Hadoop: A Framework for Data-
Intensive Distributed Computing

CS561-Spring 2012
WPI, Mohamed Y. Eltabakh

2
What is Hadoop?

- Hadoop is a software framework for distributed processing of large datasets
across large clusters of computers

- Hadoop is open-source implementation for Google MapReduce
- Hadoop is based on a simple programming model called MapReduce
- Hadoop is based on a simple data model, any data will fit

- Hadoop framework consists on two main layers
- Distributed file system (HDFS) master alave

- Execution engine (MapReduce)

task task
tracker tracker

MapReduce job ’
layer tracker

data
node

multi-node cluster

Hadoop Infrastructure

- Hadoop is a distributed system like distributed
databases

- However, there are several key differences between
the two infrastructures
- Data model
- Computing model
- Cost model
- Design objectives

How Data Model is Different?

Distributed Databases

Customer_Accownt Xrel

m][:‘ (PR}

- Deal with tables and relations
- Must have a schema for data
- Data fragmentation & partitioning

Hadoop

la@Im Overview

mage cowlesy of the
Apache Software Foundation

- Deal with flat files in any format
- No schema for data

- Files are divide automatically into
blocks

How Computing Model is Different?

Distributed Databases

State transitions by Intermediate
INSERT, UPDATE, DELETE states

ROLLBACK,
error or failure

- Notion of a transaction
- Transaction properties ACID - Notion of a job divided into tasks

- Distributed transaction - Map-Reduce computing model
- Every task is either a map or reduce

L N
Hadoop: Big Picture

High-level languages

| Pig \ ‘ Cascading l ‘ Hive \ . .
Execution engine
‘ MapReduce |
- Distributed
o light-weight DB
l Hadoop DFS \

Distributed File system

Katta / Applications

Centralized tool
for coordination

HDFS + MapReduce are enough to have things working

What is Next?

- Hadoop Distributed File System (HDFS)

- MapReduce Layer %

- Examples

- Word Count
- Join

- Fault Tolerance in Hadoop

. S
HDFS: Hadoop Distributed File System

Block Replication

Namenode (Filename, numReplicas, block-ids, ...)
Jusers/sameerp/data/part-0, 12, {1,3}, ...

Jusers/sameerp/data/part-1, r:3,{2.4,5}, ...

m

>

Single namenode and many datanodes

Namenode maintains the file system
metadata

Files are split into fixed sized blocks and
stored on data nodes (Default 64MB)

Data blocks are replicated for fault
tolerance and fast access (Default is 3)

Datanodes periodically send heartbeats
to namenode

- HDFS is a master-slave archi—tecture

- Master: namenode
- Slaves: datanodes (100s or 1000s of nodes)

HDFS: Data Placement and Replication

HDFS Architecture

Metadata (Name, replicas, ...):
/home/foo/data, 3, ...

Metadata_l'ops-""'[Namenode

Elociops Datanodes can be
Read Datanodes Datanodes / organized into racks
. o - Replication = =
[] R Blocks

- 7 \/ Yo

- Default placement policy: Where to put a given block?
- First copy is written to the node creating the file (write affinity)
- Second copy is written to a data node within the same rack
- Third copy is written to a data node in a different rack
- Objectives: load balancing, fast access, fault tolerance

What is Next?

- Hadoop Distributed File System (HDFS)

- MapReduce Layer %

- Examples

- Word Count
- Join

- Fault Tolerance in Hadoop

. N
MapReduce: Hadoop Execution Layer

S5

LRI s > Jobtracker knows everything about submitted jobs
Maf:;:ruce m}ter __> Divides jobs into tasks and decides where to run
each task
EEyFeSr NameNode
» Continuously communicating with tasktrackers

/\ —
Marﬁsggce TaskTracker / \ TaskTracker » Tasktrackers execute tasks (multiple per node)

Monitors the execution of each task

HDFS
Layer

e
1
Y

DataNode

DataNode

S e » Continuously sending feedback to Jobtracker

-

- MapReduce is a master-slave architecture
- Master: JobTracker
- Slaves: TaskTrackers (100s or 1000s of tasktrackers)

- Every datanode is running a tasktracker

. S
Hadoop Computing Model

- Two main phases: Map and Reduce

- Any job is converted into map and reduce tasks

- Developers need ONLY to implement the Map and Reduce classes
Shuffling and

Data FIOW /Sorting

Blocks of the input

file in HDFS \-

Map tasks (one Reduce tasks
for each block)

. N
Hadoop Computing Model (Cont'd)

- Mapper and Reducers consume and produce (Key, Value) pairs
- Users define the data type of the Key and Value

- Shuffling & Sorting phase:
- Map output is shuffled such that all same-key records go to the same reducer
- Each reducer may receive multiple key sets
- Each reducer sorts its records to group similar keys, then process each group

Input Output
Record Record
Record | Record
Record (Ilgleayp ;r:lzz) »|Shuffle/Sort] Reduce » Record
Record ’ Record
Record Tl Record
Record]

Eecorg 3 Record
ccor Map Task JShuffle/Sort »Record

Rlpcaie (Key’? value) i —

Record L

Record

Record 1

Record

Record Map Task >Shuffle/Sort Reduce »| Record

Record {Key, value) Record

Record 7]

What is Next?

- Hadoop Distributed File System (HDFS)

- MapReduce Layer

- Examples
- Word Count <::

- Join

- Fault Tolerance in Hadoop

. R
Word Count

- Job: Count the occurrences of each word in a data set

Sort and
Shuffle
Map Key Value Reduce K'ey
Each line passed to Splitting Value Pairs
inividual mapper
Input Files instance:p Applel
Apple 1l Apple, 4
spplel Applel
Apple Orange Mango l_. Orange, 1 Apple 1l
Mango, 1l Final Output
Apple Orange Mango
Orange Grapes Plum orange Grapes, 1 »| Grapes,1
Orange Grapes Plum I_. Grapes,1
Plum,1 Apple 4
Grapes,1
hMango,1 Mango, 2
Apple 1 hMango, 1 »| Mango,2 o Orange, 2
Apple Plum Mango I—' Plum,1 Plum,3
Apple Plum hango Mango,1 5 ”
Apple Apple Plum 0:2222’1 »| Orange,2
Apple 1 f
Apple Apple Plum I—» Apple 1l
Plum,1 Plum,1
\ Plurn,1 » Plum,3
Plum,1
Map Reduce
Tasks Tasks

Reduce phase is optional: Jobs can be MapOnly

Joining Two Large Datasets

__| Dataset A

__| Dataset B

Qz Different join keys

17

Reducer 2

Reducer N

_ Reducers perform the
actual join

J \

Shuffling and sorting over
[the network

- Each mapper processes one
block (split)

=

- Each mapper produces the
join key and the record pairs

— HDFS stores data blocks
(Replicas are not shown)

Joining Large Dataset (A) with Small Dataset (B)

__| Dataset A __| Dataset B Qz Different join keys

- Every map task processes one block from A and the entire B
- Every map task performs the join (MapOnly job)
- Avoid the shuffling and reduce expensive phases

| | |

/— —
]
Aa J (™
~ oale s®,
- HDFS stores data blocks
N & [)] (Replicas are not shown)
0.. O.A o A
S S o S B —

What is Next?

- Hadoop Distributed File System (HDFS)

- MapReduce Layer

- Examples

- Word Count
- Join

- Fault Tolerance in Hadoop

Hadoop Fault Tolerance

- Intermediate data between mappers and reducers are

-~

- What if a task fails (map or reduce)? A ' -
- Tasktracker detects the failure O -Oig’ e —-am
e A
- Sends message to the jobtracker @
- Jobtracker re-schedules the task = 'i%[’fi’_D
meE o m

- What if a datanode fails?

- Both namenode and jobtracker detect the failure
- All tasks on the failed node are re-scheduled
- Namenode replicates the users’ data to another node

- What if a namenode or jobtracker fails?
- The entire cluster is down

Intermediate data
(materialized)

. n_
Reading/Writing Files

- Recall: Any data will fit in Hadoop, so how does Hadoop understand/read the data?

- User-pluggable class “/Input Format”
- Input formats know how to parse and read the data (convert byte stream to records)
- Each record is then passed to the mapper for processing

- Hadoop provides built-in Input Formats for reading fext & sequence files

Map code
Input Formats can do a

lot of magic to change
Input Format the job behavior

The same for writing >
“Output Formats”

Back to Joining Large & Small Datasets

__| Dataset A __| Dataset B QZ Different join keys

- Every map task processes one block from A and the entire B

- How does a single mapper reads multiple splits (from different datasets)?
- Customized input formats

| | |

dPPE dPPE dPPE

/— —
]
Al J (™
: oile s®,
- HDFS stores data blocks
N & (Replicas are not shown)
C.. ..A ..A
S S - S o —

2
Using Hadoop

- Java language

- High-Level Languages
- Hive (Facebook)
- Pig (Yahoo)
- Jaql (IBM)

Java Code Example

Source Code

1. package org.myorg;

2.

3. import java.ioc.IOException;

4. import java.util.*; —— Imbort Hadoon Lib

S. IIIIF!I‘- llauvvp II"S

6. import org.apache.hadocop.fs.Path; -~

7. import org.apache.hadoop.conf.*;

8. |import org.apache.hadoop.io.*;

9. import org.apache.hadcop.mapred.*;

10.import org.apache.hadocop.util.*; “nap elass
11. N
12.public class WordCount { J

13. A

14. public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { I

15. private final static IntWritable one = new IntWritable(l): ,

16. private Text word = new Text(); W

17.

18. public veid map{LongWritable key, Text wvalue, OutputCecllector<Text, IntWritable> ocutput, Reporter reporter) throws IOException {

19. String line = wvalue.toString():

20. StringTockenizer tckenizer = new StringTokenizer(line);

21. while ({(tckenizer.hasMoreTockens()) {

22. word.set (tockenizer.nextToken()) ;

23. cutput.cellect {(word, one);

24. }

25. } e
26. }

27.

28. public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {

29. public veid reduce (Text key, Iterator<IntWritable> walues, OutputCecllector<Text, IntWritable> cutput, Reporter reporter) throws IOExceptiocn {

30. int sum = 0;

31. while (wvalues.hasNext()) { ﬁ
32. sum += values.next () .get{); I
33. } /
34. cutput.cellect {key, new IntWritable{(sum)); I
35.) — /
36.) /
37. /
38. public static veid main({String[] args) throws Exception { v
39. JobConf conf = new JobConf (WeordCount.class): RDad:s .n_e_el_a_s_s_
40. conf.setJobName {("wordcount") ; INCuUuuUuLv
41. Iab confialiration

42. conf.setOutputKeyClass (Text.class) ; VUM LUTITTyulatuvii

43. conf.setOutputValueClass (IntWritable.class); /

44. —

45. conf.setMapperClass (Map.class); (

46. conf.setCombinerClass (Reduce.class) ;

47. conf.setReducerClass (Reduce.class) ;

48.

49. conf.setInputFormat (TextInputFormat.class) ;

50. conf.setOutputFormat (TextOutputFormat.class) ;

51.

|52. FileInputFormat.setInputPaths {conf, new Path{args[0])):

|53. FileOutputFormat.setOutputPath{conf, new Path{args[l])):

54.

55. JebClient.runJcb {(conf) ;

57. 1} —

58. }

Hive Language

High-level language on top of Hadoop
Like SQL on top of DBMSs

Support structured data, e.g., creating tables, as well as
extensibility for un-structured data

page_view pv_users Create Table user (userlD int,

pageid|userid | time e pageid | age age int,
serid gender

1 | 11 |eosor|, N i 1 |25 gender char)
111 | 25| femdle | = . . .

2 | 111 |90813 > | 25 Row Format Delimited Fields;
222 3R male

1 222 (90814 1 | =

Load Data Local Inpath ‘/user/

local/users.txt’ into Table user;

INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page_view pv JOIN user u ON (pv.userid = u.userid);

From Hive To MapReduce

INSERT INTO TABLE pv_users
SELECT pv.pageid, u.age
FROM page_view pv JOIN user u ON (pv.userid = u.userid);

page_view

pageid|userid | time key | vaue key | vaue

1 111 |9:.08:01 111 | <1,1> 111 | <1,1>
2 111 30&13[> 111 | <1,2> 111 | <1,2> E>

1 222 90814 222 | <1,1> Shuffle 111 |<2,25>
USSP Map Sort Reduce

userid | age | gender key | value key | vaue
111 25 | femde [> 111 | <2,25> 222 | <1,1> E>

222 32 | mde 222 | <2,32> 222 | <2,32>

Hive: Group By

pv_users
pageid | age
1 25
2 25
1 32
2 25

SELECT pageid, age, count(1)

FROM pv_users
GROUP BY pageid, age;

pageid [age | count

1 25 1
2 25 2
1 32 1

pv_users

pageid | age

1 25

2 25

pageid | age

1 32

Map

key

value

<1,25>

<2,25>

key

value

<1,32>

<2,25>

Shuffle
Sort

key

value

<1,25>

<1,32>

key

value

<2,25>

<2,25>

.

Reduce

.

Summary

Hadoop is a distributed systems for processing large-scale datasets
Scales to thousands of nodes and petabytes of data

Two main layers
HDFS: Distributed file system(NameNode is centralized)
MapReduce: Execution engine (JobTracker is centralized)

Simple data model, any format will fit
At query time, specify how to read (write) the data using input (output) formats

Simple computation model based on Map-Reduce phases
Very efficient in aggregation and joins

Higher-level Languages on top of Hadoop
Hive, Jaql, Pig

Summary: Hadoop vs. Other Systems
| Distributed Databases | Hadoop

Computing Model - Notion of transactions - Notion of jobs
- Transaction is the unit of work - Job is the unit of work
- ACID properties, Concurrency control - No concurrency control
Data Model - Structured data with known schema - Any data will fit in any format
- Read/Write mode - (un)(semi)structured
- ReadOnly mode
Cost Model - Expensive servers - Cheap commodity machines
Fault Tolerance - Failures are rare - Failures are common over
- Recovery mechanisms thousands of machines

- Simple yet efficient fault tolerance

Key Characteristics - Efficiency, optimizations, fine-tuning - Scalability, flexibility, fault tolerance

Cloud Computing

A computing model where any computing infrastructure
can run on the cloud

Hardware & Software are provided as remote services
Elastic: grows and shrinks based on the user’s demand
Example: Amazon EC2

Cloud Computing

