Keyword search in databases:
the power of RDBMS

Introduction

 Two approaches:

— One is to generate a set of relational algebra
expressions and evaluate every such expression using
SQL on an RDBMS directly or in a middleware on top
of an RDBMS indirectly.

* Due to a large number of relational algebra expressions
needed to process, most of the existing works take a

middleware approach without fully utilizing RDBMSs.
— The other is to materialize an RDB as a graph and find
the interconnected tuple structures using graph-
based algorithms in memory

Introduction (cont.)

* |In supporting IR-styled search, commercial
RDBMSs (such as DB2, ORACLE, SQL-SERVER)
support full-text keyword search using a new SQL
predicate of contain(A, k) where A is an attribute
name and k is a user-given keyword.

 The middleware(graph-based in-memory
algorithms by materializing an RDB as a graph)
approach does not fully utilize the functionality of
RDBMSs, and only uses SQL to retrieve data.

(e) Tuple Connections

Preliminary

 GD(V,E) on the schema graph GS. Here, V
represents a set of tuples, and E represents a
set of connections between tuples.

* |tis worth noting that we use GD to explain
the semantics of keyword search but do not
materialize GD over RDB.

DBLP Database schema

Author

TID

Name

Write

| TID

Paper

AlID

TID

Cite

| PID

r—

Title

TID

PiD1

14

PiD2

Figure 1: DBILP Database Schema

Three types of keyword queries

1. Connected tree semantics
2. Distinct root semantics
3. Distinct core semantics

Connected Tree Semantics

* result of such a query is a minimal total joining
network of tuples, denoted as MTINT

— a joining network of tuples (JNT) is a connected tree
of tuples where every two adjacent tuples, t2 r(R) and
t2 r(R) can be joined based on the foreign key
reference defined on relational schemas Rand Rin G

— a joining network of tuples must contain all the m
keywords (by total).

— a joining network of tuples is not total if any tuple is
removed (by minimal).

Connected Tree Semantics

[TID | Name | | 1D | Twtho |
— P1 Contributions of Michelle
o2 | Michael Richardnon | | P2 | Keyword Search in XML
a Michelle pPa Pattern Matching in XML
3 P4 Algorithms for TopK Query
(a) Author (b) Paper
L1ID | AID | PID | 15 7 piD1 | PIDZ |
Z; Zi }};; c1 P2 P1
wa a2 P2 €2 p3 P
wy sz P2 23 Pz];3
wes az Pa C-r'i P3])4
we as P3 5 P2 Pa
(c) Write (d) Cite | .
Michelk Michelk
g (; (;
Michelle XML Michelle XML
)] |
o M P Wi([Wy

O MO M D
Michelle XML XML XML,

) Connected Tree (K = { Michelle, XML}, Tmax= 3

Michelle

Michelle

Connected Tree Semantics

 The size of an MTINT is the total number of
nodes in the tree. Because it is not meaningful if
an MTINT is too large in size, a user-given
parameter Tmax specifies the maximum number
of nodes allowed in MTJNTSs

with a 2-keyword query K = {Michelle, XML} and

Tmax =5. There are 7 MTIJNTs shown in following

figure.For exam

nle, the first connected tree

means that paper p1l is cited by paper p2 as

specified by tup

e cl. Here p1 contains Michelle

and p2 contains XML

Distinct Root Semantics

* Suppose that there is a result rooted at tuple
tr. For any of them-keyword, say ki, there is a
tuple t in the result that satisfies the following
conditions.

— (1) t contains the keyword k.

— (2) Among all tuples that contain kl, the distance
between t and tr (tuple root) is minimum.

— (3) The minimum distance between t and tr must
be less than or equal to a user given parameter
Dmax

Distinct Root Semantics

| TID | Name |
aqy Charlie Carpenter
o Michael Richardson
as Michelle

(a) Author

[TID | Title

P1 Contributions of Michelle
P2 Keyword Search in XML
Pa Pattern Matching in XML
P4 Algorithms for TopK Query

[TID | AID | PID

wi ay j251

we ay Pz
wa a2 Pz
wy asz P2
wes az Pa
wea az Pa
(c) Write

Vidk XML Micele ML

12

(b) Paper
| [TID [PIDT [PIDZ |
1 P2 P
c2 P3 P1
C3 P2 Pa
Cq P3 Pa
Cs P2 Pa
(d) Cite

Michelle Michelle ~ XML~ XML

GORN (O IGO0 /\ /\

Wy Oy Wy Hv’()'\ \ t]' l W Ws i) (5)

\y “\y \y

DO N0 GO @O M0 MO ®O D
Vide WML Mk WL XML XML Mk Mehde Mk XML Mk YL

(b) Distinct Root (K = { Michelle, XML, Dimax =)

Distinct Core Semantics

A community, Ci(V,E), is specified as follows. V is a union of
three subsets of tuples, V = Vc union Vk union Vp.

— Vk represents a set of keyword-tuples where a keyword-tuple
vk element of Vk contains at least a keyword

— Vc represents a set of center-tuples where there exists at least a
sequence of connections between vc element of Vc and every
vk element of Vk such that dis(vc, vk) Dmax, and

— Vp represents a set of path-tuples which appear on a shortest
sequence of connections from a center-tuple vc element of Vc
to a keyword-tuple vk 2 Vk if dis(vc, vk) Dmax.

* Note that a tuple may serve several roles as keyword/
center/path tuples in a community

Distinct Core Semantics

| TID | Name | | TID [Tide I
— P1 Contributions of Michelle
aqy Charlie Carpenter o By
az | Michael Richardson pz | Keyword Search in XML
o Michelle Pa Pattern Matching in XML
2 P4 Algorithms for TopK Query

(a) Author
[TID | AID | PID |

(b) Paper
[TID | PIDI | PID2 |

wi ay j251
wa a1 P2 1 P2 P

c2 P3 P1
wa a2 Pz

C3 P2 Pa
wy az Pz

Cq P3 Pa
we az Pa Cx P P
we as pa = 2 : 4

(c) Write (d) Cite

(3 P2 {3 P3 P I3
Michelle XML Michelle XML Michelle XML Michelle XML

(c) Distinct Core (K = { Michelle, XML}, Dmax = 2)

a Figure : Three Semantics

CONNECTED TREE IN RDBMS

* A candidate network (CN) corresponds to a
relational algebra that joins a sequence of
relations to obtain MTJNTs over the relations
involved. The set of CNs is proved to be
sound/complete and duplication-free .

 |In the second candidate network evaluation

step, all CNs generated are translated into SQL
qgueries, and each is evaluated on an RDBMS

to obtain the final results.

CONNECTED TREE IN RDBMS

* CN is a sequence of joins, where the number of
nodes is less than or equal to Tmax, and the
union of the keywords represented in a CN is
ensured to include all the m- keywords.

* PIXML} means contain(XML)(—contain(Michelle)
P), or equivalently the following SQL:
— select * from Paper as P

where contain(Title, XML) P
and

not contain(Title, Michelle) w3 cO

A {Michelle} P{XML}
(a) CN

17

CONNECTED TREE IN RDBMS

All CNs are computed using SQL. An operator
tree (join plan) is shown in Figure below to
process the CN in Fig. (a) using 5 projects and
4 joins.

s
J3 1
P -

wW{ g;,/\;? cg &/T
d 5 C ‘/LI)

~ g o . O QO
A {Michelle) P{XML} P{XML} C{} P{} W[A{Michelle}
(a) CN (b) Joins (DISCOVER)

CONNECTED TREE IN RDBMS

* They propose to use semijoin/join sequences to
compute a CN. A semijoin between Rand S is
defined in Eq. (2), which is to project () the tuples
from R that can possibly join at least a tuple in S.
— R XS = project(R)(R join S) (2)

 Based on semijoin, a join R 1S can be supported
by a semijoin and a join as given in Eqg. (3).

— Rjoin S =(RXS) join S (3)

CONNECTED TREE IN RDBMS

* Given a large number of joins, it is extremely
difficult to obtain an optimal query processing
plan. It is because one best plan for an
operator tree may make others slow down, if
its nodes are shared by other operator trees

20

CONNECTED TREE IN RDBMS

b,
i A
P{})ﬂ/
{ J2
Wi} C{} é/jj
. C O O
A {Michelle) P{XML} P{XML} C[) P{} W11 A{Michelle}
(a) CN (b) Joins (DISCOVER)
P

0 0
P(XML} Cf) P{} W{} A{Michelle} P’ (W P(XML} A{Michelle)
(¢c) Semijoin (d) Join

21

Semi-join better than join
operation

10M — Jo'in v T 10M N Jdin v :
P SemiJoin-Join E/”" F: Semidoin-Join [}
g‘ 1M ..-,*,-—*'*‘-_ : = 1M F
= -+ =
& &
T 100K O T 100K]
o _a—H o
=
1ok L= : : : : 1ok L= : : . :
4E-4 8E-4 1.2E-31.6E-3 2E-3 3 a 5 3 7
(a) Vary Keyword Selectivity (b) Vary Tmax

Figure 5: # of Temporal Tuples (Default Tmax = 5, m = 3)

Remark

* Based on their findings, when processing a
arge number of joins for keyword search on
RDBMSs, it is the best in practice to process a
arge number of small joins to avoid
intermediate join results to be very large and
dominative, if it is difficult to find an optimal
query processing plan or the cost of finding an
optimal query processing plan is large.

DISTINCT CORE IN RDBMS

* |In the first step, for each keyword ki, we
compute a temporal relation, Pairi(tidi, disi,
TID), with three attributes, where both TID
and tidi are TIDs and disi is the shortest
distance between TID and tidi (dis(TID, tidi)),
which is less than or equal to Dmax

DISTINCT CORE IN RDBMS

Gid | TID | tdl | disl | tid2 | dis2

| sz asz 0 P2 2

| wy az | P2 |

| P2 a3 2 P2 0

| P3 3 2 P2 2

| P4 3 2 P2 2

2 (153 a3 0 Pa 2

2 We Qs l Pa l

2 P2 Qs 2 Pa 2

2 P3 a3 2 Pa 0

) | 2 P4 a3 2 P3 2

~ . » » 3 a P1 2 P2 2
Ml L ekl YL Mkl \MI Mkl \MI o B IR I B O
3 p2 | M1 2 P2 0

i o = el AL 8 I B I

0t o = ol V1 = I O B

‘ 4 P1 m 0 Pa 2

4 P2 P1 2 P3 2

! 'T| | 4 | 'ps | p | 2 | pa| 0

I e e lnl il

“ Table 1: Distinet Core (K = { Michelle, X ML},Dmax = 2)

TID

tid1

disl

tid2

dis2

1-7>J

Michelle XML

P1
P2

P3
Co

P
P
P1
P1

_—2 o O

P3
P3
p3
P3

_— 0 o 2

e the distinct core,

— p1 contains keyword Michelle (k1) and
— p3 contains keyword XML (k2), and

— the 4 centers, {p1, p2, p3, c2}, are listed on the TID
column. Any center can reach all tuples in the core,
{p1, p3}, within Dmax.

25

DISTINCT ROOT IN RDBMS

Over the same temporal relation S, we can also obtain the distinct root
results by grouping tuples on the attribute TID. Consider the query K =
{Michelle, XML} and Dmax = 2, the rightmost result in Fig. below is
obtained as frllnwie

P4
TID tid 1 disl tid2 dis2
Wsiy Cs0) P4 a3 2 P2 2
2 3 2

P4 a3
as P2

Michelle XML

The distinct root is represented by the TID, and the rightmost result in Fig.
3(b) is the first of the two tuples, where a3 contains keyword Michelle (k1)
and p2 contains keyword XML (k2).

Note that a distinct root means a result is uniquely determined by the
root. As shown above, there are two tuples with the same root p4. We
select one of them using the aggregate function min, following the

DISTINCT ROOT IN RDBMS

[Gid | TID | adl | disl | Gd2 | dis2 |

1 g = 1 r= 1
2 we = 1 Pa 1
3 c P1 1 Pz 1
4 Co j251 1 ra 1
5 as az O y 257 2
5 as a=z O ra 2
| o 1 1 0 P2 2
6 P 2k O r=a 2
| 7 P2 az 2 P2 0
7 P2 az 2 Pa 2
7 P2 P 2 Pz O
7 P2 P11 2 Pa 2
[= P a= 2 Pa 0
8 P= a=z 2 y 251 2
8 P= 2k 2 y 251 2
8 P= 2k 2 r=a O
9 an P11 2 rz= 2
10 Pa = 2 r= 2
10 Pa a=z 2 r=a 2

Table 2: Distinct Root (KX = {Michelle, X M L }.Dmax = 2)

DISTINCT ROOT IN RDBMS

* Table 2 shows the same content as Table 1 by
grouping on TID in which the yellow colored
tuples are removed using the SQL aggregate

function min to ensure the distinct root
semantics.

Naive Algorithms

S)

i S Pair,
k| B 13! R TID| tidh | disy
a |~ |2
R, R> R, |)
- >< —— J|a |a: |O
R3 R3 R3 w1 ™ 1 S
TID| tid, | disy| tid; | dis;

Ry Ry Ry a [~ |2 P2 |2

Pair,
ks R, R, R, TID| tid> | dis-
R, R, >< R, |] @a | P2 |2
- = - . |a 2 |2
R, R R ds 2 2
Ry Ry Ry

Figure 6: An Overview (R, R2, R3, and R4 represent Author,
Write, Paper, and Cite relations in Example 2.1)

29

30

Author

TID

Name

Naive Algorithms

Write Paper Cite
TID TID —L TID
AID Title ‘ PID1
PID PIiD2

Figure 1: DBI P Database Schema

HTID—*t'idl.O—’disl * acontazn kl Rl

m

Q
:0

rrp—tidy,0—disy,» 3

(

HTID—'t'z'.dl,O—»d'isl *(acontazn (ky)
(contain(k,)
(

)
2)
)
)

HTID—’t'i.dl.O—*d'i.Sl * Ucontazn kl R4

31

Naive Algorithms

Author Write Paper Cite

TID —L TID TID —L TID

Name AID —I_ Title _|_- PID1
PID PID2

Figure 1: DBLP Database Schema

Pl,l

P1,2

[—

1Py 5. TID—tid) 1—dis,

1.TID—tid;
.TID—tid,
TID—tidy
4. TID—tidy
4. TID—tidy
3. TID—tidy

d—diay,
J1—disy,
d—disay,
d—disy,
d—diay,
,l—d'isl]

.1—‘dl81 .

+(FPo,2
+(Po
+(Po,3
+(Po,2
+(Po,a
+(Po,a
+(Po,a

+(Po3

4
.TID=R,.AID

b4
PID=R,.TID

P4
.TID=Ry.PID1

P Ry)

AID=R,.TID

Ray) U

b4 R3)

.TID=R,.PID

R3) U

P4 Ra)U

.PID1=R5.TID

P Ra)

.PID2=R5.TID

R4) L

> R4)(6)

.TID=Ry.PID2

Naive Algorithms

k1 using union, group-by, and SQL aggregate function min. First,
we conduct project, Py ; «— Ilrrp tid, dis, Pa,;. Therefore, ev-
ery P ; relation has the same tree attributes. Second, for R;, we
compute the shortest distance from a R; tuple to a tuple containing
keyword k; using group-by (I') and SQL aggregate function min.

G —TID tidy I'min(dis;) (Fo,5 U P1,; U Py ;) (7)

where, the left side of group-by (I') 1s group-by attributes, and the
right side 1s the SQL aggregate function. Finally,

Pairy — G1 UG UG5 UGy (8)

32

Naive Algorithms

e Rule-1: If the same (tidi, TID) value appears in
two different Pd’,j and Pd,j, then the shortest
distance between tidi and TID must be in Pd’,j
but not Pd,j, if d’ < d. Therefore, Eq. (7) can be

computed as follows.

7
J
G ;
J

d s _ _ ») Yy
i W (O(tidy . TID)YENtia, . TID(G;) Py ;)

.

~Y Y . 'y _ _ > -
& ; -5 U '-.W'I’idl~TI[":"-"E]Ifidl_‘T]L‘)"("i'l 2.5) (9)

 There does not exist a shortest path between
tid1 and TID before

Naive Algorithms

* Rule-2: If there exists a shortest path between
tidi and TID value pair, say, disi(tidi, TID) = d’,
then there is no need to compute any tuple
connections between the tidi and TID pair,
because all those will be removed later by

group-by and SQL aggregate function min. In
Eq. (6), every P1,j, 1 <j< 4, can be further

reduced as Pl...' — (—T(tidl.TID)%E]]tt,-_dl_TID':PD.j :'Pl‘-‘{'

35

Naive Algorithms

The naive algorithm DR-Naive() to compute
distinct roots can be implemented in the same
way as DC Naive() 2 with 2 group-bys as
follows:

fOHOWS: A - Tl Drminidisl‘|-di31.-~ min(disy |=disy,) and) -

[(! F\
)) in(tid, | =tid in(tid.. J=ti |.\. A
T1D,disy .d‘.smr min(tidy)=tidy - min{tidy, = tidy, |- N |

Three-phase reduction Algorithm

* in the three-phase reduction, we significantly
prune the tuples from an RDB that do not
participate in any communities.

37

Three-phase reduction

\
\
W,
Center nodes Center nodes

(a) From keywords to centers (b) From centers to key-
words

i dis(z‘. tw) idis(l\l'g.r‘.)
dis(ky.ty) dis(c,t,)
(c) Project Relations
Figure 7: Three-Phase Reduction

The first reduction phase (from
kevword to center):

1 1
Dmax | A 1 Dmax
1 £ 1

Center nodes
(a) From keywords to centers

 We consider a keyword ki as a virtual node, called a
keyword-node, and we take a keyword-node, ki, as a center

to compute all tuples in an RDB that are reachable from ki
within Dmax.

* Let Gi be the set of tuples in RDB that can reach at least a
tuple containing keyword ki within Dmax, for 1 <i< m.
Based on all Gi, we can compute Y = G1 join G2 join - - - join
Gm which is the set of center-nodes that can reach every
keyword-node ki, 1 <i< m, within Dmax

The second reduction phase (from
center to kevword)

e ——

k1 nodes

) i
<= ’ I \ S

k3 nodes

¥ — N
W, ' W,
Center nodes

(b) From centers to key-
words

* A tuple t within Dmax from a virtual center-node
means that the tuple t is reachable from a tuple in Y
within Dmax. We compute all tuples that are reachable
from Y within Dmax. Let Wi be the set of tuples in Gi
that can be reached from a center in Y within Dmax,
for 1 <i< m. Note that Wi subset Gi.

* Obviously, only the tuples, that contain a keyword
within Dmax from a center, are possibly to appear in
the final result as keyword tuples

The third reductlon phase (project DB)

: T s(c. 1y
(c) Project Relations

 We project an RDB’ out of the RDB, which is sufficient
to compute all multi-center communities by join Gi join
Wi, for 1 <i< m. Consider a tuple in Gi which contains
a TID t" with a distance to the virtual keyword-node ki,
denoted as dis(t’, ki), and consider a tuple in Wi which
contains a TID t’ with a distance to the virtual center
node c, denoted as dis(t’, c).

 The sum of two distances range[0,Dmax]

Performance studies

* Conducted 3 algo:
— semijoin/join based algorithm, denoted Semijoin-
Join
— the join based algorithm , denoted Join

— the block pipeline algorithm (BP) to compute the
top 10 answers.

Exp-1: Selectivit

e Connected Tree g
* Ksel :keyword
SelectivityS -
* M:number of ‘; |
Keywords =
* Tmax: Tree size 3 ;|

42

vy Te

40 r

30 r

20

10

) T Join —4—
SemiJoin-Join [‘:]/‘]

4E-4 8E-4 1.2E-316E-3 2E-3

60 |
S0
40 r

10

(a) Vary ksel
+/-_-j/ Join —— |
B semidoin-Join [}

2 3 4 5

(c) Vary m

107

Join ——-
SemiJoin-Join —f=3—

3 4 S =] 7

(e) Vary Tmax

10M

Temp Tuples # Temp Tuples

Temp Tuples

10K

sting

Join —f—
Semidoin-Join 5
e
L L = |
T

4E-4 8E-4 1.2E-31.6E-3 2E-3

(b) Vary ksel

Join .
Semidoin-Join -3~

o+
g
- T

+ 4
R = ~e
2 3 4 5

(d) Vary m

Join ——-
SemiJoin-Join ‘-;B"‘/F
=
3 4 5 (=] 7

(f) Vary Tmax

Figure 8: Connected Tree (DBLP)

Exp-1: Selectivity Testing

e Connected Tree

e Semijoin-Join outperforms Join. When Tmax
increases from 3 to 4 or from 5 to 6, the time
and number of tuples generated for both do
not change, because when the tree size is
even, at least one of the Write or Cite tuple
will be a leaf node, and such a tree is invalid
because Write or Cite do not have text-
attributes.

Exp-1: Selectivity Testing

 BPis an algorithm to compute top-k connected trees
by pushing the ranking connected trees into the CN
evaluation with Tmax, and the cost saving of finding
top-k is at the expense of computing more SQL to
randomly access an RDB.

 BP may be unstable because the time for BP does not
largely depend on the keyword selectivity but on the
distribution of the result trees with large scores. The
time for BP increases when m increases, and is not
effected by increasing Tmax because the top-k results
tend to have small sizes, e.g. <=3.

Exp-1: Selectivity Testing

= 1=e Join ————
3 100 SemidJoin-Join E X
= 88 B
= S0 r 7 i
= A
o &0 i
[—1
2 ao]
a
= =20 .
o o -)

= SE-= SE-S 7.SE-5 1E-4 1 25E-4

(a) Vary ksel
—_ 1000
= 100 |} P |
= " e
e 10 | mﬁf‘ |
ar = 7
:'?3 LI / Join ————
= 7 SemidJoin-Join - =
= e <
(=" BPFP PN
o.1
=2 = a s
(c) Vary m
— 10000
= Join ——
(=) SemiJoin-Jdoin —-FF-—
P 1000 |- BP -
=
| —
=151 100 | A .
. — |
= 10 | -
é —
oo 4
3 a s =3 7

45

(e) Vary Tmax

10MM
=z
= m
| —
[—
§ 100K
=
10K
10M
=
= 1m
| —
=
(= 100K
1=
10K
10M
= 104
=
g_IOOK
o
[—-
4= 10K
1K

Join ——4——
=

Semidoin-Join

——
=1
m*"a—- E

2 SE-5 SE-S5 7.5E-S 1E—41 25E—4

(b) Vary ksel

Join ——
SemiJoin-Join [
= e

£

SemidJoin-Join

3 =3 =] L= 7

(f) Vary Tmax

Figure 9: Connected Tree (IMDB)

Exp-1: Selectivity Testing

 DC generates less number of temporal tuples
in all cases, but when Dmax <=2, DC is slower
than DC-Naive. This is because, when Dmax is
small, the number of intermediate results for
DC-Naive is not large. In such a case, the
performance of more small joins is not as
effective as the performance of joins

Exp-1: Selectivity Testing

S 140 }
‘3, 120 }
g 100 |
=
‘2
=
&

o
— 350
L]
X 300 |
—
g 250 |
(= =200
g’ 150 |
wa 100 ¢
=
S s0
R o
—
(]
a
.
=
S0
R=1
“a
=
e
=9

47

80
60 |
40
20

DC-Naive —f—
DC ——3—

4E-4 8E-4 1. 2E-31.68E-3 2E-3

(a) Vary ksel

DC-Naive ——f—
OC —-f3--

2 3 4

(e) Vary Dmax

S

1o00M

Temp Tuples
2

100K

100M

Temp Tuples

100K

100M

Temp Tuples
2

100K

10M

DC-Nave ——
oC —&=—

4 —t—t]

4E-4 8E-4 1.2E-31.8E-3 2E-3

(b) Vary ksel

10M

g

10M

DC —=—

2 3 4 S
(d) Vary m
DC-Nave ——
DC —fF—

2 3 3 S 6

(f) Vary Dmax

Figure 10: Distinct Core (DBLP)

Exp-2: Compactness Testing

—_ 25 v v - v —_ 10000 — v
u Join e Join
A SemiJoin-Join I (ﬁ SemidJoin-Join I
— 2ot} - 1000 | E
= &
= =
o 15| - on 100 | -
a S
3 10
10 } - S L]
a [=»
s 1
o 2 4 fa] 1 2 3 4

(a) Connected Tree (DBLP) (b) Connected Tree (IMDB)

130 10000

=3 DC-Naive ——— = DC-Naive
A :?g DC o | rg DC
é 100 . =2 1000 |]
= 90 - =
S0 80 - on
g 70 R g 100 | 1
S0 - v
= a0 A 10
o 1 2 3 a
(¢) Distinct Core (DBLP) (d) Distinct Core (IMDB)
S 420 F DPR-Naive ——] 5 10000 " DR-Naive —
A DR o el DR m—
g 1loor 2 1000 } !
R =
g G0 g 100 } !
= 20 = 10
o o 1 2 3 a
(e) Distinct Root (DBLP) () Distinct Root (IMDB)

Figure 13: Query Compactness

Exp-2: Compactness Testing

* When the compactness of a query is small, the
relationship between tuples that contain
different keywords in the query will be tight, the
tuples that contain different keywords can be
connected even for a small Tmax, and

* the number of connected trees generated will be
large. It results in large processing time.

e Semijoin-Join outperforms Join, because the
number of intermediate tuples generated by
Semijoin-Join is much smaller.

Exp-2: Compactness Testing

 The impact of the compactness values of queries under
the distinct core semantics is not as obvious as that
under the connected tree semantics.

 For example, the processing time with ¢ =0 is smaller
than that with ¢ = 2 under the distinct core semantics.
It is because in the first step of the algorithms under
the distinct core semantics, all keywords are evaluated
individually.

* As aresult, the cost for the first step is independent
with the compactness, and it is possible that the cost
for the first step becomes the dominant factor when
the number of tuples generated in the first step is large

Contribution

We propose a middleware free approach, to support
three types of keyword queries to find the three
different interconnected tuple structures.

We take a tuple reduction approach using SQL without
additional new indexing to be built and maintained and
without any precomputing required

a new approach to prune tuples that do not participate
in any resulting connected trees followed by query
processing over the reduced relations.

new three-phase reduction approach to effectively
prune tuples from relations followed by query
processing over the reduced relations

