
how values or tuples are manipulated in the relational or object-oriented
models, we shall find few surprises when we take up the subject beginning
in Chapter 3. For example, values of numeric type are operated on by
arithmetic operators such as addition or less-than. However, in the object-
relational model, we have the option to define specialized operations for
a type, such as those discussed in Example 4.7 on ODL methods for the
Movie class.

3. Identifiers for tuples. In object-relational systems, tuples play the role of
objects. It therefore becomes useful in some situations for each tuple to
have a unique ID that distinguishes it from other tuples, even from tuples
that have the same values in all components. This ID, like the object-
identifier assumed in ODL, is generally invisible to the user, although
there are even some circumstances where users can see the identifier for
a tuple in an object-relational system.

4. References. While the pure relational model has no notion of references
or pointers to tuples, object-relational systems can use these references in
various Tvays.

In the next sections, we shall elaborate and illustrate each of these additional
capabilities of object-relational systems.

4.5.2 Nested Relations

Relations extended by point (1) above are often called "nested relations.'' In
the nested-relational model, we allow attributes of relations to haye a type that
is not atomic: in particular. a type can be a relation schema. As a result, there
is a convenient, recursive definition of the types of attributes and the types
(schemas) of relations:

BASIS: An atomic type (integer, real. string. etc.) can be the type of an
attribute.

INDUCTION: -1 relation's type can be any schemn consisting of names for one
or more attributes. and any legal type for each attribute. In addition. a schema
can also be the type of any attribute.

In our discussio~~ of the relational model, we did not specify the particular
atomic type associated with each attribute, because the distinctions among

'Strictly speaking, a bag rather than a set, since commercial relational DB?rIS's prefer to
support relations with duplicate tuples, i.e. bags, rather than sets.

168 CHAPTER 4. OTHER DAT.4 MODELS

integers, reals, strings, and SO on had little to do with the issues discussed,
such as functional dependencies and normalization. We shall continue to avoid
this distinction, but when describing the schema of a nested relation, we must
indicate which attributes have relation schemas as types. To do so, we shall
treat these attributes as if they were the names of relations and follow them
by a parenthesized list of their attributes. Those attributes, in turn, may haye
associated lists of attributes, down for as many levels as we wish.

Example 4.23: Let us design a nested relation schema for stars that incor-
porates within the relation an attribute movies, which will be a relation rep-
resenting all the movies in which the star has appeared. The relation schema
for attribute movies will include the title, year, and length of the movie. The
re1atio:i schem? +r the relation Stars mill include the name, address, and birth-
date, as well a:, :e information found in movies. Additionally, the address
attribute will have a relation type with attributes street and city. We can
record in this relation several addresses for the star. The schema for Stars can
be written:

Stars(name, address(street, city), birthdate,
movies(title, y .>r , length))

An exampl(s F a possible relation for nested relation Stars is shown in
Fig. 4.17. We srv in this relation two tuples, one for Carrie Fisher and one
for Mark Warnill. The valucs of components are abbreviated to conserve space,
and the dashed lines separating tuples are only for convenience and have no
notational significance.

riame address birthdate rnovies
I I I

street city 9 / 9 / 9 9 1 Fisher 1
r:-%

1 rifle 1 year 1 ~ ~ r ~ ~ ~ j 1
Star Wars 1977 124

. - - - - - - - - - - - - - - - - - - mi
Star Wars 1977 124 - - - - - - - - - - - - - - -
Empire 1980 127 - - - - - - - - - - - - - - -
Return 1983 133

Figure 4.17: A nested relation for stars and their movies

. THE OBJECT-RELATIONAL MODEL 169

attributes, street and city, and there are two tuples, corresponding to her
two houses. Next comes the birthdate, another atomic value. Finally, there is a
component for the movies attribute; this attribute has a relation schema as its
type, with components for the title, year, and length of a movie. The relation
for the movies component of the Carrie Fisher tuple has tuples for her three
best-known movies.

The second tuple, for Mark Hamill, has the same components. His relation
for address has only one tuple, because in our imaginary data, he has only
one house. His relation for movies looks just like Carrie Fisher's because their
best-known movies happen, by coincidence, to be the same. Note that these
two relations are two different tuple-components. These components happen to
be identical, just like two components that happened to have the same integer
value, e.g., 124. 0

4.5.3 References

The fact that movies like Star Wars will appear in several relations that are
values of the movies attribute in the nested relation Stars is a cause of redun-
dancy. In effect, the schema of Example 4.23 has the nested-relation analog of
not being in BCNF. However, decomposing this Stars relation will not elimi-
nate the redundancy. Rather, we need to arrange that among all the tuples of
all the movies relations, a movie appears only once.

To cure the problem, object-relations need the ability for one tuple t to refer
to another tuple s: rather than incorporating s directly in t . lye thus add to
our model an additional inductive rule: the type of an attribute can also be a
reference to a tuple with a given schema.

If an attribute .I has a type that is a reference to a single tuple with a
relation schema named R, we show the attribute d in a schema as ,-l(*R).
Xotice that this situation is analogous to an ODL relationship .4 whose type is
R; i.e., it connects to a single object of type R. Similarly, if an attribute .4 has
a type that is a set of references to tuples of schema R. then .-I will be shown
in a schema as A({*R)). This situation resembles an ODL relationship .A that
has type Set<R>.

Examp le 4.24: An appropriate way to fix the redundancy- in Fig. 4.17 is
to use t~vo relations. one for stars and one For movies. The relation Movies
will be an ordinary relation ~vith the same schema as the attribute movies in
Example 4.23. The relation Stars xvill have a schema similar to the nested
relation Stars of that example. but the movies attribute will have a type that
is a set of references to Movies tuples. The schemas of the tn-o relations are
thus:

Movies (title, year, length)
\ In the Carrie Fisher tuple, we see her name. an atomic value, follo~ved Stars (name, address (street, city), birthdate,
3p a relation for the value of the address component. That relation has two movies(i*Movies3> 1 .

\

170 CH-dPTER 4. OTHER DATA MODELS 4.5. THE OBJECT-RELATIONAL MODEL 171

interfaces, which are essentially class declarations without an extent (see the box
on "Interfaces" in Section 4.3.4). Then, ODL allows you to define any number
of classes that inherit this interface, while each class has a distinct extent. In
that manner, ODL offers the same opportunity the object-relational approach
when it comes to sharing the same declaration among several collections.

i r e did not discuss the use of methods as part of an object-relational schema.
However, in practice, the SQL-99 standard and all irnplementations of object-
relational ideas allow the same ability as ODL to declare and define methods
associated with any class.

Stars Movies
Type Systems

Figure 4.18: Sets of references as the wlue of a,n attribute The type systems of the object-oriented and object-relational models are quite
similar. Each is based on atomic types and construction of new types by struct-

~h~ data of Fig. 4.17, converted to this new schema, is shown in Fig. 4.18. and collection-type-constructors. The selection of collection types may vary, but
Sotice that, because each movie has only one tuple, although it can have man!. all variants include at least sets and bags. AIoreover, the set (or bag) of structs
references, \ye have eliminated the redundancy inherent in the schema of Ex- type plays a special role in both models. It is the type of classes in ODL, and

ample 4.23. the type of relations in the object-relational model.

4.5.4 object-Oriented Versus Object-Relational References and Object-ID'S

~ 1 , ~ object-oriented data model, as typified by ODL, and the object-relational .A pure object-oriented model uses object-ID'S that are completely hidden from

model discussed here, are remarkably similar. Some of the salient points of the user, and thus cannot be seen or queried. The object-relational model allows
references to be part of a type, and thus it is possible under some circumstances

comparison follow. for the user to see their values and even remember them for future use. You
may regard this situation as anything from a serious bug to a stroke of genius,

Objects and Tuples depending on your point of view, but in practice it appears to make little

An object's value is really a struct with components for its attributes alld re-
lationships. ~t is not specified in the ODL standard how relationships are to
be represented, but we may assume that an object is connected to related ob- Backwards Compatibility
jects by some collection of pointers. -1 tuple is likewise a struct, but in the
conventional relational model, it has colnponents for only the attributes. Re- With little difference in essential features of the two models, it is interesting to

lationsllips would be represented by tuples in another relation, as suggested in consider ~ rhy object-relational systems have dominated the pure ~ b j e c t - ~ r i ~ ~ t ~ d

Sectioll 3.2.2. Ho~vever the object-relational model, by allo\ving sets of refer- systems in the marketplace. The reason, we believe, is that there -? by the

cncfs to be a compollent of tuples, also allo\x-s relationships to be incorporated time object-oriented systems were seriously proposed, an enormous number

directly into the tuples that represent an "object" or entity. of installations running a relational database system. -4s relational DBlIS's
evolved into object-relational DBMS's, the vendors were careful to maint.ain

Extents and Relations
back~vards compatibility. That is. nen-er versions of the system would still run
the old code and accept the same schemas, should the user not care to adopt

ODL treats all objects in a class as living in an "extent" for that class. The any of the object-oriented features. On the other hand, miflation to a pure
object-relational model allorvs several different relations with identical schemas. object-oriented DBMS would require the installations to rewrite and reorganize
so it might appear that there is more opportunity in the object-relational model , extensively. Thus, whatever competitive advantage existed was not enough to
to distinguish members of the same class. However, ODL allows the definition of , convert many databases to a pure object-oriented DBXIS.

172 CHAPTER -2. OTHER DATA MODELS .6. SEfiIISTRUCTURED DATA 173

4.5.5 From ODL Designs to Object-Relational Designs Exercise 4.5.5 : Render the genealogy of Exercise 2.1.6 in the object-relational

In Section 4.4 we learned how to convert designs in ODL into schemas of the
relational model. Difficulties arose primarily because of the richer modeling
constructs of ODL: nonatomic attribute types, relationships, and methods.
Some - but not all - of these difficulties are alleviated when we translate

4.6 Semistructured Data
an ODL design into an object-relat,ional design. Depending on the specific The semistmctured-data model plays a special role in database systems:
object-relational model used (we shall consider the concrete SQL-99 model in
Chapter 9), we may be able to convert most of the nonatomic types of ODL 1. It serves as a model suitable for integration of databases, that is, for de-
directly into a corresponding object-relational type; structs, sets, bags, lists, scribing the data contained in two or more databases that contain similar
and arrays all fall into this category. data with different schemas.

If a type in an ODL design is not available in our object-relational model,
we can fall back on the techniques from Sections 4.4.2 through 4.4.4. The rep- 2. It serves as a document model in notations such as XML, to be taken up
resentation of relationships in an object-relational model is essentially the same in Section 4.7, that are being used to share information on the Web.
as in the relational model (see Section 4.4.5), although we may prefer to use ref-
erences in place of keys. Finally, although we were not able to translate ODL In this section, we shall introduce the basic ideas behind "semistructured data"
designs with methods into the pure relational model, most object-relat,ional and how it can represent information more flexibly than the other models we
models include methods, so this restriction can be lifted. have met preciously.

4.5.6 Exercises for Section 4.5 4.6.1 Motivation for the Semistructured-Data Model

Exercise 4.5.1: Using the notation developed for nested relations and re-
lations with referenw. give one or more relation schemas that represent the
follo\ring infornl'tt~c 111 each case. you may exercise some discretion regard-
ing xvh,it attributes of a relation arc included, but try to keep close to the
attributes found in our running movie example. Also, indicate whether your
schemas exhibit redundancy, and if so, what could be done to avoid it.

* a) Navies, with the usual attributes plus all their stars and the usual infor-
mation about the stars.

*! h) Studios, all the movies made by that studio, and all the stars of each
mo\?ie, including all the usual attributes of studios, movies, and stars.

c) .\lovies with their studio, their stars, and all the usual attributes of these.

Let us begin by recalling the E/R model, and its two fundamental kinds of
data - the entity set and the relationship. Remember also that the relational
model has only one kind of data - the relation, yet we saw in Section 3.2
how both entity sets and relationships could be represented by relations. There
is an ad~antage to having two concepts: we could tailor an E/R design to
the real-xvorld situation we were modeling, using whichever of entity sets or
relationships most closely matched the concept being modeled. There is also
some advantage to replacing two concepts by one: the notation in which we
express schemas is thereby simplified. and implementation techniques that make
querying of the database more efficient can be applied to all sorts of data. We
shall begin to appreciate these advantages of the relational model when we
study implementation of the DBhIS, starting in Chapter 11.

Now. let us consider the object-oriented model we introduced in Section 4.2.
There are two principal concepts: the class (or its extent) and the relationship. ' Exercise 4.5.2: Represent the banking information of Exerclse 2.1.1 in the
Likewise, the object-relational model of Section 4.5 has two similar concepts:

object-relational model developed in this section .\lake sure that it is easy, the attribute type (n-hich includes classes) and the relation. given the tuple for a customer, to find their accoumt(s) and also easy, given the
We ma? see the semistructured-data model as blending the two concepts. tuple for an account to find thc customci(s) that hold that account. Also, try

class-and-relationship or class-and-relation. niuch as the relational model blends to avoid redundancy.
entity sets and relationships. However. the motivation for the blending appears

Exercise 4.5.3 : If the data of Exercise -1.5.2 \\-ere modified so that an accoullt to be different in each case. While: as we mentioned, the relational model owes
could be held by only one custonler [as in Exercise 2.1.2(a)], how could your some of its success to the fact that it facilitates efficient implementation, interest
answer to Exercise 4.5.2 be simplified? in the semistructured-data model appears motivated primarily by its flexibility.

While the other models seen so far each start from a notion of a schema - E/R
Exercise 4.5.4: Rendcr the players: teams, and fans of Exercise 2.1.3 in tlle diagrams, relation schemas, or ODL declarations, for instance - semistructured
3bject-relational model. data is "schemaless."]lore properly, the data itself carries information about
>\

424 CHAPTER 8. SYSTEM ASPECTS OF SQL

The grant diagram is a useful way to remember enough about the history
of grants and revocations to keep track of who has what privilege and
from whom they obtained those privileges.

8.9 References for Chapter 8

Again, the reader is referred to the bibliographic notes of Chapter G for infor-
mation on obtaining the SQL standards. The PSkl standard is [4], and 151 is a
comprehensive book on the subject. [6] is a popular reference on JDBC.

There is a discussion of problems with this standard in the area of transac-
tions and cursors in [I]. More about transactions and how they are implementcd
can be found in the bibliographic notes to Chapter 18.

The ideas behind the SQL authorization mechanism originated in [3] and
PI.

1. Berenson, H., P. A. Bernstein, J. N. Gray, J. Melton, E. O'Neil, and P.
O'Neil, "A critique of ANSI SQL isolation levels," Proceedings of ACM
SIGMOD IntE. Conf. on Management of Data, pp. 1-10, 1995.

2. Fagin, R., "On an authorization mechanism," ACM Transactions on Dn-
tabase Systems 3:3, pp. 310-319,1978.

3. Griffiths, P. P. and B. W. Wade, ':.In authorization mechanism for a
relational database system," ACM Tkansactions on Database Systems 1:3,
pp. 242-235,1976.

4. ISO/IEC Report 9075-4, 1996.

5. llelton, J., Understanding SQL's Stored Procedures: A Complete Guide
to SQL/PSM, Morgan-Kaufmann, San Francisco, 1998.

6. U-hite, S., &I. Fisher, R. Cattell, G. Hamilton, and hl. Hapner, JDBC
API Tutorial and Reference, Addison-Wesley, Boston, 1999.

Chapter 9

Object-Orientation in
Query Languages

I11 this chapter, we shall discuss two ways in which object-oriented program-
ming enters the world of query languages. OQL, or Object Query Language, is
a standardized query language for object-oriented databases. It combines the
high-level, declarative programming of SQL with the object-oriented program-
ming paradigm. OQL is designed to operate on data described in ODL. the
object-oriented data-description language that we introduced in Section 4.2.

If OQL is an attempt to bring the best of SQL into the object-oriented world,
then the relatively new, object-relational features of the SQL-99 standard can
be characterized as bringing the bcst of object-orientation into the relational
xvorld. In some senses, the two languages "meet in the middle." but there are
differences in approach that make certain things easier in one language than
the other.

In essence, the two approaches to object-orientation differ in their answer
to the question: "how important is the relation?" For the object-oriented
community centered around ODL and OQL. the answer is "not very." Thus. in
OQL we find objects of all types. some of which are sets or bags of structures
(i.e., relations). For the SQL community, the answer is that relations are still
the fundamental data-structuring concept. In the object-relational approach
that we introduced in Section 4.5. the relational model i's extended by allowing
more complex tjpes for the tuples of relations and for attributes. Thus. objects
and classes are introduced into the relational model, but always in the contest
of relations.

9.1 Introduction to OQL

OQL, the Object Query Language, gives us an SQL-like notation for espress-
ing queries. It is intended that OQL will be used as an extension to some

426 CHAPTER 9. OBJECT-ORIENTflTION IN QUERY LANGUAGES

object-oriented host language, such as C++, Smalltalk, or Java. Objects will
be manipulated both by OQL queries and by the conventional statements of the
host language. The ability to mix host-language statements and OQL queries
without explicitly transferring values between the two languages is an advance
over the way SQL is embedded into a host language, as was discussed in Sec-
tion 8.1.

9.1.1 An Object-Oriented Movie Example

In order to illustrate the dictions of OQL, we need a running example. It
will involve the familiar classes Movie, S ta r , and Studio. We shall use the
definitions of Movie, S t a r , and Stud io from Fig. 4.3, augmenting them with
key and extent declarations. Only Movie has methods, gathered from Fig. 4.4.
The complete example schema is in Fig. 9.1.

9.1.2 Path Expressions

IVe access components of objects and structures using a dot notation that is
similar to the dot used in C and also related to the dot used in SQL. The
general rule is as follows. If a denotes an object belonging to class C. and p
is some property of the class - either an attribute, relationship, or method of
the class - then a.p denotes the result of "applying" p to a. That is:

1. If p is an attribute, then a.p is the value of that attribute in object a.

2. If p is a relationship, then a.p is the object or collection of objects related
to a by relationship p.

3. If p is a method (perhaps with parameters), then a.p(. .) is the result of
applying p t o a.

Example 9.1 : Let myMovie denote an object of type Movie. Then:

The value of myMovie . length is the length of the movie, that is, the value
of the length attribute for the Movie object denoted by myMovie.

The value of myMovie. lengthInHours0 is a real number, the length of
the movie in hours, computed by applying the method 1engthInHours to

, object mynovie.

The value of myMovie.stars is the set of S t a r objects related to the
movie myMovie by the relationship stars.

Expression myMovie . starNames(myStars) returns no value (LC., in C++
the type of this expression is void). As a side effect, however, i t sets the
value of the output variable mystars of the method starNames to be a
set of strings; those strings are the names of the stars of the mol-ic.

INTRODUCTION TO OQL

c l a s s Movie
(extent Movies key (t i t l e , year))

C
a t t r i b u t e s t r i n g t i t l e ;
a t t r i b u t e i n t e g e r year ;
a t t r i b u t e i n t e g e r l eng th ;
a t t r i b u t e enum Film (color,blackAndWhite> filmType;
r e l a t i o n s h i p Set<Star> s t a r s

inve rse S t a r : : s t a r r e d I n ;
r e l a t i o n s h i p Stud io ownedBy

inverse Studio::owns;
f l o a t lengthInHours() ra ises(no~engthF0und) ;
void starNames(out Se t<St r ing>) ;
void otherMovies(in S t a r , out Set<Movie>)

ra ises(noSuchStar) ;
I ;

c l a s s S t a r
(ex tent S t a r s key name)

<
a t t r i b u t e s t r i n g name;
a t t r i b u t e S t r u c t Addr

{ s t r i n g s t r e e t , s t r i n g c i t y) address;
r e l a t i o n s h i p Set<Movie> s t a r r e d I n

inve rse Movie : :s tars ;
1;

c l a s s Stud io
(extent Stud ios key name)

C
a t t r i b u t e s t r i n g name;
a t t r i b u t e s t r i n g address ;
r e l a t i o n s h i p Set<Movie> owns

inve rse Movie::ownedBy;
I ;

Figure 9.1: Part of a n object-oriented inovie database

428 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

Arrows and Dots

OQL allows the arrow -> as a synonym for the dot. This convention is
partly in the spirit of C, where the dot and arrow both obtain compo-
nents of a structure. However, in C, the arrow and dot operators have
slightly different meanings; in OQL they are the same. 111 C, expression
a.f expects a to be a structure, while p->f expects p to be a pointer to a
structure. Both produce the value of the field f of that structure.

If it makes sense, we can form expressions with several dots. For example,
if myMovie denotes a movie object, then myMovie. ownedBy denotes the Studio
object that owns the movie, and mynovie. ownedBy .name denotes the string
that is the name of that studio.

9.1.3 Select-From-Where Expressions in OQL

OQL permits us to write expressions using a select-from-where syntas similar
. to SQL's familiar query form. Here is an example asking for the year of the

movie Gone IVzth the Wind.

SELECT m. year
FROM Movies m
WHERE m.tit le = "Gone With the Wind"

Xotice that, escept for the double-quotes around the string constant, this query
could be SQL rather than OQL.

In general, the OQL select-from-where expression consists of:

1. The keylvord SELECT follolved by a list of expressions.

2. The keyrvord FROM followed by a list of one or more variable declarations.
d variable is declared by giving

(a) .An expression whose value has a collection type, e.g. a set or bag.

(b) The optional keyn-ord AS, and

(c) The name of the variable.

Typically. the expression of (a) is the extent of some class, such as the
extent Movies for class Movie in the example above. An extent is the
analog of a relation in an SQL FROM clause. However, it is possible to
use in a variable declaration any collection-producing expression, such as
another select-from-where expression.

9.1. INTRODUCTION T O OQL 429

3. The keyword WHERE and a boolean-valued expression. This expression, like
the expression following the SELECT, may only use as operands constants
and those variables declared in the FROM clause. The comparison operators
are like SQL's, except that ! =, rather than <>, is used for "not equal to."
The logical operators are AND, OR, and NOT, like SQL's.

The query produces a bag of objects. We compute this bag by considering
all possible values of the variables in the FROM clause, in nested loops. If any
combination of values for these variables satisfies the condition of the WHERE
clause, then the object described by the SELECT clause is added to the bag that
is the result of the select-from-where statement.

Example 9.2 : Here is a more complex OQL query:

SELECT s.name
FROM Movies m, m.stars s
WHERE m. t i t l e = "Casablanca"

This query asks for the names of the stars of Casablanca. Notice the sequence
of terms in the FROM clause. First we define m to be an arbitrary object in the
class Movie, by saying m is in the extent of that class, which is Movies. Then,
for each value of m we let s be a S ta r object in the set m.stars of stars of
movie m. That is, n-e consider in two nested loops all pairs (m, s) such that m is
a movie and s a star of that movie. The evaluation can be sketched as:

FOR each m i n Movies DO
FOR each s i n m.stars DO

IF m . t i t l e = "Casablanca" THEN
add s.name t o the output bag

The WHERE clause restricts our consideration to those pairs that have m equal
to the Movie object whose title is Casablanca. Then, the SELECT clause produces
the bag (~ h i c h should be a set in this case) of all the name attributes of star
objects s in the (my s) pairs that satisfy the WHERE clause. These names are
the names of the stars in the set m,. s ta rs , where m, is the Casablanca movie
object. 0

9.1.4 Modifying the Type of the Result

.A query like Example 9.2 produces a hag of strings as a result. That is, OQL
follows the SQL default of not eliminating duplicates in its answer unless &-
rected to do so. However, we can force the result to be a set or a list if we
wish.

To make the result a set, use the keyword DISTINCT after SELECT, as in
SQL.

-

430 CH..IPTER 9. OBJECT-ORIENTATION I,V QUERY LANGUAGES

Alternative Form of FROM Lists

In addition to the SQL-style elements of FROM clauses, where the collection
is follo~ved by a name for a typical element, OQL allo~vs a completely
equivalent, more logical, yet less SQL-is11 form. We can give the typical
element name, then the keyword I N , and finally the name of the collection.
For instance,

FROM m I N Movies, s I N m.stars

is an equivalent FROM clause for the query in Example 9.2.

To make the result a list, add an ORDER BY clause at the end of the query,
again as in SQL.

The following examples will illustrate the correct syntax.

Example 9.3: Let us ask for the names of the stars of Disney movies. The
following query does the job, eliminating duplicate names in the situation where
a star appeared in several Disney movies.

SELECT DISTINCT s.name
FROM Movies m , m.stars s
WHERE m. ownedBy. name = "Disney"

The strategy of this query is similar to that of Example 9.2. We again
consider all pairs of a movie and a star of that movie in two nested loops as in
Example 9.2. But now; the condition on that pair (m, s) is that "Disney" is the
name of the studio whose Studio object is m. ownedBy.

The ORDER BY clause in OQL is quite similar to the same clause in SQL.
Keywords ORDER BY are followed by a list of expressions. The first of these
expressions is evaluated for each object in the result of the query, and objects
are ordered by this value. Ties, if any, are broken by the value of the second
expression. then the third, and so on. By default, the order is ascending. but
a choice of ascending or descending order can be indicated by the keyword ASC
or DESC, respectively. following an attribute. as in SQL.

Example 9.4 : Let us find the set of Disney movies, but let the result be a list
of movies. ordered by length. If there are ties, let the movies of equal length be
ordered alphabetically. The query is:

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"
ORDER BY m.length, m . t i t l e

9.1. IAiTRODUCTION TO OQL 43 1

In the first three lines, we consider each Movie object m. If the name of the
studio that oxns this movie is "Disney," then the complete object m becomes
a member of the output bag. The fourth line specifies that the object,s m
produced by the select-from-where query are to be ordered first by the value of
m. l eng th (i.e., the length of the movie) and then, if there are ties, by the value
of m. t i t l e (i.e., the title of the movie). The value produced by this query is
thus a list of Movie objects.

9.1.5 Complex Output Types

The elements in the SELECT clause need not be simple variables. They can
be any expression, including expressions built using type constructors. For
example, we can apply the St ruc t type constructor to several expressions and
get a select-from-where query that produces a set or bag of structures.

Example 9.5: Suppose we want the set of pairs of stars living at the same
address. \ire can get this set with the query:

SELECT DISTINCT St ruc t (s t a r l : sl, s ta r2 : s2)
FROM S ta rs sl , Sta rs s 2
WHERE s l .address = s2.address AND s1.name < s2.name

That is, 1%-e consider all pairs of stars, sl and s2. The WHERE clause checks
that they have the same address. It also checks that the name of the first star
p~ecedes the name of the second in alphabetic order, so ~3-e don't produce pairs
consisting of the same star t~vice and we don't produce the same pair of stars
in two different orders.

For every pair that passes the t ~ o tests, we produce a record structure. The
type of this structure is a record with two fields, named s t a r l and s ta r2 . The
type of each field is the class Star . since that is the type of the variables sl
and s2 that provide values for the two fields. That is. formally, the type of the
structure is

Struct (s tar1: S ta r , s t a r2 : star)

The type of the result of the query is a set of these structures, that is:

Set<Struct {s tar l : S t a r , s t a r2 : Star)>

9.1.6 Subqueries

Ure can use a select-from-where expression anywhere a collection is appropriate.
\Ye shall give one example: in the FROM clause. Sereral other examples of
subquery use appear in Section 9.2.

432 CHAPTER 9. OBJECT- ORIENTATION IN QUERY LANGUAGES

SELECT Lists of Length One Are Special

Notice that when a SELECT list has only a single expression, the type of
the result is a collection of values of the type of that expression. However:
if we have more than one expression in the SELECT list, there is an implicit
stucture formed with components for each expression. Thus, even had we
started the query of Example 9.5 with

SELECT DISTINCT starl: sl, star2: s2

the type of the result would be

Set<Struct{starl: Star, star2: star)>

Honrever, in Example 9.3, the type of the result is Set<String>, not
Set<Struct{name: string)>.

In the FROM clause, we may use a subquery to form a collection. We then
allow a variable representing a typical element of that collection to range over
each member of the collection.

Example 9.6 : Let us redo the query of Example 9.3, which asked for the stars
of the movies made by Disney. First, the set of Disney movies could be obtained
by the query, as was used in Example 9.4.

SELECT m
FROM Movies m
WHERE m.ownedBy.name = "Disney"

We can now use this query as a subquery to define the set over which a variable
d. representing the Disney movies; can range.

SELECT DISTINCT s.name
FROM (SELECT m

FROM Movies m
WHERE m.ownedBy.name = "Disney") d,

d. stars s

This expression of the query "Find the stars of Disney movies" is no Inore
succinct than that of Example 9.3. and perhaps less so. However, it does
illustrate a new form of building queries available in OQL. In the query above.
the FROM clause has two nested loops. In the first, the variable d ranges over
all Disney movies, the result of the subquery in the FROM clause. In the second
loop, nested within the first, the variable s ranges over all stars of the Disney

' lnovie d. Sotice that no WHERE clause is needed in the outer query.

9.1. INTRODUCTION TO OQL 433

9.1.7 Exercises for Section 9.1

Exercise 9.1.1: In Fig. 9.2 is an ODL description of our running products
exercise. \Ire have made each of the three types of products subclasses of the
main Product class. The reader should observe that a type of a product can
be obtained either from the attribute type or from the subclass to ~ h i c h it
belongs. This arrangement is not an excellent design, since it allows for the
possibility that, say, a PC object will haye its type attribute equal to "laptop"
or "printer". However, the arrangement gives you some interesting options
regarding how one expresses queries.

Because type is inherited by Printer from the superclass Product, we have
had to rename the type attribute of Printer to be printerType. The latter
attribute gives the process used by the printer (e.g., laser or inkjet), while type
of Product will have values such as PC, laptop, or printer.

Add to the ODL code of Fig. 9.2 method signatures (see Section 1.2.7)
appropriate for functions that do the following:

* a) Subtract x from the price of a product. Assume x is provided as an input
parameter of the function.

* b) Return the speed of a product if the product is a PC or laptop and raise
the exception notcomputer if not.

c) Set the screen size of a laptop to a specified input value x.

! d) Given an input product p, determine whether the product q to which the
method is applied has a higher speed and a lower price than p. Raise the
exception badInput if p is not a product with a speed (i.e., neither a PC
nor laptop) and the exception nospeed if q is not a product with a speed.

Exercise 9.1.2 : Using the ODL schema of Exercise 9.1.1 and Fig. 9.2, write
the follo~ving queries in OQL:

" a) Find the model numbers of all products that are PC's with a price under
$2000.

b) Find the model numbers of all the PC's with at least 128 megabytes of
R-411.

*! c) Find the manufacturers that makk at least two different models of laser
printer.

d) Find tlle set of pairs (r. h) such that some PC or laptop has r megabytes
of RAM and h gigabytes of hard disk.

e) Create a list of the PC's (objects, not model numbers) in ascending order
of processor speed.

! f) Create a list of the model numbers of tlle laptops n-ith a t least 64 xnega-
bytes of R.411: in descending order of screen size.

CHAPTER 9. OBJECT-ORIENTATIOX IN QUERY LANGUAGES

c lass Product
(extent Products
key model)

C
a t t r i bu te integer model;
a t t r i bu te s t r i ng manufacturer ;
a t t r i bu te s t r i ng type;
a t t r i bu te rea l pr ice;

I ;

c l ass PC extends Product
(extent PCs)

I
a t t r i bu te integer speed;
a t t r i bu te integer ram;
a t t r i bu te integer hd;
a t t r i bu te s t r i ng rd ;

1;

c lass Laptop extends Product
(extent Laptops)

E
a t t r i bu te integer speed;
a t t r i bu te integer ram;
a t t r i bu te integer hd;
a t t r i bu te r e a l screen;

I;

c lass Pr in ter extends Product
(extent Pr in ters)

I
a t t r i bu te boolean color;
a t t r i bu te s t r i ng printerType;

I ;

c l ass Class
(extent Classes
key name)

.E
a t t r i b u t e s t r i n g name;
a t t r i b u t e s t r i n g country;
a t t r i b u t e in teger numCuns;
a t t r i b u t e in teger bore;
a t t r i b u t e in teger displacement;
r e l a t i onsh ip Set<Ship> ships inverse Ship::classOf;

3;

c lass Ship
(extent Ships
key name)

C
a t t r i b u t e s t r i n g name;
a t t r i b u t e in teger launched;
r e l a t i onsh ip Class classof inverse C1ass::ships;
r e l a t i onsh ip Set<Outcome> inBat t les

inverse Outcome: : theship;

I ;

c l ass Ba t t l e
(extent Ba t t l es
key name)

E
a t t r i b u t e s t r i n g name;
a t t r i b u t e Date dateFought;
r e l a t i onsh ip Set<Outcome> r e s u l t s

inverse 0utcome::theBattle;
1;

c l a s s Outcome
(extent Outcomes)

C
a t t r i b u t e enum S t a t Cok, sunk ,damaged) s ta tus ;
r e l a t i onsh ip Ship theship inverse Ship: : inBat t les;
r e l a t i onsh ip Ba t t l e theBat t le inverse Bat t1e : : resu l ts ;

1;
Figure 9.2: Product schema in ODL

Figure 9.3: Battleships database in ODL

436 CHAPTER 9. OBJECT-ORIENT.4TION IN QUERY LA-WGUAGES

Exercise 9.1.3 : In Fig. 9.3 is an ODL description of our running "battleships"
database. Add the following method signatures:

a) Compute the firepower of a ship, that is, the number of guns times the
cube of the bore.

b) Find the sister ships of a ship. Raise the exception nosisters if the ship
is the only one of its class.

c) Given a battle b as a parameter, and applying the method to a ship s,
find the ships sunk in the battle b, provided s participated in that battle.
Raise the exception didNotParticipate if ship s did not fight in battle
b.

d) Given a name and a year launched as parameters, add a ship of this name
and year to the class to which the method is applied.

! Exercise 9.1.4: Repeat each part of Exercise 9.1.2 using at least one subquery
in each of your queries.

Exercise 9.1.5: Using the ODL schema of Exercise 9.1.3 and Fig. 9.3, xvritc
. the follolving queries in OQL:

a) Find the names of the classes of ships with at least nine guns.

b) Find the ships (objects, not ship names) with at least nine guns.

c) Find the names of the ships with a displacement under 30,000 tons. Nake
the result a list, ordered by earliest launch year first, and if there are ties.
alphabetically by ship name.

d) Find the pairs of objects that are sister ships (i.e., ships of the same class).
3ote that the objects themselves are wanted, not the names of the ships.

! e) Find the names of the battles in which ships of at least two different
countries were sunk.

!! f) Find the names of the batt~les in which no ship was listed as damaged.

9.2 Additional Forms of QQL Expressions

In this section we shall see some of the other operators, besides select-from-
where, that OQL provides to help us build expressions. These operators in-
clude logical quantifiers - for-all and there-exists - aggregation operators,
'the goup-by operator, and set operators - union, intersection, and difference.

9.2. ADDITIONAL FORMS OF OQL EXPRESSIONS 437

9.2.1 Quantifier Expressions

l i e can test whether all members of a collection satisfy some condition, and we
can test whether a t least one member of a collection satisfies a condition. To
test whether all members x of a collection S satisfy condition C(x), we use the
OQL expression:

FOR ALL x IN S : C(x)

The result of this expression is TRUE if every x in S satisfies C(x) and is FALSE
otherwise. Similarly, the expression

EXISTS x I N S : C(x)

has value TRUE if there is at least one x in S such that C(X) is TRUE and it has
value FALSE otherwise.

Example 9.7 : Another way to express the query "find all the stars of Disney
movies" is shown in Fig. 9.4. Here, we focus on a star s and ask if they are
the star of some movie rn that is a Disney movie. Line (3) tells us to consider
all movies m in the set of movies s. starredIn, which is the set of movies in
which star s appeared. Line (1) then asks whether movie m is a Disney movie.
If we find even one such movie m, the value of the EXISTS expression in lines
(3) and (4) is TRUE; otherwise it is FALSE.

1) SELECT s
2) FROM Stars s
3) WHERE EXISTS m IN s .s tar red In :
4) m. ownedBy .name = "Disney"

Figure 9.4: Using an existential subquery

Example 9.8 : Let us use the for-all operator to write a query asking for the
stars that have appeared only in Disney movies. Technically, that set includes
.'stars" who appear in no movies at all (as far as we can tell from our database).
It is possible to add another condition to our query, requiring that the star
appear in at least one rnovie. but TW lealr that improvement as ail exercise.
Figure 9.5 shows the query.

9.2.2 Aggregation Expressions

OQL uses the same five aggregation operators that SQL does: AVG, COUNT. SUM.
MIN. and MAX. However, while these operators in SQL may be thought of as

438 CHAPTER 9. OBJECT-ORIENTATlOiV IN QUERY LANGUAGES

SELECT s
FROM Stars s
WHERE FOR ALL m I N s.starredIn :

m. ownedBy . name = "Disney"

Figure 9.5: Using a subquery with universal quantification

applying to a designated column of a table, the same operators in OQL apply
to all collections whose members are of a suitable type. That is, COUNT can
apply to any collection; SUM and AVG can be applied to collections of arithmetic
types such as integers, and MIN and MAX can be applied to collections of any
type that can be compared, e.g., arithmetic values or strings.

Example 9.9: To compute the average length of all movies, we need to create
a bag of all movie lengths. Note that we don't want the set of movie lengths,
because then two movies t,hat had the same length would count as one. The
query is:

AVG(SELECT m.length FROM Movies m)

That is, we use a subquery to extract the length components from movies. Its
result is the bag of lengths of movies, and we apply the AVG operator to this
bag. giving the desired answer. 0

9.2.3 Group-By Expressions

The GROUP BY clause of SQL carries over to OQL, but with an interesting twist
in perspective. The form of a GROUP BY clause in OQL is:

1. The keywords GROUP BY.

2. .I comma-separated list of one or more partition attributes. Each of these
consists of

(a) A field name,

(b) A colon, and

(c) An expression.

That is. the form of a GROUP BY clalisc is:

GROUP BY fl:el, f2:e2,. . . . f,:e,,

Each GROUP BY clause follows a select-from-where query. The expressions
el. e?. . . . ,en may refer to variables mentioned in the FROM clause. To facilitate

' the explanation of how GROUP BY works, let us restrict ourselves to the common

9.2. ADDITIOAr24L FORMS OF OQL EXPRESSIOiVS 439

case where there is only one variable x in the FROM clause. The value of x ranges
over some collection, C. For each member of C, say i, that satisfies the condition
of the WHERE clause, we evaluate all the expressions that follow the GROUP BY,
to obtain values el (i), ea(i), . , . , en (i). This list of values is the group to which
value i belongs.

T h e Intermediate Collection

The actual value returned by the GROUP BY is a set of structures, which we shall
call the intermediate collection. The members of the intermediate collection
have the form

The first n fields indicate the group. That is, (vl, vz, . . . , v,) must be the list
of values (el(i), ez(i), . . . ,en(i)) for a t least one value of i in the collection C
that meets the condition of the WHERE clause.

The last field has the special name par t i t ion . Its value is, intuitively,
the values i that belong in this group. ,\Iore precisely. P is a bag consisting of
structures of the form St ruc t (x: i), m-here x is the variable of the FROM clause.

The Output Collection

The SELECT clause of a select-from- here expression that has a GROUP BY clause
may refer only to the fields in the structures of the intermediate collection.
namely f l . f 2 , f n and par t i t ion . Through par t i t ion , we may refer to the
field x that is present in the structures that are members of the bag P that forms
the value of par t i t ion. Thus, we may refer to the variable x that appears in
the FROM clause, but we may only do so within an aggregation operator that
aggregates over all the menibers of a bag P. The result of the SELECT clause
will be referred to as the output collection.

Example 9.10: Let us build a table of the total length of movies for each
studio and for each pear. In OQL. what we actually construct is a bag of
structures. each xvith three componellts - a studio, a year: and the total length
of movies for that studio and year. The query is shown in Fig. 9.6.

SELECT stdo, y r , sumlength: SUM(SELECT p.m.length
FROM par t i t i on p)

FROM Movies m
GROUP BY stdo: m.ownedBy.name, yr: m.year

Figure 9.6: Grouping movies by studio and year

To understand this query, let us start at the FROM clause. There, we find
that variable m ranges over all Movie objects. Thus. m here plays the role of x

440 CHAPTER 9. OBJECT-ORIENTATION I N QUERY LAXG UAGES

in our general discussion. In the GROUP BY clause are two fields s t d o and yr.
corresponding to the expressions m. ownedBy . name and m . year, respectively.

For instance, Pretty Woman is a movie made by Disney in 1990. [Vhen nl
is the object for this movie, the value of m . ownedBy. name is "Disney" and the
value of m. year is 1990. As a result, the intermediate collection has, as one
member, the structure:

S t ruc t (stdo: "Disney", y r : 1990, p a r t i t i o n : P)

Here, P is a set of structures. It contains, for example,

S t ruc t (m: mpw)

where mPW is the Movie object for Pretty Woman. Also in P are one-component
structures with field name m for every other Disney movie of 1990.

Now, let us examine the SELECT clause. For each structure in the intermedi-
ate collection, we build one structure that is in the output collection. The first
component of each output structure is s tdo. That is, the field name is s tdo
and its value is the value of the s t d o field of the corresponding structure in the
intermediate collection. Similarly, the second component of the result has ficltl
name y r and a value equal to the y r con~ponent of the intermediate collection.

The third component of each structure in the output is

SUM(SELECT p.m.length FROM p a r t i t i o n p)

To understand this select-from expression we first realize that variable p rangcs
over the members of the p a r t i t i o n field of the structure in the GROUP BY
result. Each d u e of p, recall, is a structure of the form S t r u c t (m: o) , t+-here o
is a movie object. The expression p.m therefore refers to this object o. Thus.
p.m. leng th refers to the length component of this Movie object

.is a result, the select-from query produces the bag of lengths of the movies
in a particular group. For instance, if s t d o has the value "Disney" and y r has
the value 1990, then the result of the select-from is the bag of the lengths of the
movies made by Disney in 1990. When we apply the SUM operator to this bag
we get the sum of the lengths of the movies in the group. Thus, one member
of the output collection might be

if 123-1 is the correct total length of all the Disney movies of 1990.

Grouping W h e n t h e FROM Clause h a s Mu l t i p le Col lect ions

In the event that there is more than one variable in the FROM clause. a f e ~
changes to the interpretation of the query are necessary, but the principles
remain the same as in the one-variable case above. Suppose that the variables
appearing in the FROM clause are XI, 22, . . . : xk. Then:

9.2. ADDITIONAL FORMS OF OQL EXPRESSIONS

1. All variables xl , xz,. . . , xk may be used in the expressions el , e2, . . . ,en
of the GROUP BY clause.

2. Structures in the bag that is the value of the p a r t i t i o n field have fields
named x l , 22,. . . , xk.

3. Suppose i l , iz, . . . : ik are values for variables x i , x2,. . . ,xk, respectively,
that niake the WHERE clause true. Then there is a structure in the inter-
mediate collection of the form

and in bag P is the structure:

S t r u c t (xl : i l , x2 : iZ, . . . , xk : i k)

9.2.4 HAVING Clauses

A GROUP BY clause of OQL may be followed by a HAVING clause, with a meaning
like that of SQL's HAVING clause. That is, a clause of the form

HAVING <condition>

serves to eliminate some of the groups created by the GROUP BY. The condition
applies to the value of the p a r t i t i o n field of each structure in the intermedi-
ate collection. If true, then this structure is processed as in Section 9.2.3, t o
form a structure of the output collection. If false, then this structure does not
contribute to the output collection.

E x a m p l e 9.11 : Let us repeat Example 9.10, but ask for the sum of the lengths
of movies for only those studios and years such that the studio produced a t lewt
one movie of over 120 minutes. The query of Fig. 9.7 does the job. Notice that
in the HAVING clause we used the same query as in the SELECT clause to obtain
the bag of le~lgtlis of movies for a given studio and year. In the HAVING clause,
tve take the maximum of those lengths and compare it to 120.

SELECT s t d o , y r , sumlength: SUM(SELECT p.m.length
FROM p a r t i t i o n p)

FROM Movies m

GROUP BY s tdo : m.ownedBy.name, y r : m.year
HAVING MAX(SELECT p.m.length FROM p a r t i t i o n p) > 120

Figure 9.7: Restricting the groups considered

442 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

9.2.5 Union, Intersection, and Difference
\lj, may apply the union, intersection, and difference operators to two objects
of set or bag type. These three operators are represented, as in SQL, by the
keywords UNION, INTERSECT, and EXCEPT, respectively.

1) (SELECT DISTINCT m
2) FROM Movies m, m.stars s
3) WHERE s.name = "Harrison Ford")
4) EXCEPT
5) (SELECT DISTINCT m
6) FROM Movies m
7) WHERE m.ownedBy.name = "Disney")

Figure 9.8: Query using the difference of two sets

Example 9.12: We can find the set of movies starring Harrison Ford that
were not made by Disney with the difference of two select-from-where queries
shown in Fig. 9.8. Lines (1) through (3) find the set of movies starring Ford.
and lines (5) through (7) find the set of movies made by Disney. The EXCEPT
at line (4) takes their difference.

We should notice the DISTINCT keywords in lines (1) and (5) of Fig. 9.8.
This keyword forces the results of the two queries to be of set type; without
DISTINCT. the result would be of bag (multiset) type. In OQL, the operators
UNION, INTERSECT, and EXCEPT operate on either sets or bags. When both
arguments are sets, then the operators have their usual set meaning.

However, when both arguments are of bag type, or one is a bag and one is a
set. then the bag meaning of the operators is used. Recall Section 5.3.2, where
the definitions of union, intersection, and difference for bags was explained.

For the particular query of Fig. 9.8, the number of times a movie appears in
the result of either subquery is zero or one, so the result is the same regardless of
whether DISTINCT is used. However, the type of the result differs. If DISTINCT
is used, then the type of the result is Set<Movie>, while if DISTINCT is omitted
in one or both places, then the result is of type Bag<Movie>.

9.2.6 Exercises for Section 9.2

Exercise 9.2.1: Using the ODL schema of Exercise 9.1.1 and Fig. 9.2. wite
the follolving queries in OQL:

* a) Find the manufacturers that make both PC's and printers.

, * b) Find the manufacturers of PC's, all of whose PC's have at least 20 giga-
bytes of hard disk.

9.3. OBJECT 4SSIGNAfENT AXD CREATION IN OQL 443

c) Find the manufacturers that make PC's but not laptops.

* d) Find the average speed of PC's.

* e) For each CD or DVD speed: find the average amount of R.i\hI on a PC.

! f) Find the manufacturers that make some product with at least 64 mega-
bytes of RAXI and also make a product costing under $1000.

!! g) For each manufacturer that makes PC's with an average speed of a t least
1200, find the maximum amount of RAM that they offer on a PC.

Exercise 9.2.2: Using the ODL schema of Exercise 9.1.3 and Fig. 9.3, write
the following queries in OQL:

a) Find those classes of ship all of whose ships were launched prior to 1919.

b) Find the maximum displacement of any class.

! c) For each gun bore, find the earliest year in which any ship with that bore
was launched.

*!! d) For each class of ships at least one of which was launched prior to 1919,
find the number of ships of that class sunk in battle.

! e) Find the average number of ships in a class.

! f) Find the average displacement of a ship.

!! g) Find the battles (objects. not names) in which at least one ship from
Great Britain took part and in which at least two ships were sunk.

! Exercise 9.2.3 : lye mentioned in Example 9.8 that the OQL query of Fig. 9.5
\vould return stars li-110 starred in no mo~ies at all, and therefore, technically
appeared .-onl: in Disney ~novi~s." Rewrite the query to return only those stars
xho have appeared in at least one movie and all movies in which they appeared
15-here Disney movies.

! Exercise 9.2.4: Is it ever possible for FOR ALL x I N S : C(z) to be true.
nhile EXISTS s I N S : C(x) is false? Explain your reasoning.

9.3 Object Assignment and Creation in OQL

In this section we shall consider how OQL connects to its host language, which
a e shall take to he C++ in examples, although another object-oriented, general-
purpose progranlming language (e.g. Java) might be the host language in some
systems.

44.1 CHAPTER 9. OBJECT- 0RIENT;LTION IN QUERY LANGUAGES

9.3.1 Assigning Values to Host-Language Variables
Unlike SQL, which needs to move data between components of tuples and host-
language variables, OQL fits naturally into its host language. That is: the
expressions of OQL that we have learned, such as select-from-where, produce
objects as values. It is possible to assign to any host-language variable of the
proper type a value that is the result of one of these OQL expressions.

Example 9.13 : The OQL expression

SELECT DISTINCT m
FROM Movies m
WHERE m.year < 1920

produces the set of all those movies made before 1920. Its type is Set<Movie>.
If oldMovies is a host-language variable of the same type, then we may write
(in C++ extended with OQL):

oldMovies = SELECT DISTINCT m
FROM Movies m
WHERE m.year < 1920;

and the value of oldMovies will become the set of these Movie objects.

9.3.2 Extracting Elements of Collections

Since the select-from-where and group-by expressions each produce collections
- either sets, bags, or lists - we must do something extra if we want a single
element of that collection. This statement is true even if we have a collection
that n-e are sure contains only one element. OQL provides the operator ELEMENT
to turn a singleton collection into its lone member. This operator can be applied.
for instance, to the result of a query that is known to return a singleton.

Example 9.14 : Suppose we would like to assign to the variable gwtw. of type
Movie (i.e., the Movie class is its type) the object representing the movie Gone
l l l th the Wind. The result of the query

SELECT m
FROM Movies m
WHERE m.title = "Gone With the Wind"

is the bag containing just this one object. 11-e cannot assign this bag to variable
gv tv directly, because we n-ould get a type error. However. if xe apply the
ELEMENT operator first,

gwtw = ELEMENT(SELECT m
FROM Movies m
WHERE m.title = "Gone With the Wind"

1;

9.3. OBJECT ASSIGAr1IENT -4ND CREATION IX OQL 445

then the type of the variable and the expression match, and the assignment is
legal.

9.3.3 Obtaining Each Member of a Collection

Obtaining each member of a set or bag is more complex, but still simpler than
the cursor-based algorithms we needed in SQL. First, we need to turn our set
or bag into a list. \Ye do so with a select-from-where expression that uses
ORDER BY. Recall from Section 9.1.4 that the result of such an expression is a
list of the selected objects or values.

Example 9.15: Suppose we want a list of all the movie objects in the class
Movie. We can use the title and (to break ties) the year of the movie, since
(title, year) is a key for Movie. The statement

movieList = SELECT m
FROM Movies m
ORDER BY m.title, m.year;

assigns to host-language variable movieList a list of all the Movie objects,
sorted by title and year.

Once x-e haye a list, sorted or not. we can access each element by number;
the ith element of the list L is obtained by L[i - 11. Note that lists and arrays
are assunled numbered starting at 0, as in C or C++.

Example 9.16 : Suppose we want to write a C++ function that prints the
title. year, and length of each movie. -1 sketch of the function is shown in
Fig. 9.9.

1) movieList = SELECT m
FROM Movies m
ORDER BY m.title, m.year;

2) number0fMovies = ~0UNT(Movies);
3) for(i=O; i<numberOfMovies; i++) (
4) movie = movieList [i] ;
5) cout << movie.title << " 'I << movie. year << I' "
6 << movie. length << "\nl' ;

1

Figure 9.9: Exanlining and printing each movie

Line (1) sorts the Movie class, placing the result into variable movielist,
~vhose type is List<Movie>. Line (2) computes the number of movies. using
the OQL operator COUNT. Lines (3) through (6) are a for-loop in which integer

446 CHAPTER 9. OBJECT-ORIENTATION I N QUERY LAhTG U.4GES

variable i ranges over each position of the list. For convenience, the i th element
of the list is assigned to variable movie. Then, a t lines (5) and (6) the relevant
attributes of the movie are printed.

9.3.4 Constants in OQL

Constants in OQL (sometimes referred to as immutable objects) are constructed
from a basis and recursive constructors, in a manner analogous to the way ODL
types are constructed.

1. Basic values, which are either

(a) Atomic values: integers, floats, characters, strings, and booleans.
These are represented as in SQL, with the exception that double-
quotes are used to surround strings.

(b) Enumerations. The values in an enumeration are actually declared
in ODL. Any one of these values may be used as a constant.

2. Complex values built using the following type constructors:

(a) Set (. . .).
(b) Bag(...).

(c) L is t (. . .).
(d) Array(. . .).
(e) St ruc t (. . .).

The first four of these are called collection types. The collection types and
Struct may be applied a t mill t o any values of the appropriate type(s),
basic or complex. However, when applying the St ruc t operator, one
needs to specify the field names and their corresponding values. Each
field name is followed by a colon and the value, and field-value pairs are
separated by commas. Note that the same type constructors are used in
ODL, but here we use round, rather than triangular, brackets.

Example 9.17: The expression Bag(2, I ,2) denotes the bag in which integer
2 appears twice and integer 1 appears once. The expression

Struct (foo: bag(2,1,2), bar: "baz")

denotes a structure with two fields. Field f oo, has the bag described above as
its value, and bar, has the string "baz" for its value.

9.3. OBJECT ASSIGNMEXT AND CREATIOX IN OQL

9.3.5 Creating New Objects

m e have seen that OQL expressions such as select-from-where allow us to create
new objects. It is also possible to create objects by assembling constaiits or
other expressions into structures and collections explicitly. We saw an example
of this convention in Example 9.5, where the line

SELECT DISTINCT St ruc t (s t a r l : sl , s ta r2 : s2)

was used to specify that the result of the query is a set of objects whose type
is St ruc t (s t a r1 : S t a r , s t a r2 : s ta r) . We gave the field names starl and
s t a r 2 t o specify the structure, while the types of these fields could be deduced
from the types of the variables s l and s2.

Example 9.18: The construction of constants that we saw in Section 9.3.4
can be used with assignments to variables, in a manner similar to that of other
programming languages. For instance: consider the following sequence of as-
signments:

The first line gives variable x a value of type

a structure with two integer-valued fields named a and b. We may represent
values of this type as pairs, with just the integers as components and not the
field names a and b. Thus, the value of x may be represented by (1,2). The
second line defines y to be a bag whose members are structures of the same
type as x, above. The pair (1.2) appears twice in this bag, and (3,4) appears
once. 0

Classes or other defined types call have instances created by constructor
fi~nctzons. Classes typically haw several different forms of constructor functions,
depending on which properties are initialized explicitly and which are given
some default value. For example, methods are not initialized, most attributes
\\-ill get initial values. and relationships might be initialized to the empty set
and augmented later. The name for each of these constructor functions is the
name of the class. and they are distinguished by the field names mentioned in
their arguments. The details of holv these constructor functions are defined
depend on the host language.

Example 9.19 : Let us consider a possible constructor function for Movie ob-
jects. This function, we suppose, takes values for the attributes t i t l e . year,
length, and ownedBy. producing an object that has these values in the listed
fields and an empty set of stars. Then, if mgm is a variable whose value is the
NGl I Studio object. we might create a Gone With the Wind object by:

448 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

gwtw = Movie(tit1e: "Gone With t h e Wind",
year: 1939,
length: 239,
ownedBy: mgm) ;

This statenlent has two effects:

1. It creates a new Movie object, which becomes part of the extent Movies.

2. It makes this object the value of host-language variable gwtw.

9.3.6 Exercises for Section 9.3

Exercise 9.3.1 : Assign to a host-language variable x the following constants:

* a) The set. {I, 2,3).

b) The bag {1,2,3,1).

c) The list (1,2,3,1).

d) The structure whose first component, named a, is the set {1,2) and ~vhose
second component, named b, is the bag { l , l) .

e) The bag of structures, each with two fields named a and b. The respective
pairs of values for the three structures in the bag are (1,2), (2,l). and
(1% 2).

Exercise 9.3.2: Using the ODL schema of Exercise 9.1.1 and Fig. 9.2. mite
statements of C++ (or an object-oriented host language of your choice) es-
tended with OQL to do the following:

* a) Assign to host-language variable x the object for the PC with model
number 1000.

b) Assign to host-language variable y the set of all laptop objects with at
least 64 megabytes of RAN.

c) Assign to host-language variable z the average speed of PC's selling foi
less than $1500.

! d) Find all the laser printers. print a list of their model numbers and prices.
and follow it by a message indicating the model number with the IOTI-est
price.

!! e) Print a table giving, for each manufacturer of PC's, the minimum and
maximum price.

9.4. USER-DEFINED TYPES IAr SQL 4.19

Exercise 9.3.3 : In this exercise, we shall use the ODL schema of Exercise 9.1.3
and Fig. 9.3. \Ire shall assume that for each of the four classes of that schema,
there is a constructor function of the same name that takes values for each of the
attributes and single-valued relationships, but not the ~nultivalued relationships,
which are initialized to be empty. For the single-valued relationships to other
classes, you may postulate a host-language variable whose current value is the
related object. Create the following objects and assign the object to be the
value of a host-language variable in each case.

* a) The battleship Colorado of the Maryland class, launched in 1923.

b) The battleship Graf Spee of the Liitzo~v class, launched in 1936.

c) An outcome of the battle of Malaya was that the battleship Prince of
\Vales was sunk.

d) The battle of Malaya was fought Dec. 10, 1941.

e) The Hood class of British battlecrujsers had eight 13-inch guns and a
displacement of 41.000 tons.

9.4 User-Defined Types in SQL

We now turn to the n-ay SQL-99 incorporates many of the object-oriented fca-
tures that \ve hare seen in ODL and OQL. Because of these recent estensioris
to SQL. a DBMS that follorvs this standard is often referred to as "object-
relational." n'e met many of the object-relational conce~~ts abstractly in Sec-
tion 1.3. Son-, it is time for us to study the details of the standard.

OQL has no specific notion of a relation: it is just a set (or bag) of structures.
Hen-ever. the relation is so central to SQL that objects in SQL keep relations
as the core concept. The classes of ODL are transmogrified into user-defined
types. or UDT's. in SQL. \Ye find CDT's used in two distinct ways:

1. A UDT can be the type of a table.

2. A UDT can be the type of an attribute belonging to some table.

9.4.1 Defining Types in SQL

A user-defined type declaration in SQL can be thought of as roughly analogous
to a class declaration in ODL. \vith some distinctions. First. key declarations
for a relation rvith a user-defined type are part of the table definition. not the
type definition: that is. many SQL relations can be declared to have the same
(user-defined) type but different keys and other constraints. Second, in SQL n-e
do not treat relationships as properties. -1 relationship must be represented by
a separate relation. as was discussed in Section 1.4.3. X simple form of UDT
definition is:

450 CHAPTER 9. OBJECT-ORI%NTATION M QUERY LANGUAGES

1. The keywords CREATE TYPE,

2. A name for the type,

3. The keyword AS,

4. A parenthesized, comma-separated list of attributes and their types.

5. A comma-separated list of methods, including their argument ty pe(s) ,
and return type.

That is, the definition of a type T has the form

CREATE TYPE T AS <attribute and method declarations> ;

Example 9.20: ?Ve can create a type representing movie stars, analogous to
the class Star found in the OQL example of Fig. 9.1. However, we cannot
represent directly a set of movies as a field within Star tuples. Thus, we shall
start with only the name and address components of Star tuples.

To begin, note that the type of an address in Fig. 9.1 is itself a tuple,
with components street and city. Thus, we need two type definitions, one
for addresses and the other for stars. The necessary definitions are shown in
Fig. 9.10.

CREATE TYPE AddressType AS (
street CHAR(~O),
city CHAR(20)

) ;

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType

) ;

Figure 9.10: Two type definitions

h tuple of type AddressType has two components, whose attributes are
street and city. The types of these components are character strings of length
50 and 20, respectively. A tuple of type StarType also has tn-o components.
The first is attribute name, whose type is a 30-character string, and the second is
address, whose type is itself a UDT AddressType. that is, a tuple with street
and city components. C]

9.4. USER-DEFZXED TYPES IN SQL 451

9.4.2 Methods in User-Defined Types

The declaration of a method resembles the way a function in PSM is introdnced;
see Section 8.2.1. There is no analog of PSI1 procedures as methods. That is,
every method returns a value of some type. While function declarations and
definitions in PShf are combined, a method needs both a declaration, within the
definition of its type, and a separate definition, in a CREATE METHOD statement.

X method declaration looks like a PSI1 function declaration, with the key-
word METHOD replacing CREATE FUNCTION. However, SQL methods typically
have no arguments; they are applied to rows, just as ODL methods are ap-
plied to objects. In the definition of the method, SELF refers to this tuple, if
necessary.

Example 9.21: Let us extend the definition of the type AddressType of
Fig. 9.10 with a method houseNumber that extracts from the street com-
ponent the portion devoted to the house address. For instance, if the street
component \-ere '123 Maple St. ', then houseNumber should return '123'.
The revised type definition is thus:

CREATE TYPE AddressType AS (
street CHAR(501,
city CHAR(20)
1
METHOD houseNumber () RETURNS CHAR(^^) ;

We see the keyword METHOD, follon-ed by the name of the method and a parnithe-
sized list of its arguments and their types. In this case, there are no arguments,
but the parentheses are still needed. Had there bee11 arguments, they would
have appeared, follo~ved by their types. such as (a INT, b CHAR(^)). 0

Separately, we need to define the metliod. -1 simple form of method defini-
tion consists of:

1. The keywords CREATE METHOD.

2. The method name. arguments and their types, and the RETURNS clause,
as in the declaration of the method.

3. The keyword FOR and tlic name of the UDT in which the method is
declarcd.

4. The body of the method. \vhich is ~vrittcn in the same language as the
bodies of PSJI functions.

For instance, we could define the method houseNumber from Example 9.21 as:

CREATE METHOD houseNmber RETURNS CHAR (10)
FOR AddressType

452 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGU.4GEs

BEGIN
. . .

END ;

\Ve have omitted the body of the method because accomplishing the intended
separation of the string s t r ing as intended is nontrivial, even in PSM.

9.4.3 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 6.6.2, but
we use

in place of the list of attribute declarations in a normal SQL table declaration.
Other elements of a table declaration, such as keys, foreign keys, and tuple-
based constraints, may be added to the table declaration if desired, and apply
only to this table, not to the UDT itself.

Example 9.22 : We could declare MovieStar to be a relation whose tuples
were of type StarType by

CREATE TABLE MovieStar OF StarType;

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address. has
a type that is itself a UDT, namely the type AddressType.

It is colrimon to have one relation for each type, and to think of that relation
as the extent (in the sense of Section 1.3.4) of the class corresponding to that
type. However, it is permissible to have many relations or none of a given type.

9.4.4 References

The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. Tables whose type is a UDT may have
a reference column that serves as its "identity." This column could be the
primary key of the table, if there is one, or it could be a colurhn whose values
are generated and maintained unique by the DBMS, for example. \Ve shall
defer the matter of defining reference columns until we first see how reference
types are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute -4 whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

9.1. USER-DEFINED TYPES IAr SQL 453

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T

ExampIe 9.23 : Reference attributes are not sufficient to record in MovieStar
the set of all movies they starred in, but they let us record the best movie for
each star. Assume that we have declared a relation Movie, and that the type of
this relation is the UDT MovieType; we shall define both MovieType and Movie
later, in Fig. 9.11. The following is a new definition of StarType that includes
a11 attribute bestMovie that is a reference to a movie.

CREATE TYPE StarType AS (
name CHAR(30) ,
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

> ;
Sow, if relation MovieStar is defined to have the UDT above, then each star
tuple will have a component that refers to a Movie tuple - the star's best
movie.

Sest , n-e must arrange that a table such as Movie in Example 9.23 will have
a reference column. Such a table is said to be referenceable. In a CREATE TABLE
statement n-here the type of the table is a UDT (as in Section 9.4.3), we may
append a clause of the form:

REF IS tattribute name> <how generated,

The attribute name is a name given to the column that will serve as an "object
identifier" for tuples. The .-how generated" clause is typically either:

1. SYSTEM GENERATED. meaning that the DBIIS is responsible for maintain-
ing a unique value in this column of each tuple, or

2. DERIVED. lneaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

Example 9.24: Figure 9.11 sho~t-s how the UDT MovieType and relation
Movie could be declared so that Movie is referenceable. The C'DT is declared
in lines (1) through (4). Then the relation Movie is defined to have this type in
lines (5) through (7). Sotice that n-e have declared t i t l e and year, together,
to be the key for relation Movie in line (7).

\\e see in line (6) that the name of the "identity" coluln~l for Movie is
movieID. This attribute. which automatically becomes a fourth attribute of
Movie. along xith t i t l e , year, and incolor; may be used in queries like any
other attribute of Movie.

Line (6) also says that the DBMS is responsible for generating the value of
movieID each time a new tuple is inserted into Movie. Had we replaced "SYSTEM

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (

2 t i t l e CHAR(30) ,
year INTEGER,

3, 4) i nco lo r BOOLEAN
1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF IS movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4

Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data

-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References

Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

456 CHAPTER 9. OBJECT-ORIEiYT4TION IAr QUERY LANG U=IGES

where star and movie are references to tuples of MovieStar and Movie, re-
spectively. A possible query is:

1) SELECT DEREF (movie)
2) FROM StarsIn
3) WHERE star->name = 'Me1 Gibson';

In line (3), the expression star->name produces the value of the name com-
ponent of the MovieStar tuple referred to by the s t a r component of any given
StarsIn tuple. Thus, the WHERE clause identifies those StarsIn tuples whose
star component are references to the Mel-Gibson MovieStar tuple. Line (1)
then produces the movie tuple referred to by the movie component of those
tuples. All three attributes - t i t l e , year, and incolor - will appear in the
printed result.

Note that we could have replaced line (1) by:

1) SELECT movie

Holyever, had n-e done so, we would have gotten a list of system-generated
gibberish that serves as the internal unique identifiers for those tuples. We
would not see the information in the referenced tuples. 0

9.5.2 Accessing Attributes of Tuples with a UDT

When wve define a relation to have a UDT, the tuples must be thought of as single
objects, rather than lists with components corresponding to the attributes of
the UDT. .4s a case in point, consider the relation Movie declared in Fig. 9.11.
This relation has UDT MovieType, which has three attributes: t i t l e , year.
and incolor. However, a tuple t in Movie has only one component, not th~ee.
That component is the object itself.

If R-e "drill down" into the object, we can extract the values of the three
attributes in the type MovieType, as well as use any methods defined for that
type. However, wve have to access these attributes properly, since they are not
attributes of the tuple itself. Rather, every CDT has an iniplicitly defined
observer method for each attribute of that UDT. The name of the observer
method for an attribute x is x(). We apply this method as we would any other
method for this UDT; we attach it with a dot to an expression that evaluates
to an object of this type. Thus, if t is a variable whose value is of type T. and
x is an attribute of T, then t .x() is the value of x in the tuple (objrct) denoted
by t

Example 9.27: Let us find, from the relation Movie of Fig. 9.11 the par (s)
of movies with title King Kong. Here is one nay to do so:

SELECT m. year
FROM Movie m
WHERE m.t i t le () = 'King Kong';

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 157

Even though the tuple variable m would appear not to be needed here,
we need a variable whose value is an object of type MovieType - the UDT
for relation Movie. The condition of the WHERE clause compares the constant
'King Kong' to the value of m. t i t l e 0. The latter is the observer method for
attribute t i t l e of type MovieType. Similarly, the value in the SELECT clause
is expressed m. year(): this expression applies the observer method for year to
the object m. U

9.5.3 Generator and Mutator Functions

In order to create data that conforms to a UDT, or to change components
of objects with a UDT, we can use two kinds of methods that are created
automatically, along with the observer methods, whenever a UDT is defined.
These are:

1. A generator method. This method has the name of the type and no
argument. It also has the unusual property that it may be invoked wirhout
being applied to any object. That is, if T is a UDT, then T () returns an
object of type T, with no values in its various components.

2. fifutator methods. For each attribute x of UDT T, there is a lniltator
method x(v). \$?hen applied to an object of type T, it changes the x
attribute of that object to have value v. Notice that the mutator and
observer method for an attribute each have the name of the attribute,
but differ in that the mutator has an argument.

Example 9.28: We shall write a PSI1 procedure that takes as arguments a
street, a city, and a name, and inserts into the relation MovieStar (of type
StarType according to Example 9.22) an object constructed from these values,
using calls to the proper generator and mutator functions. Recall from Esam-
ple 9.20 that objects of StarType have a name component that is a character
string, but an address component that is itself an object of type AddressType.
The procedure Inse r t s ta r is shown in Fig. 9.12.

Lines (2) through (4) introduce the argunients s, c, and n, which will provide
values for a street, city, and star name, respectively. Lines (5) and (6) declare
two local variables. Each is of one of the UDT's involved in the type for objects
that exist in the relation MovieStar. At lines (7) and (8) lve create empty
objects of each of these tn-o types.

Lines (9) and (10) put real values in the object neuAddr; these values are
taken from the procedure arguments that provide a street and a city. Line (11)
similarly installs the argument n as the value of the name component in the
object newstar. Then line (12) takes the entire newAddr object and ~nakes it
the value of the address component in newstar. Finally, line (13) inserts the
constructed object into relation MovieStar. Notice that, as always. a relation
that has a UDT as its type has but a single component, even if that component
has several attributes. such as name and address in this example.

458 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

1) CREATE PROCEDURE Inser ts ta r (
I N s CHAR(5O),

2, 3) I N c CHAR(10).
4) I N n CHAR(30)

1
5) DECLARE newAddr AddressType;
6) DECLARE newstar StarType;

BEGIN
7) SET newAddr = AddressTypeO;
8) SET newstar = StarTypeO ;
9) newAddr.street(s);

10) newAddr. c i t y (c) ;
11) newstar .name(n) ;
12) newstar. address(newAddr1;
13) INSERT INTO Moviestar VALUES(newStar);

END ;

Figure 9.12: Creating and storing a StarType object

To insert a star into MovieStar, we can call procedure Inser ts ta r .

CALL InsertStar('345 Spruce S t . ' , 'Glendale', 'Gwyneth Paltrow');

is an example.

It is much simpler to insert objects into a relation with a UDT if your
DBMS provides, or if you create, a generator function that takes values for
the attributes of the C'DT and returns a suitable object. For example, if we
have functions AddressType(s , c) and StarType(n, a) that return objects of
the indicated types, then we can make the insertion at the end of Example 9.28
with an INSERT statement of a familiar form:

INSERT INTO MovleStar VALUES (
StarType('Gwyneth Paltrow',

AddressType('345 Spruce S t . ' , 'Glendale'))) ;

9.5.4 Ordering Relationships on UDT's
Objects that are of some LDT are inherently abstract, in the sense that there
is no way to compare two objects of the same UDT, either to test whether they
are "equal' or whether one is less than another. Even two objects that have all
components identical will not be considered equal unless we tell the system to
regard them as equal. Similarly, there is no obvious way to sort the tuples of

9.5. OPERATIONS ON OBJECT-RELATIONAL DAT.4 459

a relation that has a UDT unless we define a function that tells which of two
objects of that UDT precedes the other.

Yet there are many SQL operations that require either an equality test or
both an equality and a "less than" test. For instance, we cannot eliminate
duplicates if we can't tell whether two tuples are equal. We cannot group by an
attribute whose type is a UDT unless there is an equality test for that UDT.
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause
unless we can compare any two elements.

To specify an ordering or comparison, SQL allows us to issue a CREATE
ORDERING statement for any UDT. There are a number of forms this statement
may take, and we shall only consider the two simplest options:

1. The statement

CREATE ORDERING FOR T EQUALS ONLY BY STATE;

says that two members of UDT T are considered equal if all of their
corresponding components are equal. There is no < defined on objects of
UDT T.

2. The following statement

CREATE ORDERING FOR T
ORDERING FULL BY RELATIVE WITH F ;

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be
performed on objects of UDT T. To tell how objects xl and 2 2 compare,
we apply the function F to these objects. This function must be writ-
ten so that F(x1,z2) < 0 whenever we want to conclude that xl < x2;
F(xl ,x2) = 0 means that x1 = x2, and F(x1,x2) > 0 means that. x1 > 2 2 .

If lve replace "ORDERING FULL" with "EQUALS ONLY," then F(x1,22) = 0
indicates that x1 = x2, rvhile any other value of F(x1, xz) means that
XI # 12. Comparison by < is impossible in this case.

Example 9.29: Let us consider a possible ordering on the UDT StarType
from Example 9.20. If we want only an equality on objects of this UDT, we
could declare:

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE;

That state~nent says that t ~ - o objects of StarType are equal if and only if their
names are the same as character strings, and their addresses are the same as
objects of UDT AddressType.

The problem is that, unless we define an ordering for AddressType, an
object of that type is not even equal to itself. Thus, we also need to create
at least an equality test for AddressType. simple way to do So is to declare
that two AddressType objects are equal if and only if their streets and cities
are each the same. 11-e could do so by:

460 CHAPTER 9. OBJECT-ORIENT-4TION IN QUERY LANGUAGES

CREATE ORDERING FOR AddressType EQUALS ONLY BY STATE;

Alternatively, we could define a conlplete ordering of AddressType objects.
One reasonable ordering is to order addresses first by cities, alphabetically, and
among addresses in the same city, by street address, alphabetically. To do so, I{-e
have to define a function, say AddrLEG, that takes two AddressType arguments
and returns a negative, zero, or positive value to indicate that the first is less
than, equal to, or greater than the second. We declare:

CREATE ORDERING FOR AddressType
ORDER FULL BY RELATIVE WITH AddrLEG;

The function AddrLEG is shown in Fig. 9.13. Notice that if we reach line (7),
it must be that the two city components are the same, so we compare the
street components. Likewise, if we reach line (9), the only remaining possi-
bility is that the cities are the same and the first street precedes the second
alphabetically. 13

1) CREATE FUNCTION AddrLEG (
2) x1 AddressType,
3) x2 AddressType
4)) RETURNS INTEGER

5) IF xl.city() < x2.cityO THEN RETURN(-1)

6) ELSEIF xl.city() > x2.cityO THEN RETURN(1)

7) ELSEIF xl. street () < x2. street () THEN RETURN(-1)
8) ELSEIF xl.street() = x2.streetO THEN RETURN(0)
9) ELSE RETURN(1)

END IF;

Figure 9.13: A comparison function for address objects

9.5.5 Exercises for Section 9.5

Exercise 9.5.1: Using the StarsIn relation of Example 9.25, and the Movie
and Moviestar relations accessihle through StarsIn, write the following quer-
ies:

* a) Find the names of the stars of Ishtar.

*! b) Find the titles and years of all movies in which at least one star lives in
lialibu.

c) Find all the movies (objects of type MovieType) that starred Melanie
Griffith.

9.6. SUMMARY OF CHAPTER 9 461

! d) Find the movies (title and year) with a t least five stars.

Exercise 9.5.2: Using your schema from Exercise 9.4.2, write the following
queries. Don't forget to use references whenever appropriate.

a) Find the manufacturers of PC's with a hard disk larger than 60 gigabytes.

b) Find the manufacturers of laser printers.

! c) Produce a table giving for each model of laptop, the model of the lap-
top having the highest processor speed of any laptop made by the same
manufacturer.

Exercise 9.5.3: Using your schema from Exercise 9.4.4, write the following
queries. Don't forget to use references whenever appropriate and avoid joins
(i.e., subqueries or more than one tuple variable in the FROM clause).

* a) Find the ships with a displacement of more than 35,000 tons.

b) Find the battles in which at least one ship was sunk.

! c) Find the classes that had ships launched after 1930.

!! d) Find the battles in n-hich at least one US ship was damaged.

Exercise 9.5.4 : Assuming the function AddrLEG of Fig. 9.13 is available, write
a suitable function to compare objects of type StarType, and declare your
function to be the basis of the ordering of StarType objects.

*! Exercise 9.5.5 : Write a procedure to take a star name as argument and delete
from StarsIn and MovieStar all tuples involving that star.

9.6 Summary of Chapter 9

+ Select-From- Where Statements in OQL: OQL offers a select-from-where
expression that resembles SQL's. In the FROM clause, we can declare
variables that range over any collection, including both extents of classes
(analogous to relations) and collections that are the values of attributes
in objects.

+ Common OQL Operators: OQL offers for-all, there-exists, IN: union, in-
tersection, difference, and aggregation operators that are similar in spirit
to SQL's. Ho~ever, aggregation is al~vays over a collection, not a colunln
of a relation.

+ OQL Group-By: OQL also offers a GROUP BY clause in select-from-where
statements that is similar to SQL's. Howeyer, in OQL, the collection of
objects in each group is explicitly accessible through a field name called
partition.

462 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

+ Extracting Elements &om OQL Collections: We can obtain the lone mem-
ber of a collection that is a singleton by applying the ELEMENT operator.
The elements of a collection with more than one member can be accessed
by first turning the collection into a list, using an ORDER BY clause in a
select-from-where statement, and then using a loop in the surrounding
host-language program to visit each element of the list in turn.

+ User-Defined Types i n SQL: Object-relational capabilities of SQL are cen-
tered around the UDT, or user-defined type. These types may be declared
by listing their attributes and other information, as in table declarations.
In addition, methods may be declared for UDT's.

+ Relations With a UDT as Type: Instead of declaring the attributes of a
relation, we may declare that relation to have a UDT. If we do so, then
its tuples have one component, and this component is an object of the
UDT.

+ Reference Types: A type of an attribute can be a reference to a UDT.
Such attributes essentially are pointers to objects of that UDT.

+ Object Identity for UDT's: When we create a relation whose type is a
UDT, we declare an attribute to serve as the "object-ID" of each tuple.
This component is a reference to the tuple itself. Unlike in object-oriented
systems, this "OID" column may be accessed by the user, although it is
rarely meaningful.

+ Accessing components of a UDT: SQL provides observer and mutator
functions for each attribute of a UDT. These functions, respectively, re-
turn and change the value of that attribute when applied to any object
of that UDT.

9.7 References for Chapter 9

The reference for OQL is the same as for ODL: [I]. Material on object-relational
features of SQL can be obtained as described in the bibliographic notes to
Chapter 6.

1. Cattell, R. G. G. (ed.), The Object ~at'abase Standard: ODMG-99, Nor-
gan-Kaufmann, San Francisco, 1999.

Chapter 10

Logical Query Languages

Some query languages for the relational model resemble a logic more than they
do the algebra that nre introduced in Section 5.2. However, logic-based lan-
guages appear to be difficult for many programmers to grasp. Thus, ~ve have
delayed our coverage of logic until the end of our study of query languages.

\Ye shall introduce Datalog, which is the simplest form of logic devised for
the relational model. In its nonrecursive form, Datalog has the same power as
the classical relational algebra. However, by allowing recursion, we can express
queries in Datalog that cannot be expressed in SQL2 (except by adding proce-
dural programming such as PSLI). We discuss the complexities that come up
n-hen we allow recursive negation, and finally, we see how the solution provided
by Datalog has been used to provide a way to allow meaningful recursion in the
most recent SQL-99 standard.

10.1 A Logic for Relations

-1s an alternative to abstract query languages based on algebra, one can use a
form of logic to express queries. The logical query language Datalog ("database
logic") consists of if-then rules. Each of these rules expresses the idea that from
certain combinations of tuples in certain relations we may infer that some other
tuple is in some other relation, or in the answer to a query.

10.1.1 Predicates and Atoms

Relations are represented in Datalog by predicates. Each predicate t a b s a fixed
number of arguments. and a predicate follorsed by its arguments is called an
atom. The syntax of atoms is just like that of function calls in conl-entional
programming languages; for example P(xl, 22,. . . , x,) is an atom consisting of
the predicate P with arguments XI, x t , . . . , x,.

In essence, a predicate is the name of a function that returns a boolean
value. If R is a relation with n attributes in some fixed order, then n-e shall

	Content 01.bmp
	Content 02.bmp
	Content 03.bmp
	Content 04.bmp
	Content 05.bmp
	Content 06.bmp
	Content 07.bmp
	Content 08.bmp
	Content 09.bmp
	Content 10.bmp
	Content 11.bmp
	Content 12.bmp
	DataBase 0000.bmp
	DataBase 0002.bmp
	DataBase 0004.bmp
	DataBase 0006.bmp
	DataBase 0008.bmp
	DataBase 0010.bmp
	DataBase 0012.bmp
	DataBase 0014.bmp
	DataBase 0016.bmp
	DataBase 0018.bmp
	DataBase 0020.bmp
	DataBase 0022.bmp
	DataBase 0024.bmp
	DataBase 0026.bmp
	DataBase 0028.bmp
	DataBase 0030.bmp
	DataBase 0032.bmp
	DataBase 0034.bmp
	DataBase 0036.bmp
	DataBase 0038.bmp
	DataBase 0040.bmp
	DataBase 0042.bmp
	DataBase 0044.bmp
	DataBase 0046.bmp
	DataBase 0048.bmp
	DataBase 0050.bmp
	DataBase 0052.bmp
	DataBase 0054.bmp
	DataBase 0056.bmp
	DataBase 0058.bmp
	DataBase 0060.bmp
	DataBase 0062.bmp
	DataBase 0064.bmp
	DataBase 0066.bmp
	DataBase 0068.bmp
	DataBase 0070.bmp
	DataBase 0072.bmp
	DataBase 0074.bmp
	DataBase 0076.bmp
	DataBase 0078.bmp
	DataBase 0080.bmp
	DataBase 0082.bmp
	DataBase 0084.bmp
	DataBase 0086.bmp
	DataBase 0088.bmp
	DataBase 0090.bmp
	DataBase 0092.bmp
	DataBase 0094.bmp
	DataBase 0096.bmp
	DataBase 0098.bmp
	DataBase 0100.bmp
	DataBase 0102.bmp
	DataBase 0104.bmp
	DataBase 0106.bmp
	DataBase 0108.bmp
	DataBase 0110.bmp
	DataBase 0112.bmp
	DataBase 0114.bmp
	DataBase 0116.bmp
	DataBase 0118.bmp
	DataBase 0120.bmp
	DataBase 0122.bmp
	DataBase 0124.bmp
	DataBase 0126.bmp
	DataBase 0128.bmp
	DataBase 0130.bmp
	DataBase 0132.bmp
	DataBase 0134.bmp
	DataBase 0136.bmp
	DataBase 0138.bmp
	DataBase 0140.bmp
	DataBase 0142.bmp
	DataBase 0144.bmp
	DataBase 0146.bmp
	DataBase 0148.bmp
	DataBase 0150.bmp
	DataBase 0152.bmp
	DataBase 0154.bmp
	DataBase 0156.bmp
	DataBase 0158.bmp
	DataBase 0160.bmp
	DataBase 0162.bmp
	DataBase 0164.bmp
	DataBase 0166.bmp
	DataBase 0168.bmp
	DataBase 0170.bmp
	DataBase 0172.bmp
	DataBase 0174.bmp
	DataBase 0176.bmp
	DataBase 0178.bmp
	DataBase 0180.bmp
	DataBase 0182.bmp
	DataBase 0184.bmp
	DataBase 0186.bmp
	DataBase 0188.bmp
	DataBase 0190.bmp
	DataBase 0192.bmp
	DataBase 0194.bmp
	DataBase 0196.bmp
	DataBase 0198.bmp
	DataBase 0200.bmp
	DataBase 0202.bmp
	DataBase 0204.bmp
	DataBase 0206.bmp
	DataBase 0208.bmp
	DataBase 0210.bmp
	DataBase 0212.bmp
	DataBase 0214.bmp
	DataBase 0216.bmp
	DataBase 0218.bmp
	DataBase 0220.bmp
	DataBase 0222.bmp
	DataBase 0224.bmp
	DataBase 0226.bmp
	DataBase 0228.bmp
	DataBase 0230.bmp
	DataBase 0232.bmp
	DataBase 0234.bmp
	DataBase 0236.bmp
	DataBase 0238.bmp
	DataBase 0240.bmp
	DataBase 0242.bmp
	DataBase 0244.bmp
	DataBase 0246.bmp
	DataBase 0248.bmp
	DataBase 0250.bmp
	DataBase 0252.bmp
	DataBase 0254.bmp
	DataBase 0256.bmp
	DataBase 0258.bmp
	DataBase 0260.bmp
	DataBase 0262.bmp
	DataBase 0264.bmp
	DataBase 0266.bmp
	DataBase 0268.bmp
	DataBase 0270.bmp
	DataBase 0272.bmp
	DataBase 0274.bmp
	DataBase 0276.bmp
	DataBase 0278.bmp
	DataBase 0280.bmp
	DataBase 0282.bmp
	DataBase 0284.bmp
	DataBase 0286.bmp
	DataBase 0288.bmp
	DataBase 0290.bmp
	DataBase 0292.bmp
	DataBase 0294.bmp
	DataBase 0296.bmp
	DataBase 0298.bmp
	DataBase 0300.bmp
	DataBase 0302.bmp
	DataBase 0304.bmp
	DataBase 0306.bmp
	DataBase 0308.bmp
	DataBase 0310.bmp
	DataBase 0312.bmp
	DataBase 0314.bmp
	DataBase 0316.bmp
	DataBase 0318.bmp
	DataBase 0320.bmp
	DataBase 0322.bmp
	DataBase 0324.bmp
	DataBase 0326.bmp
	DataBase 0328.bmp
	DataBase 0330.bmp
	DataBase 0332.bmp
	DataBase 0334.bmp
	DataBase 0336.bmp
	DataBase 0338.bmp
	DataBase 0340.bmp
	DataBase 0342.bmp
	DataBase 0344.bmp
	DataBase 0346.bmp
	DataBase 0348.bmp
	DataBase 0350.bmp
	DataBase 0352.bmp
	DataBase 0354.bmp
	DataBase 0356.bmp
	DataBase 0358.bmp
	DataBase 0360.bmp
	DataBase 0362.bmp
	DataBase 0364.bmp
	DataBase 0366.bmp
	DataBase 0368.bmp
	DataBase 0370.bmp
	DataBase 0372.bmp
	DataBase 0374.bmp
	DataBase 0376.bmp
	DataBase 0378.bmp
	DataBase 0380.bmp
	DataBase 0382.bmp
	DataBase 0384.bmp
	DataBase 0386.bmp
	DataBase 0388.bmp
	DataBase 0390.bmp
	DataBase 0392.bmp
	DataBase 0394.bmp
	DataBase 0396.bmp
	DataBase 0398.bmp
	DataBase 0400.bmp
	DataBase 0402.bmp
	DataBase 0404.bmp
	DataBase 0406.bmp
	DataBase 0408.bmp
	DataBase 0410.bmp
	DataBase 0412.bmp
	DataBase 0414.bmp
	DataBase 0416.bmp
	DataBase 0418.bmp
	DataBase 0420.bmp
	DataBase 0422.bmp
	DataBase 0424.bmp
	DataBase 0426.bmp
	DataBase 0428.bmp
	DataBase 0430.bmp
	DataBase 0432.bmp
	DataBase 0434.bmp
	DataBase 0436.bmp
	DataBase 0438.bmp
	DataBase 0440.bmp
	DataBase 0442.bmp
	DataBase 0444.bmp
	DataBase 0446.bmp
	DataBase 0448.bmp
	DataBase 0450.bmp
	DataBase 0452.bmp
	DataBase 0454.bmp
	DataBase 0456.bmp
	DataBase 0458.bmp
	DataBase 0460.bmp
	DataBase 0462.bmp
	DataBase 0464.bmp
	DataBase 0466.bmp
	DataBase 0468.bmp
	DataBase 0470.bmp
	DataBase 0472.bmp
	DataBase 0474.bmp
	DataBase 0476.bmp
	DataBase 0478.bmp
	DataBase 0480.bmp
	DataBase 0482.bmp
	DataBase 0484.bmp
	DataBase 0486.bmp
	DataBase 0488.bmp
	DataBase 0490.bmp
	DataBase 0492.bmp
	DataBase 0494.bmp
	DataBase 0496.bmp
	DataBase 0498.bmp
	DataBase 0500.bmp
	DataBase 0502.bmp
	DataBase 0504.bmp
	DataBase 0506.bmp
	DataBase 0508.bmp
	DataBase 0510.bmp
	DataBase 0512.bmp
	DataBase 0514.bmp
	DataBase 0516.bmp
	DataBase 0518.bmp
	DataBase 0520.bmp
	DataBase 0522.bmp
	DataBase 0524.bmp
	DataBase 0526.bmp
	DataBase 0528.bmp
	DataBase 0530.bmp
	DataBase 0532.bmp
	DataBase 0534.bmp
	DataBase 0536.bmp
	DataBase 0538.bmp
	DataBase 0540.bmp
	DataBase 0542.bmp
	DataBase 0544.bmp
	DataBase 0548.bmp
	DataBase 0552.bmp
	DataBase 0554.bmp
	DataBase 0556.bmp
	DataBase 0558.bmp
	DataBase 0560.bmp
	DataBase 0562.bmp
	DataBase 0564.bmp
	DataBase 0566.bmp
	DataBase 0568.bmp
	DataBase 0570.bmp
	DataBase 0572.bmp
	DataBase 0574.bmp
	DataBase 0576.bmp
	DataBase 0578.bmp
	DataBase 0580.bmp
	DataBase 0582.bmp
	DataBase 0584.bmp
	DataBase 0586.bmp
	DataBase 0588.bmp
	DataBase 0590.bmp
	DataBase 0592.bmp
	DataBase 0594.bmp
	DataBase 0596.bmp
	DataBase 0598.bmp
	DataBase 0600.bmp
	DataBase 0602.bmp
	DataBase 0604.bmp
	DataBase 0606.bmp
	DataBase 0608.bmp
	DataBase 0610.bmp
	DataBase 0612.bmp
	DataBase 0614.bmp
	DataBase 0616.bmp
	DataBase 0618.bmp
	DataBase 0620.bmp
	DataBase 0622.bmp
	DataBase 0624.bmp
	DataBase 0626.bmp
	DataBase 0628.bmp
	DataBase 0630.bmp
	DataBase 0632.bmp
	DataBase 0634.bmp
	DataBase 0636.bmp
	DataBase 0638.bmp
	DataBase 0640.bmp
	DataBase 0642.bmp
	DataBase 0644.bmp
	DataBase 0646.bmp
	DataBase 0648.bmp
	DataBase 0650.bmp
	DataBase 0652.bmp
	DataBase 0654.bmp
	DataBase 0656.bmp
	DataBase 0658.bmp
	DataBase 0660.bmp
	DataBase 0662.bmp
	DataBase 0664.bmp
	DataBase 0666.bmp
	DataBase 0668.bmp
	DataBase 0670.bmp
	DataBase 0672.bmp
	DataBase 0674.bmp
	DataBase 0676.bmp
	DataBase 0678.bmp
	DataBase 0680.bmp
	DataBase 0682.bmp
	DataBase 0684.bmp
	DataBase 0686.bmp
	DataBase 0688.bmp
	DataBase 0690.bmp
	DataBase 0692.bmp
	DataBase 0694.bmp
	DataBase 0696.bmp
	DataBase 0698.bmp
	DataBase 0700.bmp
	DataBase 0702.bmp
	DataBase 0704.bmp
	DataBase 0706.bmp
	DataBase 0708.bmp
	DataBase 0710.bmp
	DataBase 0712.bmp
	DataBase 0714.bmp
	DataBase 0716.bmp
	DataBase 0718.bmp
	DataBase 0720.bmp
	DataBase 0722.bmp
	DataBase 0724.bmp
	DataBase 0726.bmp
	DataBase 0728.bmp
	DataBase 0730.bmp
	DataBase 0732.bmp
	DataBase 0734.bmp
	DataBase 0736.bmp
	DataBase 0738.bmp
	DataBase 0740.bmp
	DataBase 0742.bmp
	DataBase 0744.bmp
	DataBase 0746.bmp
	DataBase 0748.bmp
	DataBase 0750.bmp
	DataBase 0752.bmp
	DataBase 0754.bmp
	DataBase 0756.bmp
	DataBase 0758.bmp
	DataBase 0760.bmp
	DataBase 0762.bmp
	DataBase 0764.bmp
	DataBase 0766.bmp
	DataBase 0768.bmp
	DataBase 0770.bmp
	DataBase 0772.bmp
	DataBase 0774.bmp
	DataBase 0776.bmp
	DataBase 0778.bmp
	DataBase 0780.bmp
	DataBase 0782.bmp
	DataBase 0784.bmp
	DataBase 0786.bmp
	DataBase 0788.bmp
	DataBase 0790.bmp
	DataBase 0792.bmp
	DataBase 0794.bmp
	DataBase 0796.bmp
	DataBase 0798.bmp
	DataBase 0800.bmp
	DataBase 0802.bmp
	DataBase 0804.bmp
	DataBase 0806.bmp
	DataBase 0808.bmp
	DataBase 0810.bmp
	DataBase 0812.bmp
	DataBase 0814.bmp
	DataBase 0816.bmp
	DataBase 0818.bmp
	DataBase 0820.bmp
	DataBase 0822.bmp
	DataBase 0824.bmp
	DataBase 0826.bmp
	DataBase 0828.bmp
	DataBase 0830.bmp
	DataBase 0832.bmp
	DataBase 0834.bmp
	DataBase 0836.bmp
	DataBase 0838.bmp
	DataBase 0840.bmp
	DataBase 0842.bmp
	DataBase 0844.bmp
	DataBase 0846.bmp
	DataBase 0848.bmp
	DataBase 0850.bmp
	DataBase 0852.bmp
	DataBase 0854.bmp
	DataBase 0856.bmp
	DataBase 0858.bmp
	DataBase 0860.bmp
	DataBase 0862.bmp
	DataBase 0864.bmp
	DataBase 0866.bmp
	DataBase 0868.bmp
	DataBase 0870.bmp
	DataBase 0872.bmp
	DataBase 0874.bmp
	DataBase 0876.bmp
	DataBase 0878.bmp
	DataBase 0880.bmp
	DataBase 0882.bmp
	DataBase 0884.bmp
	DataBase 0886.bmp
	DataBase 0888.bmp
	DataBase 0890.bmp
	DataBase 0892.bmp
	DataBase 0894.bmp
	DataBase 0896.bmp
	DataBase 0898.bmp
	DataBase 0900.bmp
	DataBase 0902.bmp
	DataBase 0904.bmp
	DataBase 0906.bmp
	DataBase 0908.bmp
	DataBase 0910.bmp
	DataBase 0912.bmp
	DataBase 0914.bmp
	DataBase 0916.bmp
	DataBase 0918.bmp
	DataBase 0920.bmp
	DataBase 0922.bmp
	DataBase 0924.bmp
	DataBase 0926.bmp
	DataBase 0928.bmp
	DataBase 0930.bmp
	DataBase 0932.bmp
	DataBase 0934.bmp
	DataBase 0936.bmp
	DataBase 0938.bmp
	DataBase 0940.bmp
	DataBase 0942.bmp
	DataBase 0944.bmp
	DataBase 0946.bmp
	DataBase 0948.bmp
	DataBase 0950.bmp
	DataBase 0952.bmp
	DataBase 0954.bmp
	DataBase 0956.bmp
	DataBase 0958.bmp
	DataBase 0960.bmp
	DataBase 0962.bmp
	DataBase 0964.bmp
	DataBase 0966.bmp
	DataBase 0968.bmp
	DataBase 0970.bmp
	DataBase 0972.bmp
	DataBase 0974.bmp
	DataBase 0976.bmp
	DataBase 0978.bmp
	DataBase 0980.bmp
	DataBase 0982.bmp
	DataBase 0984.bmp
	DataBase 0986.bmp
	DataBase 0988.bmp
	DataBase 0990.bmp
	DataBase 0992.bmp
	DataBase 0994.bmp
	DataBase 0996.bmp
	DataBase 0998.bmp
	DataBase 1000.bmp
	DataBase 1002.bmp
	DataBase 1004.bmp
	DataBase 1006.bmp
	DataBase 1008.bmp
	DataBase 1010.bmp
	DataBase 1012.bmp
	DataBase 1014.bmp
	DataBase 1016.bmp
	DataBase 1018.bmp
	DataBase 1020.bmp
	DataBase 1022.bmp
	DataBase 1024.bmp
	DataBase 1026.bmp
	DataBase 1028.bmp
	DataBase 1030.bmp
	DataBase 1032.bmp
	DataBase 1034.bmp
	DataBase 1036.bmp
	DataBase 1038.bmp
	DataBase 1040.bmp
	DataBase 1042.bmp
	DataBase 1044.bmp
	DataBase 1046.bmp
	DataBase 1048.bmp
	DataBase 1050.bmp
	DataBase 1052.bmp
	DataBase 1054.bmp
	DataBase 1056.bmp
	DataBase 1058.bmp
	DataBase 1060.bmp
	DataBase 1062.bmp
	DataBase 1064.bmp
	DataBase 1066.bmp
	DataBase 1068.bmp
	DataBase 1070.bmp
	DataBase 1072.bmp
	DataBase 1074.bmp
	DataBase 1076.bmp
	DataBase 1078.bmp
	DataBase 1080.bmp
	DataBase 1082.bmp
	DataBase 1084.bmp
	DataBase 1086.bmp
	DataBase 1088.bmp
	DataBase 1090.bmp
	DataBase 1092.bmp
	DataBase 1094.bmp
	DataBase 1096.bmp
	DataBase 1098.bmp
	DataBase 1100.bmp
	DataBase 1102.bmp
	DataBase 1104.bmp
	DataBase 1106.bmp
	DataBase 1108.bmp
	DataBase 1110.bmp
	DataBase 1112.bmp
	DataBase 1114.bmp
	DataBase 1116.bmp
	DataBase 1118.bmp
	Content 01.bmp
	Content 02.bmp
	Content 03.bmp
	Content 04.bmp
	Content 05.bmp
	Content 06.bmp
	Content 07.bmp
	Content 08.bmp
	Content 09.bmp
	Content 10.bmp
	Content 11.bmp
	Content 12.bmp
	DataBase 0000.bmp
	DataBase 0002.bmp
	DataBase 0004.bmp
	DataBase 0006.bmp
	DataBase 0008.bmp
	DataBase 0010.bmp
	DataBase 0012.bmp
	DataBase 0014.bmp
	DataBase 0016.bmp
	DataBase 0018.bmp
	DataBase 0020.bmp
	DataBase 0022.bmp
	DataBase 0024.bmp
	DataBase 0026.bmp
	DataBase 0028.bmp
	DataBase 0030.bmp
	DataBase 0032.bmp
	DataBase 0034.bmp
	DataBase 0036.bmp
	DataBase 0038.bmp
	DataBase 0040.bmp
	DataBase 0042.bmp
	DataBase 0044.bmp
	DataBase 0046.bmp
	DataBase 0048.bmp
	DataBase 0050.bmp
	DataBase 0052.bmp
	DataBase 0054.bmp
	DataBase 0056.bmp
	DataBase 0058.bmp
	DataBase 0060.bmp
	DataBase 0062.bmp
	DataBase 0064.bmp
	DataBase 0066.bmp
	DataBase 0068.bmp
	DataBase 0070.bmp
	DataBase 0072.bmp
	DataBase 0074.bmp
	DataBase 0076.bmp
	DataBase 0078.bmp
	DataBase 0080.bmp
	DataBase 0082.bmp
	DataBase 0084.bmp
	DataBase 0086.bmp
	DataBase 0088.bmp
	DataBase 0090.bmp
	DataBase 0092.bmp
	DataBase 0094.bmp
	DataBase 0096.bmp
	DataBase 0098.bmp
	DataBase 0100.bmp
	DataBase 0102.bmp
	DataBase 0104.bmp
	DataBase 0106.bmp
	DataBase 0108.bmp
	DataBase 0110.bmp
	DataBase 0112.bmp
	DataBase 0114.bmp
	DataBase 0116.bmp
	DataBase 0118.bmp
	DataBase 0120.bmp
	DataBase 0122.bmp
	DataBase 0124.bmp
	DataBase 0126.bmp
	DataBase 0128.bmp
	DataBase 0130.bmp
	DataBase 0132.bmp
	DataBase 0134.bmp
	DataBase 0136.bmp
	DataBase 0138.bmp
	DataBase 0140.bmp
	DataBase 0142.bmp
	DataBase 0144.bmp
	DataBase 0146.bmp
	DataBase 0148.bmp
	DataBase 0150.bmp
	DataBase 0152.bmp
	DataBase 0154.bmp
	DataBase 0156.bmp
	DataBase 0158.bmp
	DataBase 0160.bmp
	DataBase 0162.bmp
	DataBase 0164.bmp
	DataBase 0166.bmp
	DataBase 0168.bmp
	DataBase 0170.bmp
	DataBase 0172.bmp
	DataBase 0174.bmp
	DataBase 0176.bmp
	DataBase 0178.bmp
	DataBase 0180.bmp
	DataBase 0182.bmp
	DataBase 0184.bmp
	DataBase 0186.bmp
	DataBase 0188.bmp
	DataBase 0190.bmp
	DataBase 0192.bmp
	DataBase 0194.bmp
	DataBase 0196.bmp
	DataBase 0198.bmp
	DataBase 0200.bmp
	DataBase 0202.bmp
	DataBase 0204.bmp
	DataBase 0206.bmp
	DataBase 0208.bmp
	DataBase 0210.bmp
	DataBase 0212.bmp
	DataBase 0214.bmp
	DataBase 0216.bmp
	DataBase 0218.bmp
	DataBase 0220.bmp
	DataBase 0222.bmp
	DataBase 0224.bmp
	DataBase 0226.bmp
	DataBase 0228.bmp
	DataBase 0230.bmp
	DataBase 0232.bmp
	DataBase 0234.bmp
	DataBase 0236.bmp
	DataBase 0238.bmp
	DataBase 0240.bmp
	DataBase 0242.bmp
	DataBase 0244.bmp
	DataBase 0246.bmp
	DataBase 0248.bmp
	DataBase 0250.bmp
	DataBase 0252.bmp
	DataBase 0254.bmp
	DataBase 0256.bmp
	DataBase 0258.bmp
	DataBase 0260.bmp
	DataBase 0262.bmp
	DataBase 0264.bmp
	DataBase 0266.bmp
	DataBase 0268.bmp
	DataBase 0270.bmp
	DataBase 0272.bmp
	DataBase 0274.bmp
	DataBase 0276.bmp
	DataBase 0278.bmp
	DataBase 0280.bmp
	DataBase 0282.bmp
	DataBase 0284.bmp
	DataBase 0286.bmp
	DataBase 0288.bmp
	DataBase 0290.bmp
	DataBase 0292.bmp
	DataBase 0294.bmp
	DataBase 0296.bmp
	DataBase 0298.bmp
	DataBase 0300.bmp
	DataBase 0302.bmp
	DataBase 0304.bmp
	DataBase 0306.bmp
	DataBase 0308.bmp
	DataBase 0310.bmp
	DataBase 0312.bmp
	DataBase 0314.bmp
	DataBase 0316.bmp
	DataBase 0318.bmp
	DataBase 0320.bmp
	DataBase 0322.bmp
	DataBase 0324.bmp
	DataBase 0326.bmp
	DataBase 0328.bmp
	DataBase 0330.bmp
	DataBase 0332.bmp
	DataBase 0334.bmp
	DataBase 0336.bmp
	DataBase 0338.bmp
	DataBase 0340.bmp
	DataBase 0342.bmp
	DataBase 0344.bmp
	DataBase 0346.bmp
	DataBase 0348.bmp
	DataBase 0350.bmp
	DataBase 0352.bmp
	DataBase 0354.bmp
	DataBase 0356.bmp
	DataBase 0358.bmp
	DataBase 0360.bmp
	DataBase 0362.bmp
	DataBase 0364.bmp
	DataBase 0366.bmp
	DataBase 0368.bmp
	DataBase 0370.bmp
	DataBase 0372.bmp
	DataBase 0374.bmp
	DataBase 0376.bmp
	DataBase 0378.bmp
	DataBase 0380.bmp
	DataBase 0382.bmp
	DataBase 0384.bmp
	DataBase 0386.bmp
	DataBase 0388.bmp
	DataBase 0390.bmp
	DataBase 0392.bmp
	DataBase 0394.bmp
	DataBase 0396.bmp
	DataBase 0398.bmp
	DataBase 0400.bmp
	DataBase 0402.bmp
	DataBase 0404.bmp
	DataBase 0406.bmp
	DataBase 0408.bmp
	DataBase 0410.bmp
	DataBase 0412.bmp
	DataBase 0414.bmp
	DataBase 0416.bmp
	DataBase 0418.bmp
	DataBase 0420.bmp
	DataBase 0422.bmp
	DataBase 0424.bmp
	DataBase 0426.bmp
	DataBase 0428.bmp
	DataBase 0430.bmp
	DataBase 0432.bmp
	DataBase 0434.bmp
	DataBase 0436.bmp
	DataBase 0438.bmp
	DataBase 0440.bmp
	DataBase 0442.bmp
	DataBase 0444.bmp
	DataBase 0446.bmp
	DataBase 0448.bmp
	DataBase 0450.bmp
	DataBase 0452.bmp
	DataBase 0454.bmp
	DataBase 0456.bmp
	DataBase 0458.bmp
	DataBase 0460.bmp
	DataBase 0462.bmp
	DataBase 0464.bmp
	DataBase 0466.bmp
	DataBase 0468.bmp
	DataBase 0470.bmp
	DataBase 0472.bmp
	DataBase 0474.bmp
	DataBase 0476.bmp
	DataBase 0478.bmp
	DataBase 0480.bmp
	DataBase 0482.bmp
	DataBase 0484.bmp
	DataBase 0486.bmp
	DataBase 0488.bmp
	DataBase 0490.bmp
	DataBase 0492.bmp
	DataBase 0494.bmp
	DataBase 0496.bmp
	DataBase 0498.bmp
	DataBase 0500.bmp
	DataBase 0502.bmp
	DataBase 0504.bmp
	DataBase 0506.bmp
	DataBase 0508.bmp
	DataBase 0510.bmp
	DataBase 0512.bmp
	DataBase 0514.bmp
	DataBase 0516.bmp
	DataBase 0518.bmp
	DataBase 0520.bmp
	DataBase 0522.bmp
	DataBase 0524.bmp
	DataBase 0526.bmp
	DataBase 0528.bmp
	DataBase 0530.bmp
	DataBase 0532.bmp
	DataBase 0534.bmp
	DataBase 0536.bmp
	DataBase 0538.bmp
	DataBase 0540.bmp
	DataBase 0542.bmp
	DataBase 0544.bmp
	DataBase 0548.bmp
	DataBase 0552.bmp
	DataBase 0554.bmp
	DataBase 0556.bmp
	DataBase 0558.bmp
	DataBase 0560.bmp
	DataBase 0562.bmp
	DataBase 0564.bmp
	DataBase 0566.bmp
	DataBase 0568.bmp
	DataBase 0570.bmp
	DataBase 0572.bmp
	DataBase 0574.bmp
	DataBase 0576.bmp
	DataBase 0578.bmp
	DataBase 0580.bmp
	DataBase 0582.bmp
	DataBase 0584.bmp
	DataBase 0586.bmp
	DataBase 0588.bmp
	DataBase 0590.bmp
	DataBase 0592.bmp
	DataBase 0594.bmp
	DataBase 0596.bmp
	DataBase 0598.bmp
	DataBase 0600.bmp
	DataBase 0602.bmp
	DataBase 0604.bmp
	DataBase 0606.bmp
	DataBase 0608.bmp
	DataBase 0610.bmp
	DataBase 0612.bmp
	DataBase 0614.bmp
	DataBase 0616.bmp
	DataBase 0618.bmp
	DataBase 0620.bmp
	DataBase 0622.bmp
	DataBase 0624.bmp
	DataBase 0626.bmp
	DataBase 0628.bmp
	DataBase 0630.bmp
	DataBase 0632.bmp
	DataBase 0634.bmp
	DataBase 0636.bmp
	DataBase 0638.bmp
	DataBase 0640.bmp
	DataBase 0642.bmp
	DataBase 0644.bmp
	DataBase 0646.bmp
	DataBase 0648.bmp
	DataBase 0650.bmp
	DataBase 0652.bmp
	DataBase 0654.bmp
	DataBase 0656.bmp
	DataBase 0658.bmp
	DataBase 0660.bmp
	DataBase 0662.bmp
	DataBase 0664.bmp
	DataBase 0666.bmp
	DataBase 0668.bmp
	DataBase 0670.bmp
	DataBase 0672.bmp
	DataBase 0674.bmp
	DataBase 0676.bmp
	DataBase 0678.bmp
	DataBase 0680.bmp
	DataBase 0682.bmp
	DataBase 0684.bmp
	DataBase 0686.bmp
	DataBase 0688.bmp
	DataBase 0690.bmp
	DataBase 0692.bmp
	DataBase 0694.bmp
	DataBase 0696.bmp
	DataBase 0698.bmp
	DataBase 0700.bmp
	DataBase 0702.bmp
	DataBase 0704.bmp
	DataBase 0706.bmp
	DataBase 0708.bmp
	DataBase 0710.bmp
	DataBase 0712.bmp
	DataBase 0714.bmp
	DataBase 0716.bmp
	DataBase 0718.bmp
	DataBase 0720.bmp
	DataBase 0722.bmp
	DataBase 0724.bmp
	DataBase 0726.bmp
	DataBase 0728.bmp
	DataBase 0730.bmp
	DataBase 0732.bmp
	DataBase 0734.bmp
	DataBase 0736.bmp
	DataBase 0738.bmp
	DataBase 0740.bmp
	DataBase 0742.bmp
	DataBase 0744.bmp
	DataBase 0746.bmp
	DataBase 0748.bmp
	DataBase 0750.bmp
	DataBase 0752.bmp
	DataBase 0754.bmp
	DataBase 0756.bmp
	DataBase 0758.bmp
	DataBase 0760.bmp
	DataBase 0762.bmp
	DataBase 0764.bmp
	DataBase 0766.bmp
	DataBase 0768.bmp
	DataBase 0770.bmp
	DataBase 0772.bmp
	DataBase 0774.bmp
	DataBase 0776.bmp
	DataBase 0778.bmp
	DataBase 0780.bmp
	DataBase 0782.bmp
	DataBase 0784.bmp
	DataBase 0786.bmp
	DataBase 0788.bmp
	DataBase 0790.bmp
	DataBase 0792.bmp
	DataBase 0794.bmp
	DataBase 0796.bmp
	DataBase 0798.bmp
	DataBase 0800.bmp
	DataBase 0802.bmp
	DataBase 0804.bmp
	DataBase 0806.bmp
	DataBase 0808.bmp
	DataBase 0810.bmp
	DataBase 0812.bmp
	DataBase 0814.bmp
	DataBase 0816.bmp
	DataBase 0818.bmp
	DataBase 0820.bmp
	DataBase 0822.bmp
	DataBase 0824.bmp
	DataBase 0826.bmp
	DataBase 0828.bmp
	DataBase 0830.bmp
	DataBase 0832.bmp
	DataBase 0834.bmp
	DataBase 0836.bmp
	DataBase 0838.bmp
	DataBase 0840.bmp
	DataBase 0842.bmp
	DataBase 0844.bmp
	DataBase 0846.bmp
	DataBase 0848.bmp
	DataBase 0850.bmp
	DataBase 0852.bmp
	DataBase 0854.bmp
	DataBase 0856.bmp
	DataBase 0858.bmp
	DataBase 0860.bmp
	DataBase 0862.bmp
	DataBase 0864.bmp
	DataBase 0866.bmp
	DataBase 0868.bmp
	DataBase 0870.bmp
	DataBase 0872.bmp
	DataBase 0874.bmp
	DataBase 0876.bmp
	DataBase 0878.bmp
	DataBase 0880.bmp
	DataBase 0882.bmp
	DataBase 0884.bmp
	DataBase 0886.bmp
	DataBase 0888.bmp
	DataBase 0890.bmp
	DataBase 0892.bmp
	DataBase 0894.bmp
	DataBase 0896.bmp
	DataBase 0898.bmp
	DataBase 0900.bmp
	DataBase 0902.bmp
	DataBase 0904.bmp
	DataBase 0906.bmp
	DataBase 0908.bmp
	DataBase 0910.bmp
	DataBase 0912.bmp
	DataBase 0914.bmp
	DataBase 0916.bmp
	DataBase 0918.bmp
	DataBase 0920.bmp
	DataBase 0922.bmp
	DataBase 0924.bmp
	DataBase 0926.bmp
	DataBase 0928.bmp
	DataBase 0930.bmp
	DataBase 0932.bmp
	DataBase 0934.bmp
	DataBase 0936.bmp
	DataBase 0938.bmp
	DataBase 0940.bmp
	DataBase 0942.bmp
	DataBase 0944.bmp
	DataBase 0946.bmp
	DataBase 0948.bmp
	DataBase 0950.bmp
	DataBase 0952.bmp
	DataBase 0954.bmp
	DataBase 0956.bmp
	DataBase 0958.bmp
	DataBase 0960.bmp
	DataBase 0962.bmp
	DataBase 0964.bmp
	DataBase 0966.bmp
	DataBase 0968.bmp
	DataBase 0970.bmp
	DataBase 0972.bmp
	DataBase 0974.bmp
	DataBase 0976.bmp
	DataBase 0978.bmp
	DataBase 0980.bmp
	DataBase 0982.bmp
	DataBase 0984.bmp
	DataBase 0986.bmp
	DataBase 0988.bmp
	DataBase 0990.bmp
	DataBase 0992.bmp
	DataBase 0994.bmp
	DataBase 0996.bmp
	DataBase 0998.bmp
	DataBase 1000.bmp
	DataBase 1002.bmp
	DataBase 1004.bmp
	DataBase 1006.bmp
	DataBase 1008.bmp
	DataBase 1010.bmp
	DataBase 1012.bmp
	DataBase 1014.bmp
	DataBase 1016.bmp
	DataBase 1018.bmp
	DataBase 1020.bmp
	DataBase 1022.bmp
	DataBase 1024.bmp
	DataBase 1026.bmp
	DataBase 1028.bmp
	DataBase 1030.bmp
	DataBase 1032.bmp
	DataBase 1034.bmp
	DataBase 1036.bmp
	DataBase 1038.bmp
	DataBase 1040.bmp
	DataBase 1042.bmp
	DataBase 1044.bmp
	DataBase 1046.bmp
	DataBase 1048.bmp
	DataBase 1050.bmp
	DataBase 1052.bmp
	DataBase 1054.bmp
	DataBase 1056.bmp
	DataBase 1058.bmp
	DataBase 1060.bmp
	DataBase 1062.bmp
	DataBase 1064.bmp
	DataBase 1066.bmp
	DataBase 1068.bmp
	DataBase 1070.bmp
	DataBase 1072.bmp
	DataBase 1074.bmp
	DataBase 1076.bmp
	DataBase 1078.bmp
	DataBase 1080.bmp
	DataBase 1082.bmp
	DataBase 1084.bmp
	DataBase 1086.bmp
	DataBase 1088.bmp
	DataBase 1090.bmp
	DataBase 1092.bmp
	DataBase 1094.bmp
	DataBase 1096.bmp
	DataBase 1098.bmp
	DataBase 1100.bmp
	DataBase 1102.bmp
	DataBase 1104.bmp
	DataBase 1106.bmp
	DataBase 1108.bmp
	DataBase 1110.bmp
	DataBase 1112.bmp
	DataBase 1114.bmp
	DataBase 1116.bmp
	DataBase 1118.bmp

