Building a Database on S3

Flow of the presentation

Background

Brief intro to S3, SQS, EC2.

Discuss details of implementation.
Discuss Costs, Performance and Results

Background

Running a service becomes particularly challenging and
expensive if the service is ‘successful’.

Need to address cost to operate a service on the Web,
ideally with 24-7 availability and acceptable latency.

Required: Hosted server and a database which both
need to be administrated; this paper focuses on the
means to implement database component.

Utility Computing provides cost effective answer for
Storage, CPU, Network Bandwidth [User unaware of
details] ; Infinitely Scalable, available. Consistent

Response Time.

Components used for DB
implementation.

AWS — Amazon Web Service
— S3 [Simple Storage System]
— SQS [Simple Queuing System]
— EC2 [Elastic Computing Cloud]
— SimpleDB

Accessing these Resources: Easy Setup
in few steps at Amazon.com

Amazon Simple Storage Service
Getting Started Guide (API Version 2006-03-01)

Search: | Documentation |Z|

AWS Documentation » Amazen Simple Storage Service (S3) » Getting Started Guide » Sign Up for Amazon S3

&Q #m%m Did this page help you? Yes No Tell us about it...

Sign Up for Amazon S3

3 Add an Delete an
Sign Up for Create a View an Move an

To use Amazon S3, you need an AWS account. If you don't already have one, you'll be prompted to create one when you sign up
for Amazon S3. You will not be charged for Amazon S3 until you use it.

Analogy

S3 [Simple Storage System] SQS [Simple Queuing System]

What is S3

Infinite store for objects of variable size ranging 1 Byte to 5 GB.
Access via URI using SOAP/REST based interface.
Methods e.g. get-if-modified-since enable caching based on a TTL protocol

User defined metadata up to 4KB can be associated to an object and can
be read and updated independently of the rest of the object.

Object are associated to a bucket. Selective querying possible.

Users can grant read and write authorization to other users for entire
buckets.

Alternatively, access privileges can be given on individual objects.

What is SQS

SQS allows users to manage a infinite number of
gueues with infinite capacity.

Each queue is referenced by a URI and supports
sending and receiving messages via a HTTP or
REST-based interface.

The max. message size 256 KB for REST based
interface

And 8 KB for the HTTP interface.
Any bytestream can be put into a message.

Supported Methods: createQueue, send, receive,
delete, addGrant.

COSTS

S3: S0.15 to store 1 GB of data for one month.
Seagate HDD 160 GB =S70 [In 2012 1.5TB costs $100]
r/w $0.01 per 10,000 get & S0.01 per 1,000 put requests

S.10-0.18/GB network bandwidth consumption - depending
upon the total monthly volume therefore smugmug uses S3
as a persistent store.

SQS: S0.01 to send 1,000 messages.
network bandwidth $S0.10 /GB of data Xferred.

S0.10 per GB is the minimum for heavy users

* S3

Performance

| Page Size [KB] | Resp. Time [secs] | Bandwidth [KB/secs] |

10

0.14

71.4

100

0.45

222.2

1,000

3.87

2584

Table 1: Resp. Time, Bandwidth of S3, Vary Page Size

Operation

Time [secs]

send

0.31

receive

0.16

delete

0.16

Table 2: Response Times of SQS

Putting the Pieces together:
Implementing the Database

Using S3 as a Disk

Client 1 Client N
* Client Server Architecture ' Appicaton ' Appicaton
* Record Manager N —
* Page Manager oo S

-tree Indexes

Figure 1: Shared-disk Architecture

Basic Commit Protocol

* Overview
* PU Queues
* Checkpoint Protocol for Data Pages sep2 cneckpont

Client

ckpoint Protocol for B-trees .

Figure 2: Basic Commit Protocol

TRANSACTIONAL PROPERTIES

* Atomicity
* Consistency Levels
* |solation: The Limits

EXPERIMENTS

e Software and Hardware Used
e TPCW Benchmark
 Experiment 1: Running Time [secs]

| | Avg. | Marx. |

Naive 11.3 12.1
Basic 4.0 5.9
Monotonicity | 4.0 6.8
Atomicity 2.8 4.6

Table 3: Running Time per Transaction [secs]

EXPERIMENTS (cont...)

* Experiment 2: Cost [S]

| | Total | Chckp. + Atomic Q. | Transaction |

Naive 0.15 0 0.15
Basic 1.8 1.1 0.7
Monotonicity | 2.1 1.4 0.7
Atomicity 2.9 2.6 0.3

Table 4: Cost per 1000 Transactions [$]

EXPERIMENTS (cont...)

* Experiment 3: Vary Checkpoint Interval

Checkpoint Interval [secs]

Figure 3: Cost per 1000 Transacts., Vary Checkpoint Interval

CONCLUSION

Web-based applications need high scalability and availability at low and
predictable cost.

No client must ever be blocked by other clients accessing the same data or
due to hardware failures at the service provider.

Instead, clients expect constant and predictable response times when
interacting with a Web-based service.

Utility computing has the potential to meet all these requirements.
Utility computing was initially designed for specific workloads.

This paper showed the opportunities and limitations to apply utility
computing to general-purpose workloads, using AWS and in particular S3
for storage as an example.

As of today, utility computing is not attractive for high-performance
transaction processing; such application scenarios are best supported by
conventional database systems.

Utility computing, however, is a viable candidate for many Web 2.0 and
interactive applications

