
Hadoop: A Framework for Data-
Intensive Distributed Computing

CS561-Spring 2012
WPI, Mohamed Y. Eltabakh

1

What is Hadoop?
•  Hadoop is a software framework for distributed processing of large datasets

across large clusters of computers

•  Hadoop is open-source implementation for Google MapReduce

•  Hadoop is based on a simple programming model called MapReduce

•  Hadoop is based on a simple data model, any data will fit

•  Hadoop framework consists on two main layers
•  Distributed file system (HDFS)
•  Execution engine (MapReduce)

2

Hadoop Infrastructure
• Hadoop is a distributed system like distributed

databases

• However, there are several key differences between
the two infrastructures
•  Data model
•  Computing model
•  Cost model
•  Design objectives

3

How Data Model is Different?

•  Deal with tables and relations
•  Must have a schema for data
•  Data fragmentation & partitioning

4

Distributed Databases

•  Deal with flat files in any format
•  No schema for data
•  Files are divide automatically into

blocks

Hadoop

How Computing Model is Different?

5

Distributed Databases Hadoop

•  Notion of a transaction
•  Transaction properties ACID
•  Distributed transaction

•  Notion of a job divided into tasks
•  Map-Reduce computing model
•  Every task is either a map or reduce

Hadoop: Big Picture

6

Distributed File system

Execution engine

High-level languages

Distributed
light-weight DB

Centralized tool
for coordination

HDFS + MapReduce are enough to have things working

What is Next?
• Hadoop Distributed File System (HDFS)

• MapReduce Layer

• Examples
•  Word Count
•  Join

•  Fault Tolerance in Hadoop

7

HDFS: Hadoop Distributed File System
8

Ø  Single namenode and many datanodes

Ø  Namenode maintains the file system
metadata

Ø  Files are split into fixed sized blocks and
stored on data nodes (Default 64MB)

Ø  Data blocks are replicated for fault
tolerance and fast access (Default is 3)

Ø  Datanodes periodically send heartbeats
to namenode

• HDFS is a master-slave architecture
•  Master: namenode
•  Slaves: datanodes (100s or 1000s of nodes)

HDFS: Data Placement and Replication

• Default placement policy: Where to put a given block?
•  First copy is written to the node creating the file (write affinity)
•  Second copy is written to a data node within the same rack
•  Third copy is written to a data node in a different rack
•  Objectives: load balancing, fast access, fault tolerance

9

Datanodes can be
organized into racks

What is Next?
• Hadoop Distributed File System (HDFS)

• MapReduce Layer

• Examples
•  Word Count
•  Join

•  Fault Tolerance in Hadoop

10

MapReduce: Hadoop Execution Layer

11

•  MapReduce is a master-slave architecture
•  Master: JobTracker
•  Slaves: TaskTrackers (100s or 1000s of tasktrackers)

•  Every datanode is running a tasktracker

Ø  Jobtracker knows everything about submitted jobs

Ø  Divides jobs into tasks and decides where to run
each task

Ø  Continuously communicating with tasktrackers

Ø  Tasktrackers execute tasks (multiple per node)

Ø  Monitors the execution of each task

Ø  Continuously sending feedback to Jobtracker

Hadoop Computing Model
12

•  Two main phases: Map and Reduce
•  Any job is converted into map and reduce tasks
•  Developers need ONLY to implement the Map and Reduce classes

Blocks of the input
file in HDFS

Map tasks (one
for each block)

Reduce tasks

Shuffling and
Sorting

Output is written
to HDFS

Data Flow

Hadoop Computing Model (Cont’d)

13

•  Mapper and Reducers consume and produce (Key, Value) pairs
•  Users define the data type of the Key and Value

•  Shuffling & Sorting phase:
•  Map output is shuffled such that all same-key records go to the same reducer
•  Each reducer may receive multiple key sets
•  Each reducer sorts its records to group similar keys, then process each group

What is Next?
• Hadoop Distributed File System (HDFS)

• MapReduce Layer

• Examples
•  Word Count
•  Join

•  Fault Tolerance in Hadoop

14

Map
Tasks

Reduce
Tasks

Word Count
•  Job: Count the occurrences of each word in a data set

15

Reduce phase is optional: Jobs can be MapOnly

Joining Two Large Datasets
16

Dataset A Dataset B Different join keys

HDFS stores data blocks
(Replicas are not shown)

Mapper
M+N

Mapper
2

Mapper
1

Mapper
3

- Each mapper processes one
block (split)

- Each mapper produces the
join key and the record pairs

Reducer 1

Reducer 2

Reducer N

 Reducers perform the
actual join

Shuffling and Sorting Phase
Shuffling and sorting over
the network

Joining Large Dataset (A) with Small Dataset (B)
17

Dataset A Dataset B Different join keys

HDFS stores data blocks
(Replicas are not shown)

Mapper
N

Mapper
1

Mapper
2

•  Every map task processes one block from A and the entire B
•  Every map task performs the join (MapOnly job)
•  Avoid the shuffling and reduce expensive phases

What is Next?
• Hadoop Distributed File System (HDFS)

• MapReduce Layer

• Examples
•  Word Count
•  Join

•  Fault Tolerance in Hadoop

18

Hadoop Fault Tolerance
•  Intermediate data between mappers and reducers are

materialized to simple & straightforward fault tolerance

•  What if a task fails (map or reduce)?
•  Tasktracker detects the failure
•  Sends message to the jobtracker
•  Jobtracker re-schedules the task

•  What if a datanode fails?
•  Both namenode and jobtracker detect the failure
•  All tasks on the failed node are re-scheduled
•  Namenode replicates the users’ data to another node

•  What if a namenode or jobtracker fails?
•  The entire cluster is down

19

Intermediate data
(materialized)

Reading/Writing Files
•  Recall: Any data will fit in Hadoop, so how does Hadoop understand/read the data?

•  User-pluggable class “Input Format”
•  Input formats know how to parse and read the data (convert byte stream to records)
•  Each record is then passed to the mapper for processing

•  Hadoop provides built-in Input Formats for reading text & sequence files

20

Map code

Input Format

The same for writing à
 “Output Formats”

Input Formats can do a
lot of magic to change

the job behavior

Back to Joining Large & Small Datasets
21

Dataset A Dataset B Different join keys

HDFS stores data blocks
(Replicas are not shown)

Mapper
N

Mapper
1

Mapper
2

•  Every map task processes one block from A and the entire B

•  How does a single mapper reads multiple splits (from different datasets)?
•  Customized input formats

Using Hadoop

•  Java language

• High-Level Languages
•  Hive (Facebook)
•  Pig (Yahoo)
•  Jaql (IBM)

22

Java Code Example
23

Job configuration

Map class

Reduce class

Import Hadoop libs

Hive Language
• High-level language on top of Hadoop

•  Like SQL on top of DBMSs

• Support structured data, e.g., creating tables, as well as
extensibility for un-structured data

24

Create Table user (userID int,
 age int,
 gender char)
Row Format Delimited Fields;

Load Data Local Inpath ‘/user/
local/users.txt’ into Table user;

From Hive To MapReduce

25

Hive: Group By

26

Summary
•  Hadoop is a distributed systems for processing large-scale datasets

•  Scales to thousands of nodes and petabytes of data

•  Two main layers
•  HDFS: Distributed file system(NameNode is centralized)
•  MapReduce: Execution engine (JobTracker is centralized)

•  Simple data model, any format will fit
•  At query time, specify how to read (write) the data using input (output) formats

•  Simple computation model based on Map-Reduce phases
•  Very efficient in aggregation and joins

•  Higher-level Languages on top of Hadoop
•  Hive, Jaql, Pig

27

Summary: Hadoop vs. Other Systems
Distributed Databases Hadoop

Computing Model -  Notion of transactions
-  Transaction is the unit of work
-  ACID properties, Concurrency control

-  Notion of jobs
-  Job is the unit of work
-  No concurrency control

Data Model -  Structured data with known schema
-  Read/Write mode

-  Any data will fit in any format
-  (un)(semi)structured
-  ReadOnly mode

Cost Model -  Expensive servers -  Cheap commodity machines

Fault Tolerance -  Failures are rare
-  Recovery mechanisms

-  Failures are common over
thousands of machines

-  Simple yet efficient fault tolerance

Key Characteristics - Efficiency, optimizations, fine-tuning - Scalability, flexibility, fault tolerance

•  Cloud Computing
•  A computing model where any computing infrastructure

can run on the cloud
•  Hardware & Software are provided as remote services
•  Elastic: grows and shrinks based on the user’s demand
•  Example: Amazon EC2

28

