Distributed Databases

L2

. % CENTER FOR ADVANCED COMPUTING RESEARCH
. 5

D Julian Buinn
Center for Advanced Computing Research
Calvechn

BasSed enmeateralNpIreVId e oy
JimiGray (IViNereseiit); iHienz Stecineer (CERIN)RagnU
RemakAsSiIani\\iISconsi)

Outline

=~ Introduction to Database
Sy/Sstems

= Distributed Databases

- Distriputed Systems

= Distributed Databases for
PIV/SIES

Part |

Introduction to Database
SYSLEMS

Julian Bunn

Cdlifornia Institute of Technology

What Is a Database?

A large, integrated collection ofi data

Entities (things) and Relationships
(connections)

Objects and Assoclations/References

A Database Management System
(DBMS) Is a software package designed
to store and manage Datalbases

“Traditional™ (ER) Datalbases and
“Object” Databases

Wiy Use a DBEIVIS?

[Data Indepencdence

Efficient Access

Reduced Application Development Time
Data Integrity

Data Security

Data Analysis Tools

Uniform Data Administration
Concurrent Access

Automatic Parallelism

Recovery from crashes

J.J.Bunn, Distributed Databases, 2001

25
5
S5
25
5
25
2S5
25
5
5

Cutting Ecge Dataldases

scientific Applications

Digital Libraries, Interactive Video,
Human Genome project, Particle
Physics Experiments, Nationall Digital
Observatories, Earth Images

Commercial Wel Systems
Data Mining / Data \Warehouse

Simple data but very high transaction
rate and enormous volume (e.g. click
through)

J.J.Bunn, Distributed Databases, 2001

Data Models

Data Model: A Collection of Concepts
fior Describing Data

Schema: A Set of Descriptions of a
Particular Collection of Data, In the
context of the Data Model

Relational Model:

~ E.Q. A Lecture Is attended by zero or more
students

Object Model:

~ E.9. A Database Lecture Innerits attriputes
firom a general Lecture

J.J.Bunn, Distributed Databases, 2001

Data Independence

- Applications Iinsulated from how data
In the Database Is structured and stored

~ Logical Data Independence: Protection
firom changes In the logical structure of
the data

= Physical Data Independence: Protection
firom changes In the physical structure of
the data

Concurrency: Control

- Good DBMS performance relies on
allowing concurrent access to the data
by more than one client

DBMS ensures that interleaved actions
coming from different clients do not
cause inconsistency In the data

~ E.Q. two simultaneous hookings for the
same airplane seat

Each client Is unaware of how: many.
other clients are using the DBMS

J.J.Bunn, Distributed Databases, 2001

Transactions

- A Transaction Is an atomic seguence of
actions in the Database (reads and
Writes)

Each Transaction has to be executed
completely, and must leave the
Database 1n a consistent state

~ The definition of “consistent” is ultimately the client’s responsibility!
It the Transaction fails or aborts
midway, then the Database Is “rolled
back’ to Its initial consistent state
(When the Transaction began).

J.J.Bunn, Distributed Databases, 2001

\What Is A Transaction?

-~ Programmer’s view:
= Bracket a collection of actions

-~ A simple faillure model
~ Only two outcomes:

BEegini)
action
action
action
action

Commit()

SUCCESS!

Begini) Begini()
action action
action action

action action .
Rollback() = Fail!
Rellhack()

EFalliure!

buted Databases, 2001

ACID

Atemic: all'er nething

Consistent: state: transfiermation
|Selated; ne CencUEncy.

anoemalies

Durable: committed transaction
effects persist

Wiy Bother: Atomicity?

~ RPC semantics:
- At most ence: try one time m——— ?

f?
- At least once: keep trying e

'till acknowledged m———)

= Exactly once: keep trying i -
'till acknowledged and server — n—g——

discards duplicate reguests —~f—
i -

Wiy Bother: Atomicity?

~ Example: insert record In file
- At Most once: time-out means “mayhe’

- At least ence: retry may get “duplicate” error
or retry may do second Insert

- Exactly ence: you do not have toe Worry

~ \What If operation involves
~ Insert severall records?

- Send several messages?
~ Want ALL or NOTHING for group of actions

T . = i Y e L A Tl -AI_L—’—' /w
= s | ’ h | e

..'-. AT "r- N % ,'_a__ %) _ Ly _ _I.... __Ey
oot ' R Bl A e T T [i Y
! i Lt ' ¥ 4 o T e A et R e St

s - &
A r r B} a Ay r il A = .y ¥
1 -',, s 2 - ’, e R

J.J.Bunn, Distributed Databases, 2001

Wiy Bether: Consistency.

- Begin-Commit brackets a set off operations

=~ YOU can violate consistency Inside brackets
~ Debit but net credit (destroys money)
- Delete oldi file before create new file 1n a copy.
~ Print decument before delete from spool gueue

-~ Begin and commit are points of consistency.

State transformations
new state under construction

J.J.Bunn, Distributed Databases, 2001

Wiy Bether: Isolation

~ Running programs concurrently
On same data can create
concurrency anomalies

~ IIhe shared checking account example

Begin()
read BAL Begin()

add lo 9 Bal = 100
: Bal = 100 jesi] (Bl
write BAL - Subtract 30

Commit() [Bal-110 write BAL

<®a=®_] Commit()

-~ Programming Is hard enough without
having to worry about concurrency.

J.J.Bunn, Distributed Databases, 2001

|solation

~ |t Is as though proegrams run ene at a time
-~ N concurrency anemalies
- System automatically protects applications

= lLocking (DB2, Informix, Microsoft® SQL Server™, Sybase...)
- Versioned datanases (Oracle, Interaase...)

Begin()
read BAL
add 10 T—Bal =100
write BAL Begin()

Commit() [Bal = > @1[1> rSeuaIStrBa'cA:\thc
write BAL
<8 =80_] Commit()

J.J.Bunn, Distributed Databases, 2001

Why: Bother: Durability

Once a transaction commits,
want effects to survive failures

Fault tolerance:
old master-new master won’t work:

- Can’'t do daily dumjps:
would lose recent work

~ Want “continuous™ dumjps

Redo “lost” transactions
IN case of fallure

~ Resend unacknowledged messages

J.J.Bunn, Distributed Databases, 2001

Wiy ACIDr Eor
Client/Server And Distributed

~ ACID Is important for centralized systems
~ Faillures in centralized systenas are simpler
~ In distributed systems:

~ More and more-independent failures
- ACIDIIs harder to Implement

~ That makes it even MORE IMPORTANT

= Simple failure model
= Simple repair model

J.J.Bunn, Distributed Databases, 2001

ACID Generalizations

-~ Jaxonomy of actions
~Unprotected: not undone or redone
= llemp files
~ Iransactional: can be undone before commit

~[Database and message operations
~ Real: cannot be undone

~Drll a hele in'a piece of metal,
print a check

= Nested transactions: subtransactions
- Work flow: long-lived transactions

J.J.Bunn, Distributed Databases, 2001

Seheduling Transactions

The DBMS has to take care of a set of
Transactions that arrive concurrently:

It converts the concurrent Transaction
set INto a new set that can be executed
sequentially

It ensures that, before reading or
Writing an Object, each Transaction
walts for a Lock on the Object

Each Transaction releases all 1ts Locks
when finished

-~ (Strict Two-Phase-Locking Protocol)

J.J.Bunn, Distributed Databases, 2001

Concurrency: Control
FECKING
IHow! to autematically’ prevent

concurrency bugs?

Serlalization theorem:

= I you lock alllyou touch and held te conmmit:
o Bugs

=~ i you do not fellow: these rules, you may: see bugs

Automatic Locking:
~ Set automatically: (well-fermed)
- Released at commit/reliback (tWwo-phase lecking)

Greater concurrency for locks:
- Granularity: ejects or contalners or server
- IMlede: shared or exclusive or...

buted Databases, 2001

Reduced Isolation Levels

= It Is possible to lock less and risk fuzzy data

~ Example: want statistical summary of DB
~ BUt do not want to leck whole database

~ Reduced levels:
-~ Repeatable Read: may see fuzzy inserts/delete
= But will serialize allf updates
-~ Read Committed: see only committed data
~ Read Uncommiitted: may see uncommiitted updates

J.J.Bunn, Distributed Databases, 2001

ENSUNG Ateomicity

The DBMS ensures the atomicity of a
Transaction, even If the system crashes in the
middle of It

In other words all of the Transaction; Is
applied to the [Database, or none ofi It IS
IHOW?

=~ Keep a log/histery of all actions carried out en
the Database

- Befiore making a change, put the log for the
change semewnere “safe”

= After a crash, effects of partially executed
transactions are undone using the log

J.J.Bunn, Distributed Databases, 2001

PDO/UNDO/REDO

- Each action generates a Iog record

~ Has a REDO action

\What Does A Log Record
Lok Like?

~ lLog record has
~ Header (transaction ID; timestamp...)
= ltem 1D

= Old value (? Log ? O
~ New! value

For messages: just message text
and seguence #

For records: old and new: value
on update

Keep records small

J.J.Bunn, Distributed Databases, 2001

Transaction Is A Seguence
Of Actions

~ Each action changes state
-~ Changes datahase
= Sends messages

- Operates a display/printer/drill press
-~ Leaves a log trail

J.J.Bunn, Distributed Databases, 2001

Transaction UNDO! s Easy

- Read log backwards
~ UNDO one step at a time

- Can go half-way back to
get nested transactions

Duranility: Protecting e Log

~ When transaction commits
=~ PUt Its leg In a durable place (duplexed disk)
~Need log to redo transaction

IRl case of fallure
- System failure: lost
IN-memory: updates OOO

: f
. Media failure (lost disk) Log (UM
= Ihis makes transaction durable

= Log Is sequential file
- Converts random IO te single sequential 10
=~ See NTES or newer UNIX file systems

J.J.Bunn, Distributed Databases, 2001

Recovery After System: Eailure

- During normal processing,
Write checkpoints on non-volatile storage

-~ \WWheni recovering from a system failure...

~ return to the checkpoint state
=~ Reapply log of all committed transactions
- Force-at-commiit 1nsures log will survive restart

= IThen UNDO all uncommitted transactions

J.J.Bunn, Distributed Databases, 2001

ldempotence
IDEIIRENVIUANZIIEIE

= What If fail during restart?
~ REDO many times

~ What If new state not around at restart?
~ UNIDO something not done

ldempotence
IDEIIRENVIUANZIIEIE

~ Solution: make E(F(x))=FE(x) (idempotence)
= Discard auplicates

- IVlessage seguence NUMIBEers
10 discard duplicates

- Use seguence numioers on pages te detect state
~ (Or) make operations Idempotent
= Move to position X, write value V to byte B...

J.J.Bunn, Distributed Databases, 2001

Fhe lLog: Viore [Detail

- Actions recorded In the Log
- IIransaction writes an Object

- store In the Log: Transaction ldentifier,
Object Identifier, new value and old
value

~ I'his must happen Before actually.
wiriting the Object!

~ Transaction commits or aborts

- Duplicate Log on “stable™ storage

- Log records chained by Transaction
ldentifier: easy to undo a Transaction

J.J.Bunn, Distributed Databases, 2001

Structure of a Database

= Typical DBMSIhas a layereadl architecture

Query Optimisation & Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

J.J.Bunn, Distributed Databases, 2001

Database Administration

Design Logical/Physicall Schema
Handle Security and Authentication

Ensure Data Availability, Crash
REcovery

Tune Database as needs and workload
evolves

summany/

Databases are used to maintain and
guery large datasets

DBMS benefits include recovery from
crashes, concurrent access, data
Integrity and security, quick application

development
Abstraction ensures independence
ACID

Increasingly Important (and Big) In
Scientific and Commercial Enterprises

J.J.Bunn, Distributed Databases, 2001

Part 2

Distributed Databases

Julian Bunn

Cdlifornia Institute of Technology

Distributed Databases

~ Data are stored at several locations

- Each managed by a DBIMS that can run
autonomously.

- ldeally, location of data IS unknown to
client

= Distributed Data Independence

- Distributed Transactions are supported

- Clients can write Transactions regardless
of wWhere the afifectedl data are located

- Distributed Transaction Ateomicity
~ Hard, and In some cases undesirable

~ E.g. need to avoid overhead of ensuring location transparency
J.J.Bunn, Distributed Databases, 2001

Types of Distributed
Database

~ Homogeneous: Every site runs the
same type ofi DBMS

- Heterogeneous: Different sites run
different DBMS (maylbe even RDBMS

and ODBIMS)

Distributed DBMS

Architectures
= Client-Servers

- Client sends query to each datalbase server
In the distributed system

- Client cacles and accumulates responses

- Collaborating Server
= Client sends guery to “nearest” Server
= SErVer executes guery locally

- Server sends guery to other Servers, as
required

= Server sends response to Client

J.J.Bunn, Distributed Databases, 2001

SterNng the Distrputed Data

~ In fragments at each site
= Split the data up
- Each site stores one or more fragments

~ In complete replicas at each site

- Eachy site stores a replica ofi the complete
data

~ A mixture of fragments and replicas

- Each site stores some replicas and/or
fragments or the data

Partitioned Data
Break file inter disjeint groups

_ : Orders
~ Exploit data access locality. N.A. SA. EuropeAsia

- Put data near consunier I N N .

Better availanility

Owner controls data

~ lLess network traffic ;
- Better response time
=]
z5
autenemy

~ Spread Loaad

- Oata or traffic may exceed
single store

J.J.Bunn, Distributed Databases, 2001

How to Partition Data?

How to Partition
~ by attribute or

- random or N.A. SA. EuropeAsa

~ Dy source or I I I
=~ by use

Problem: to find It must have
- Directory (replicated) or
~ Algorithm

Encourages
attribute-based partitioning

J.J.Bunn, Distributed Databases, 2001

Replicated Data
Place fragment at many: sites

Pros:

£ Impreves availability

+ Disconnected! (mobile) operation
+ Distributes load

+ Reads are cheaper

Cons:
~ N times more updates
= IN times more storage

Placement strategjes:

- Dynamic: cache on demand
= Static: place specific

J.J.Bunn, Distributed Databases, 2001

Eragnentation

= Horizontall —
~ E.g. rows of the tabler make ujp one fragment

=~ \Vertical —
-~ E.g. columns of the table make up one firagment

J.J.Bunn, Distributed Databases, 2001

Replication

- Make synchronised or unsynchronised
copies of data at servers

2 Synchrrenised: data are always current,
Updates are constantly shipped between
ieplicas

-~ Unsynchronised: good for read-only data
= Increases availability of data
- Makes guery execution faster

Distributed Catalogue
Mianagement

Need to know where data are distributed In
the system

At each site, need to name: each replica of

each data fragment
~ ‘Local name™, “Birth Place™

Siter Catalogue:
~ Descrines all fragmenits and replicas at the site
- Keeps track of replicas of relations at the site

~ To find a relation, lock up Birth site’s catalogue:
“Birth Place™ site mever changes, even i relation

IS moved

J.J.Bunn, Distributed Databases, 2001

Replication Catalogue

\WWhich objects are being replicated
\Where objects are being replicated to
IHow! updates are propagated

Catalogue Is a set ofi tables that can be
packed up, and recovered (as any.
other table)

These tables are themselves replicated
to each replication site

=~ No single point of failure in the
Distributed Datalbase

J.J.Bunn, Distributed Databases, 2001

Configurations

Single Master with multiple read-only snapshot sites
Multiple Viasters

single Master with multiple updatable snapshot sites
IVIaster: at record-levell granularity

Hybrids of the albove

== N===

Table Replication Using Snapshots

J.J.Bunn, Distributed Databases, 2001

Distriputed QUEres

|lamabad Geneva

SELECT AVG(E.Energy) FROM Events E
WIHHERE E.particles = 3 AND E.particles < 7

Replicated: Copies of the complete Event
table at Geneva and at Islamalaad

Choice of where to execute guery.

= Based on local costs, network costs, remote
capacity/, ete.

J.J.Bunn, Distributed Databases, 2001

Distributed Queries (contd.)

-~ SELECT AVG(E.Energy) FROM Events E
WHERE E.particles = 3 AND
E.particles < 7

~ Row-wise fragmented:

Particles < 5 at Geneva, Particles = 4 at
Islamabad

~ Need to compute SUMI(E.Energy) and
COUNT(E.Eneray) at both sites

~ I WIHERE clause hadl E.particles = 4 then only.
need to compute at Islamabad

J.J.Bunn, Distributed Databases, 2001

Distributed Queries (contd.)

~ SELECT AVG(E.Energy) FROM Events E WHERE
E.particles = 8 AND: E.particles < 7

~ Column-wise Fragmented:

ID;, Energy and Event# Columns at Geneva, ID and
remaining Columns at Islamaladk:

~ Need te joinon ID
~ Select IDs satisiying Particles constiaint at Islamalaad
= SUMI((Eneray) and Count(Eneray) fer these lDs at Geneva

J.J.Bunn, Distributed Databases, 2001

Joins

Joins are used to compare or combine
relations (rows) from two or more
tables, when the relations share a
common attribute value

Simple approach: for every relation in
the first table “S™, loop over all

relations Iin the other table “R”, and
see If the attributes match

N-way Joins are evaluated as a series of
2-\Way/ Jolns

Join Algorithms are a continuing topic
of intense research in Computer
SCIence

J.J.Bunn, Distributed Databases, 2001

Jolnr Algertnms

Need to run In memory for best
pPerformance

Nested-Loops: efficient only it “R* very small
(can be stored in memory)

iHash-Join: Build an in-memory hashi table of
Rt ﬁhen loop over “S” hashing te check for
matc

Hybrid Hash-Join: When “R* hash Is too big
1o’ fit 1 memory, split join into partitions

Merge-Join: Used when “R* and “S™ are
already sorted onithe 10|n attribute, simply.
merging them;in parallel

Special versions of Join Algerithms needed
fior Distributed Database guery: execution!

J.J.Bunn, Distributed Databases, 2001

Distributed QUery.
Optimisation

~ Cost-based:
- Consider all “plans™

~ Pick cheapest: include communication
COsts

~ Need to use distributed join methods

= Slte that receives query constructs
Global Plan, hints for local plans

- Local plans may be changed: at each; site

J.J.Bunn, Distributed Databases, 2001

Replication

= synchronous: Alll data that have been
changed must be propagated before
the Transaction commits

- Asynchronous: Changed data are
periodically sent
- Replicas may go out of sync.

= Clients must be aware of this

Synchronous Replication
Costs

- Before an update Transaction can
commit, It obtains locks on all
modified copies

= Sends lock reguests to remote sites, holds
locks

= If links or remote sites fail, Transaction
cannhot commit until links/sites restored

~ Even without failure, commit protocol Is
complex, and invelves many messages

J.J.Bunn, Distributed Databases, 2001

Asynchronous Replication

= Allows Transaction to commit before
all copies have been modified

~ ITwo methods:
=~ Primary Site

= Peer-to-Peer

Primany. Site Replication

-~ One copy designated as “Master™

= Published to other sites who subscribe to
“Secondary” copies

- Changes propagated to “Secondary”
CopIes

- [Done In twao steps:

- Capture changes made by committed
Transactions

- Apply these changes

Fhe Capture Step

-~ Procedural: A procedure, autonmatically:
Invoked, does the capture (takes a
snapshot)

-~ lLog-based: the log Is used to generate a
Change Data Table

- Better (cheaper and faster) but relies on
proprietary log details

The Apply Step

- T'he Secondary site periodically obtains
fromi the Primary site a shapshot or
changes to the Change Data Table

= Updates Its copy.

- Period can be timer-based or defined by
the user/application

Log-based capture with continuous
Apply minimises delays in propagating
changes

Peer b keer Replication

More than one copy can be “IMaster™

Changes are somehow propagated to
other copies

Conflicting changes must be resolved

So best when conflicts do not or
cannot arise:

- Each “Master” owns a disjoint fragment
Or copy.

-~ Update permission only granted to one
“Master” at a time

J.J.Bunn, Distributed Databases, 2001

Replication Examiples

Master copy, many slave copies (SQL Server)
~ always knew: the correct value (master)
- Change propagation can e
- transactionai
s SeON as possible

- periodic — \&V
. on demand >

Symmetric, and anytime (Access)

= allews mohile (disceonnected) Updates

=~ Updates propagated ASAP; periodic, on demand
~ non-serializable

= colliding updates must e reconciled.

~ hard to knew “real” value

J.J.Bunn, Distributed Databases, 2001

Data Warenousing and
Replication

-~ Build giant “warehouses” of data from many
sites

- Enable complex decision sUppPort gUEries GVer
data fifrem: acress an erganisation

~ Warehouses can be seen as an instance of
asynchronous replication

= Source data Is typically contrelled by different
DBIVIS: emphasis on “cleaning™ data by,
removing mismatches wille creating replicas

=~ Procedural Capture and application Apply
work best for this environment

J.J.Bunn, Distributed Databases, 2001

Distributea Locking

~ How to manage Locks across many
sites?
= Centrally: one site does all locking
=~ Vulnerable to single site failure

= Primary Copy: all locking for an object
done at the primary copy. site for the
object

- Reading reguires access to locking site
as well as site which stores object

= Fully Distributed: locking for a copy done
at site where the copy Is stored

- Locks at allf sites while writing an
object

J.J.Bunn, Distributed Databases, 2001

Distributed Deadlock
Detection

Eachi site maintains a locall “walts-for” graph
Global deadlock might occur even If local
graphs contain no cycles

~ E.g. Site' A holds lock on X, walits for leck on Y
= Slte B helds lock on Y, waits for lock on X

Three solutions:
- Centralisedl (send all locall graphs te ene site)

= Hierarchical (erganise sites Intoe hierarchy and
send local grapnis te parent)

=~ Tmeout (anvort Transaction lif It waits too leng)

J.J.Bunn, Distributed Databases, 2001

Distributed Recovery.

Links and Remote Sites may crash/fail

If sub-transactions of a Transaction
execute at different sites, all or none
must commit

Need a commit protocol to achieve
this

Solution: Maintain a Log at each site of
commit protocol actions

= TwWo-Phase Commit

Two Hase Commit

= Slte Which originates Transaction Is coordinator,
other sites Involved In Transaction are subordinates

= \When the Tfransaction neeas to: Commit:
-~ Coordinater sends “prepare” message: toe suberdinates

= Suboerdinates each ferce-Writes anialort or prepare lLog
record, and sends “yes” or “ne’ message: tor Coordinator

[if Coerdinator gets Unanimous “yes™ MEessages, fiorCE-WIites
a commit Log record, and sends “commit™ message to all
sulboerdinates

Otnenwise, force-Wirites aniaborit Log| record, and sends
“abert” message: te all sukhoerdinates

- Suberdinates force-wiite abort/cemmit Log recerd
accordingly, then sendlan “ack™ message o Coordinator

Coordinater Wiites end Log| record aiter receving all acks

J.J.Bunn, Distributed Databases, 2001

Notes on Two Hase
Commit (ZRC)

First: voting, Second: termination — both
Initiated by Coordinator

Any site can decide to albort the Transaction

Every message Is recorded In the local Log by
the sender to ensure It survives failures

All Commit Protocol log records for a
Transaction contain the Transaction ID and
Coordinator ID. The Coordinator’s
abort/commit record also Includes the Site
IDs of all subordinates

J.J.Bunn, Distributed Databases, 2001

Restart after Site Fallure

~ |t there Is a commit or abort Log record for
Transaction T, but no end record, then must
Undo/redo T
= | the site Is Coordinator for T, then keep sending

commit/abort messages toe Subordinates until
acks received

-~ |f there Is a prepare Log record, but no
commit or abort:

~ [his site Is a Subordinate for T

~ Contact Coordinator to find status of Tr, then
~ Write commit/abort Log record
~ Redo/undo T
- Wiite end! Log recorad

J.J.Bunn, Distributed Databases, 2001

Blocking

= |t Coordinator for Transaction T fails,
then Subordinates who have voted
“yes” cannot decide whether to
commit or abort until Coordinator
fecovers!

~ I Is blocked

=~ Even Ifi all Subordinates are aware of
one another (e.g. via extra information
N “prepare” message) they are blocked

~ Unless one of them voted “no”

J.J.Bunn, Distributed Databases, 2001

Link and Remote Site
Faillures

~ If a Remote Site does not respond
during the Commit Protocol for T

~ E.g. It crashed or the link Is dewn

= Then
= |fi current Site Is Coordinator for 1: abort

~ | Subordinate and not yet voted “yes™:
abort

~ |fi Subordinate andl has voted “yes™, It IS
blocked until Coordinator back online

J.J.Bunn, Distributed Databases, 2001

Observations on 2PC

=~ Ack messages used to let Coordinator
know when it can “forget™ a
Transaction

- Until it receives all acks, It must keep T In
the Transaction Table

If Coordinator fails after sending
“prepare” messages, but before writing
commit/abort Log record, when It
comes back up, It aborts T

It a subtransaction does no updates, Its
commit or abort status Is irrelevant

J.J.Bunn, Distributed Databases, 2001

2PC with Presumed Abort

When Coordinator aborts T, It Undoes T and
[emoVes It firomi the Transaction Tanle
Iimmediately

= Doesn’t wait for “acks’
= “Presumes Abort” Iff T nhot In Transaction Table
~ Names of Subordinates not recorded In abort

Log record
Subordinates do not send “ack’ on abort

i subtransaction does no updates, It
[esponds Lo “prepare” message With
“reader” (Instead of “yes”/”no™)

Coordinator subsequently Ignores “readers

If all Subordinates are “reader”s, then 219,
Phase not reguiread

J.J.Bunn, Distributed Databases, 2001

Replication anadl Partitioning
Compailed

Base case Scaleup
a1l TPS system to a 2 TPS centralized system 25 Central

Scaleup
2X
More WOork

200 Users 2 TPS server

— Partition
Partitioning
Two 1 TPS systems : SCa|eu p
2X
more Work

Replication
Scaleup

AX

more Work

1 TPS server
100 Users 100 Users

“Porter” Agent I@sed
Distributed Database

- Charles Univ, Prague
- Based on “Aglets™ SDK firami 1BV

Porter Control | | I Reguests P
Panel Applet T g

) ﬂ - el sQL Server |
Web Browser ' '
[AgentServer ., GEASBateR
L

= ~],___,. A
e L {Porter ¥\ .-
Dis .>E:.h:_~' 1l : T‘r ~e_-= |'JDBE

Agent Server sqLLng: :\, er |

AgentServer sqL Server |

J.J.Bunn, Distributed Databases, 2001

Part 3

Distributed Systems

CENTER FOR ADVANCED COMPUTING RESEARCH

Julian Bunn

Cdlifornia Institute of Technology

What’s a Distributed
SyStem?

=~ Centralized:

= everything in one place
~ Stand-alone PC or Mainframe

~ Distributed:
= SOIME parts remote

= distri
= distri
= distri

J.J.Bunn, Distributed Databases, 2001

OUtec
OUtec

users
execution

puted data

Wiy Distrinute?
~ No best organization

-~ Organisations constantly swing between

- Centralized: focus, control, econemy
-~ Decentralized: adaptive, responsive, competitive

= \Why distribute?
- lreflect organisation or application structure
~ EMpPOWEr USers / producers
~ Improve service (response / availability)
- distribute load
= use PC technology (economics)

J.J.Bunn, Distributed Databases, 2001

\What
Should Be Distributed?

Users and User

nterface

_ Thin client| £7

- %

Processing =

~ Trim client

Data

=~ Fat client @_—] T

&7 5 ix

L=

Will discuss tradeoffs later

J.J.Bunn, Distributed Databases, 2001

Presentation

workflow

Business
Objects

Database

Transparency.
Il Distributed Systems

- Make distributed system as easy to use and
manage as a centralized system

~ Glve a Single-System Image

- [Locatien trar S|PACINCY-

alle
alle

nide

e fact t
e fact t
fact t

lat o
nat O

nat o

~ Name doesn’t c
_partitioned or moved.

uted Databases, 2001

pject Is remote
pject has moved
pject Is partitioned or replicated

nange I object Is replicated,

Naming The Basics

-~ Objects have
Glehally Unigue: Identifier (GUIDs)

. AdJdr ess
lecation(s) = adadress(es)

Ve

25

= hame(s) g
~- addresses can change

-~ Objects can have many names

~ Names are context dependent:

= (Jimr @ KGB! 22272222727272227231m| @ CIA)
= Many naming systems

~ UNC: \\node\device\dir\dir\dir\ehject

~ Internet: http://node.demain.root/dir/dir/dir/cbject
= LIDAP: ldap://Idap.demain.reot/e=erg,c=US,cn=dil

Jim

James]

J.J.Bunn, Distributed Databases, 2001

Name Servers
Il Distributed Systems

=~ Name servers translate
names + context
10 address (+ GUID)

Name servers are partitioned
(Subtrees of name space)

Name servers replicate root
ofi name tree

IName: servers fern a hierarchy.

Distributed data frem hell:
=~ highrread traffic
= highrrelianiiity: & availaniiity

-~ autenemy.

J.J.Bunn, Distributed Databases, 2001

Autonomy
Il Distributed Systems

Owner of site (or node, or application, or database)
Wants to controll it

I my part Is working,
must be able tor access & manage! It

(reorganize, Upgrade, add user,...)

Autonomy Is ,
. Essential %ﬂ
= Difificult to Implement.

- Conflicts with global consistency.
-~ examples: naming, authentication, admin...

J.J.Bunn, Distributed Databases, 2001

SEcurity
The Basics

Authentication server
subject + Authenticator ==
(Yes + token) | No

Security matrix:

subj ect
~ Who can do what to Whom
~ Access control list is
column of matrix
~ “Who™ Is authenticated |1D

Inia distributed system,

“Who™ and “what™ and “whom’™ are
distributed objects

J.J.Bunn, Distributed Databases, 2001

Per missions

Security
IRl Distributed Systems

Security. demain:
AeAEes Witha shared Security. Server.

Security: domains can have trust relationships:
-~ A trusts B: A “believes” B when It says this is Jim@B

SEcuUlty demains fern a hierarchy.

Delegation: passing authority te a server
when A asks B te do semething (e.g. prnt a file; read a database)
B may need A’s autherity,

Autonemy. requires:
=~ each nede Is an authenticator
~ each nede does own Security checks
Internet Teday:
~ No trust among demains (fire walls, many: passwords)
e oemeznallilUSE DASEC ON digital signatures

Clusters
Fhe ldeal Distripuited System.

~ Cluster Is distributed ~ Clusters use
system BUT single distributed system
_ location techniques for

~ Imanager = load distribution
= Security policy: - storage

- relatively homogeneous = execution
= growtn

~ fault tolerance

~ communications IS
= high bandwidth
= low latency.
~ |low error rate
)

c |

J.J.Bunn, Distributed Databases, 2001

Cluster: Shared \What?

=~ Shared Memory Multiprocessor
= Multiple processors, Gne Memory.

~ all devices are local
= HP\/-class

= Shared Disk Cluster

= an array of nedes
= alllshared common disks
= V[AXcluster + Oracle

= Shared Nothing Cluster

=~ each device local te a neade
~ OWNership may change
-~ Beowulf, Tandem, SP2, Walfpack

J.J.Bunn, Distributed Databases, 2001

Distributed Execution
Fhreacs and IViessages

- IIhread Is Execution unit
(Sofitware analoeg ofi CpUEMEmMOoKY)

=~ Threads execute at a hode

~ lhreads communicate via

-~ Shared memory (local)
=~ Messages (local and remote)

[

threads

messages

o A

shared memory

L

Peer ®© FReer or Client Srver

- Peer-to-Peer Is symmetric:
~ Elther side can send

- Client-server
= client sends reguests
- Server sends respomnses
- simple subset of peer-to-peer

J.J.Bunn, Distributed Databases, 2001

Connection less Or Connected

-~ Connection-less
= reguest contains

= client id
~ client context

~ WOrk reguest

- client authenticated oni each
MEssage

- only asingle respense Message
= e.g. HiIFR, NES v

L

J.J.Bunn, Distributed Databases, 2001

~Connected (sessions)
~open - reguest/reply’ - clese
~client authenticated ence
~Vlessages arrive in erder
~Can send many replies (e.g. FTP)

- Server has client context
(context sensitive)

=~ e.g. Winseck and ODBC
= HTTP adding connections

Remote Procedure Call: The
Key to) transparency.

-~ Object may be
local or remote

Methods on
object work
wherever It IS.

Local iInvocation

Remote Procedure Call: the
Key te transparency.

~ Remote Invocation

y = pObj->f(x);
*.o NCA ‘

Geel! Nice pictures! e

Opject Reguest Broker (ORB)

Orchestrates RPC
Registers Servers

Mianages pools of servers

Connects clients to servers

Does Naming, request-level authorization,
Provides transaction coordination (new. feature)

Old names:
= llransaction Processing Monitor,

~ \WEeD server, Transaction

7 TR Tl A LT o e i o O B o T T e e e R P L T T T O S e i e g T
o A Y Ty e s e Sl PR et = L A e T P T iy L e A
B e T e T e g L iy R e e e R e I e L o o e R e o e e I
S e oy g i o g o e e oty 0 B gl e L e o iy
A T QO sy b Sl T s W A L ey T e T T e N TR S I B) S
& SR 4 R & -+ | "1 w e 0% [& oy - Tl a0 ¢ A il "1 .
2. k s * T ¥ . s e N i & .
$ - i o s - 'y Ap i . r « - ¥ ! o s -
i i ' - S i '
T . ,.. L ': o |" e » i ':. H - o g & L ': o -

J.J.Bunn, Distributed Databases, 2001

Using RPC for Tiransparency.

Partition iransparenecy
=~ Send updates to correct partition

y = pfile->write

e
X

X — un

marshal

PObj->write

Using REC for iransparency

Replication iiansparency.
~ Send updates to EACH node

= pfile->wri

Chient/Server Interactions
Alll can be done with RPC

Request-Response C- S

IESPONSE may. be many: MEeSsages

-

Conversational C: S

server keeps client context S

/
Dispatcher C = Sg

three-tier: complex Gperation at server S

Queued e . T~

de-couples client firem sernver

allews discennected eperation C \i / S

J.JBunn, Distributed Databases, 2001 97

Queued Reguest/Response

=~ llime-decouples client andl server
- llaree Transactions

Almost real time, ASAP processing

Communicate at each other’s convenience
Allows moehile (discennected) eperation

Disk queues survive client & server fallures

‘D — Submit — .
Perform

[Iiminij Response .

Client

J.J.Bunn, Distributed Databases, 2001

Why Queued Processing?

=~ Prioritize reguests
ambulance dispatcher favors high-prierity calls

-~ Manage \Workflows

Order>. @. Ship ’@. Pai{r)

- Deferred processing In mobile apps

-

~ Interface heterogeneous systems

EDI,
MOME: Message-Oriented-Middleware

DAD: Direct Access to Data

J.J.Bunn, Distributed Databases, 2001

Work Distripution Spectrim

Thin

Presentation pys—| # .
and| plug-ins fah | &1 ot S

\Workftlow =t Klow =%

Manages session
& INVoKes ohjects N

’ 8\\
BUSINESS objects
Database % gﬁ%l g&ﬁ

e

Transaction Processing Evelution

to Three Tier

Intelligence migrated te clients
Mainframe Batchi processing caraS

(centralized) ‘/

Dumi terminals &
Remote Jolb Entry

Intelligent terminals
datalase: hackends

Workflow Systems
Object Request Brokers
__ Application Generators

WWeh Evelution te Three Tier
Intelligence migrated! to: clients; (like TP\)&/eb

Character-mode clients,
smart servers

GUI Browsers - Web file servers

GUI Plugins - \Wel dispatchers - CGl

smart clients - \WWel dispatcher (ORB)
PoOoIs of app servers (ISAPI; Viper)
Workflow scripts at client & server

J.J.Bunn, Distributed Databases, 2001

WAIS

ghopher
green screen

M osaic

ver

PC Evolution to Three Tier

Intelligencer migrated_te: seiVer
Stand-alone PC

(centralized) i T

PC + File & print server | 0 reauest =2

— el
message per /O g "

PC + Database server %SQL

il temen.t il

message per SQL statement TSR

PC + App server Qnsmf

message per transaction [i

ActiveX Client, ORB v
ActlveX Server, Xscript [¥

uted Databases, 2001

Fhe Pattern:
Fhree Tier Computing

Clients do presentation, gather Input

Clients do some workflow (Xscript)

Clients send high-level reguests to ORB
(Object Request Broker)

ORB dispatches workflows andl business
objects -- proxies for client, orchestrate
flows & gueues

Server-side workflow: scripts call on
distributed business objects to execute

&

VBscritpt
JavaScrpt

VB or Java
Script Engine

VB Java
RS

X x

VB or JaQaN
Virt Machine

HT TR+
.WCOM
7

IBM

J.J.Bunn, Distributed Databases, 2001

The Three
Tiers

Middleware

Object ORB
TP Monitor

Server Web Server...

Object & Data
server.

S
[i

Legacy
Gateways

5'\, (W
xl

Wiy Did Everyone Go 1o
Fhree ler?

-~ Manageability
= Business rules must be with data
-~ Middleware operations tools

- Performance (scaleability)

== SENVEr resources are precious
~ ORB dispatches requests to server pools

-~ Trechnology & Physics
~ Put Ul precessing near User
= PUt shared data processing near sharead data

J.J.Bunn, Distributed Databases, 2001

Why: Put Business Onjects

att SerVer?
MOM'’s Business Objects

DAD’sRaw Data

Customer comes to store Customer comes to store with list
Takes what he wants Gives list to clerk

Fills out invoice Clerk gets goods, makes invoice
Leaves money for goods Customer pays clerk, gets goods

Easy to build Easy to manage
No clerks Clerks controls access
Encapsulation

J.J.Bunn, Distributed Databases, 2001 107

Wy Server Pools?

Server resources are precious.
Clients have 100x more power tham server.

Pre-allocate everything on server

=~ preallecater memony.

-~ pre-open files

-~ pre-alliocate threads N clientsx N Serversx F files =
- pre-open and authenticate clients NxNXF fileopens!!!

Keep high duty-cycle on objects
(re-use: them)

~ Pool threads, not ene per client
Classic examiple: Pool of
TPC-C benchmark HTTP 4~ @DBC links
2 processes 7,000 Ay =Sy —
< . 7 ‘ e ———
client = |

- everythinglpre-allecated

J.J.Bunn, Distributed Databases, 2001

Classic Mistakes

Thread per terminal
fix: DB server thread pools
fiX: SErVer pools

Process per request (CGl)
fix: ISAPI & NSAPI DLLS

fiX: connection POoIS

Many messages per operation
fix: stored procedures
fix: senver-side objects

= [File open per reguest
fix: cache hot files

J.J.Bunn, Distributed Databases, 2001

Distributed Applications
need Transactions!

- I'ransactions are key to
structuring distributed applications

- ACID properties ease

exception handling

~ Atomic: all or nething

-~ Consistent: state transformation

~ |selated: no concurrency anemalies

- Durable: committed transaction effects persist

Programming & Tiransactions
Fhe Application: View

= YOU Start (e.g. in TransactSQL):
- Begin [Distrbuted] Transaction <name=
~ Perferm actions
- Optional Save Trransaction <name= RollBack
~ Commit or Rellback Commit

= You Inherit a XID

- Caller passes youl a transaction
~ You return or Rellback.
=~ You can Begin /' Commiit sub-trans.

_ RollBack
= YOU can Use save points S

XID

J.J.Bunn, Distributed Databases, 2001 111

Transaction Save Points
Backtracking \Witialn 2 transaction

BEGIN WORK:1

action - Allows app to
action cancel parts of a

SAVE WORK:2

- action transaction prior
SAVE WORK:3 action to commit

action SAVE WORK:5

action action 1 Th'S |S |n mOSt
action SAVE WORK:6 SQL products

SAVE WORK:4 action

action action

ROLLBACK SAVE WORK:7

WORK(2) action action
action action
ROLLBACK SAVE WORK:S8

WORK(7)

action

3.JBunn, Distributed Databases, 2001 COMMIT WORK

Chained Transactions

= Commit of T1 implicitly begins T2.

= Carries context forward to next transaction
= CUKSOIS
~ locks
- Other state

Transaction #1 Transaction #2

Processing Processing

context _ context
established

Nested Transactions

Going Beyend Elatiransactions
Need transactions within transactions
Sub-transactions commit only If root does
Only root commit Is durable.
Subtransactions may rollback

If so, all 1ts subtransactions rollback
Parallel version of nested transactions

Tl/T1
 e®e

J.J.Bunn, Distributed Databases, 2001

\Workflow:

A SEquEence: ofi Tiransactions

Application transactions are multi-step
= order, build, ship & Inveice, reconcile

Each stepiis an ACID unit
Workflow! Is a script describing steps

Workflow systems
= linstantiate the scripts
= Drive the scripts
- Allew guery against scripts

Examples
Manufacturing Work lin Precess (WIP)
QUueued processing
Loan application & approvail
uem o=l @sital admissions. ..

Workflow: Seripts

Workflow: scripts are programs
(Could use VBSerpt or Javascripr)

It step fiails, compensation action handles error
Events, messages, time, other steps cause step.
Workflow controller drives flows

Compensation
A C t i-@‘rmstri buted Databases, 2001

\Workflow and ACID

Workflow Is hot Atomic or Isolated
Results of a step visible to all

Workflow Is Consistent and Durable
Each flow may take hours, weeks, months

Workflow controller
= kKeeps flows moving
~ maintains context (state) for each flow

- provides a guery and operator Interface
e.g.: “What IS the status of Job # 721497

ACID Objects Using ACID: IDBs

Fhe easy way: ter bullaf transactionaill jects

~ Application uses transactional objects
(objects have ACID properties)

- |F object built on tep of ACID objects,
then object is ACID.

~ Example: New, EnQueue, DeQueue x
on tep of SQL

~ SOQL provides ACID dim c as Customer
dim CM as CustomerMgr

SOL

Business Object: Customer
x set C = CM.get(CustID)

Business Object Mgr: CustomerMgr E.credit_limit = 1000

S(* CM.update(C, CustID)
Persistent.Rragramming languages automate this. ==

ACID OBbjects From Bare IVietal

he Hara VWay: ter Bulld Iransactional ©Bjects

- Object Class is a Resource Manager (RM)
Provides ACID objects firom persistent storage
Provides Undo (on roliback)

Provides Redo (on restart or media failure)
Provides Iselation for concurrent ops

Microsoft SQL Server, IBM DB2, Oracle,...
are Resource managers.

Many more coming.
RM implementation technigues described: later

J.J.Bunn, Distributed Databases, 2001

Fransaction Vianager

Transaction Manager (TIM): manages
transaction objects.

~ XD factory.

= tracks them
= coordinates them PP callL.XID) ¥

RM "3
App gets XID from TV %

Transactional RPC

~ passes XID on alli calls
~ manages XID'inheritance

TMI manages commit & rollback

J.J.Bunn, Distributed Databases, 2001

M Thwer Hase Conmit
DEARENVIHINTINILRIENRIVIS

If all use one RM, then all or none commit
If multiple RMs, then need coordination

Standard technigue:
~Marriage: Do you? |l do. | proneunce...Kiss

= ITheater: Ready on the set? Ready! Action! Act

~Salling: Ready about? Ready! Helmrs a-leel
Tack

- Contract law: Escrow agent

Two-phase commit:
~1. Voting phase: can youl do it?
wadesdi=od] VOTE Yes, then commit phase: do it!

Two Hase Commit In Pictures

Transactions managed by TVl

App gets unique ID (XID) from TM at
Begin()

XID passed on Transactional RPC
RMs Enlist when first do work on XID

%eg\(\ ™
+O X

7y

APPcall(.xID..) . XML Sy
Call(.xip, RM?2 /

When App Requests Commit

INWErPHESENCOMImIIRNICLUES
=~ TM tracks all RMs enlisted on an XID

=~ I'M calls enlisted RIMFs Prepared() calllback
= It all vote yes, TM calls RM’s Commit()
= It any vote no, TVl calls RIVI*s Rolllback()

4. JIMidecides Yes,

pProadcasts
4 5, RMs

acknewledge

GG

5 9

1. Application reguests Commit

J.J.Bunn, Distributed Databases, 2001

Iimplementing Fransactions

= Atomicity
= TThe DO/UNDO/REDO protocol
~ ldempotence
~ I\Wo-phase commit

- Durability
- [Duramnle logs
~ Force at commit

- |solation
~ Locking or versioning

Part 4

Distributed Databases for
PRVSICS

Julian Bunn

Cdlifornia Institute of Technology

Distributed Databases In
PRV/SICS

~ Virtual Observatories (e.g. NVO)
- Gravity Wave Data (e.g. LIGO)

- Particle Physics (e.g. LHC Experiments)

Distributed Particle Paysics
Data

- Next Generation of particle physics
experiments are data intensive

~ Acquisition rates ofi 100 M Bytes/second

~ At least One PetaByte (10*> Bytes) of raw.
data per year, per experiment

~ Another PetaByte of reconstructed data
-~ More PetaBytes of simulated data
= Many TreraBytes of Metabata

-~ To be accessed by —2000 physicists
sitting around the globe

J.J.Bunn, Distributed Databases, 2001

An Ocean off Onjects

- Access from anywhere to any object in
an Ocean of many PetaBytes of objects
- Approach:

- Distribute collections of useful objects to
where they will be most used

- Move applications to the collection
locations

= Maintain an up-to-date catalogue of
collection locations

~ Iy to balance the global compute
resources with the task load from: the
global clients

J.J.Bunn, Distributed Databases, 2001

RIDBMS vs. Object Datanase

*Users send requests into the server queue

«all requests must first be serialized through
this queue.

«to achieve seridization and avoid conflicts,
all requests must go through the server queue.

*Once through the queue, the server may be
able to spawn off multiple threads

*DBMS functionality split between the client and server

«allowing computing resources to be used
allowing scalability.
oclients added without slowing down others,

*«ODBMS automatically establishes direct, independent,
parallel communication paths between clients and servers

eservers added to incrementally increase performance

Fine object granularity; without limit.
| poor overall performance

J.J.Bunn, Distributed Databases, 2001

[Designing the Distrputed
[Datanase

Problem; is: how to handle distributed clients
and distrbuted data whilst maximising client
task throughput and' use of resources

Distributed Databases for:
= Iihe physics data

~ IThe metadata

Use middleware that 1s conscious of the
global state of the system:

~ WWhere are the clients?

~ \What data are they asking for?

~ Where are the CPU resources?

-~ \WWhere are the Storage reseurces?

~ How: does the glebal system measure up to It
Wworklead, in the past, now and in the future?

J.J.Bunn, Distributed Databases, 2001

Distributed Databases for
HEP

Replica synchronisation usually based on small
transactions

- But HEP transactions are: large (anad lengklived)

Replication at the Object level desirea
- Ohjectivity DRO! requires dynamic guoerum

-~ pad for unstanble WWAN links
~ S0 too difficult = use file replication
~ E.g. GBMP Suscription methed

Whichi Replica to Select?
- Complex decision tree, invelving
=~ Prevailing WWANIand Systems conditions
-~ Objects that the Query. “teuches” and “neeas:
~ \Where the compute pewer Is
= \Where the replicas are
-~ Existence of previeusly cached datasets

J.J.Bunn, Distributed Databases, 2001

Distributed LHC Databases
Foday.

Application

Request Manager
Globus 10 & Data Conversion

Security
Globus GSI

Replica Manager DB Manager

Data Mover Control Communication
WU-FTP Globus 10

J.J.Bunn, Distributed Databases, 2001

Objectivity tools

25

Architecture Is
loosely coupled,
autenomaous,
Object Databases

File-based
replication with

Globus middleware

Efficient WAN
transport

