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Chapter 20

Distributed

Parallel and
Databases

While many databases sit at a single machine, a database can also be distributed
over:many machines. There are other databases that reside at a single highly
parallel machine. When compnutation is either parallel or distributed, there are
many database-implementation issues that need to be reconsidered.

In this chapter, we first look at'the different kinds of paralle] architectures
that have been uged. On a parallel machine it is important that the most
expensive operations take advantage of parallelism, and for databases, these
operations are the full-relation operations such as join. We then discuss the
map-reduce paradigm for expressing large-scale computations. This formula-
tion of algorithms is especially amenable to execution on large-scale parallel
machines, and it is simple to express important database processes in this man-
THEF. Celiiitos e

Wethen turn to distributed architectures. These include grids and nétworks
of workstations, as well as corporate databases that are distributed around the
world. Now, we must worry not only about exploiting the many available
processors for guery execution, but some database operations become much
harder to perform correctly in a distributed environment: Notable among these
are distributed commitment of transactions and distributed locking.

The extreme case of a distributed architecture is a collection of independent
machines, often called “peer-to-peer” networks, In these networks, even data
lockup becomes problematic. We shall therefore discuss distributed hash tables
and distributed search In peer-to-peer petworks.

20.1 Parallel Algorithms on Relations

Databage operations, frequently being time-consuming and involving a lot of
data, can generally profit from paraliel processing. In this section, we shall
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086 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

review the principal architectures for parallel machines. We then concentrate on
the “shared-nothing” architecture, which appears to be the most cost effective
for database operations,; although it may not be superior for other parallel
applications. There are simple modifications of the standard alporithims for
most relational operations that will exploit parallelism almost perfectly. That
is, the time to complete-an operation on a p-processor machine is about 1 /pof
the time it takes to complete the operation on a uniprocessor.

20.1.1 Models of Parallelism

At the heart of all parallel machines 8 a collection of processors. Often the
number of processors p is large, in the bundreds or thousands. We shall assume
that each processor has its own local cache, which we do not show explicitly
in-our diagrams. In most organizations, each processor also has local memory,
which we do show. Of great importance to database processing is the fact that
along with these processors are many disks, perhaps one or more per processor,
ot in some architectures a large collection of disks accessible to all processors
directly.

Additionally, parallel computers all have some communications facility for
passing information among processors. In our diagrams, we show the com-
munication as if there were a shared bus for all the elements of the machine.
However, in practice a bus cannot interconnect as many processors or other
elements as are found in the largest machines, so the interconnection system
in many architectures is a powerful switch, perhaps augmented by busses that
connect subsets of the processors in local clusters, For example, the processors
in a single rack are typically connected.
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Figure 20.1: A shared-memory machine

We can classify parallel architectures into three broad groups. The most
tightly coupled architectures share their main memory. A less tightly coupled

instructors.coursesmart.com/print?xmlid=013187330X/985&pagestoprint=10 210



1/25M12 CourseSmart - Instructors - Print

User name: Mohamed Eitabakh Book: Database Systems: The Complete Book, Second Edition Page: 987. No part of any book may be reproduced or transmitted by any means
wfit?inqou;: the publisher's prior permission. Use (other than gqualified fair use} In violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent
of the law.

20.1. PARALLEL ALGORITHMS ON RELATIONS 987

architecture shares disk but not memory. Architectures that are often used for
databases do not even share disk: these are called “shared nothing” architec-
tures, although the processors are in fact interconnected and share data through
message passing.

Shared-Memory Machines

I this architecture, illustrated in Fig. 20.1, each processor has access to all the
memory of all the processors. That is, there is a single physical address space
for the entire machine, rather than one address space for each processor. The
clagram of Fig. 20.1 is actually too extreme, suggesting that processors have
no private memory at all. Rather, each processor has some local main memory,
which it typically uses whenever it can. However, it has direct access to the
mernory of other processors when it needs to. Large machines of this class are of
the NUMA (vonuniform memory access) type, meaning that it takes somewhat
more time for a processor to access data in a memory that “belongs” to some
other processor than it does to access its “own” memory, or the memory of
proé¢essors in its local cluster. However, the difference in memory-access times
are not great in current architectures. Rather, all memory sccesses, no matter
where the data is, take much more time than a cache access, 8o the critical issue
is whether or not the data a processor needs is in its own cache.
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Figure 20.2: A shaved-disk machine

Shared-Disk Machines

In this architecture, suggested by Fig. 20.2, every processor has its own memory,
which is not accessible directly from other processors. However, the disks are
accessible from any of the processors through the communication network. Disk
controllers manage the potentially competing requests from dilferent processors.
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083 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

The number of disks and processors need not be identical, as it might appear
from Fig. 20.2.

This architecture today appears in two forms, depénding on the umits of
transfer between. the disks and processors. Disk farms called network afioched
storage {NAS) store and trapsfer files. The alternative, storage area networks
(SAN) transfer disk blocks to and {from the processors.

Shared-WNothing Machines

Here, all processors have their own memory and their own disk or disks, as in
Fig. 20.3. All communication is via the network, from processor to processor.
For example, if one processor P wants to read tuples from the disk of another
processor (), then processor P sends a message to @ asking for the data, Q
obtains the tuples from its disk and ships them over the network in another
message, which is received by P.
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Figure 20.3: A ghared-nothing machine

As we mentioned, the shared-nothing architecture is the most commonly
used architecture for database systems. Shared-nothing machines are relatively
inexpensive to build; one buys racks of commedity machines and connects them
with the network connection that is typically built into the rack. Multiple racks
can be connected by an external network.

But when we design algorithms for these machines we must be aware that
it. is costly to send data from one processor to another. Normally, data must
be sént between processors in a message, which has considerable overhead as-
sociated with it. Both processors must execute a program that supports the
message transfer, and there may be contention or delays associated with the
communication network as well. Typically, the cost of a message can be broken
into a large fixed overhead plus a small amount of tiine per byte transmitted.
Thus, there is a significant advantage to designing a parallel algorithm so that
communications between processors involve large amounts of data sent at once,
For instance, we might buffer several blocks of data at processor P, all bound
for processor . I (} does not need the data immediately, it may be much
more efficient to wait until we have a long message at P and then send it to
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20.1. PARALLEL ALGORITHMS ON RELATIONS 989

(2. Fortunately, the best known parallel algorithins for database operations can
use long messages effectively,

20.1.2 Taple-at-a-Time QOperations in Parallel

Let us begin our discussion of parallel algorithins for a shared-nothing machine
by considering the selection operator. First, we must consider how data is best
stored. As first suggested by Section 13.3.3, # is useful to distribute our data
across as many disks as possible. For convenience, we shall assume there is one
disk per processor. Then if there are p processors, divide any relation s tuples
evenly among the p processor’s disks.

To compute oc(R), we may use each processor to examine the tuples of R
on its own disk. For each, it finds those tuples satisfyving condition € and copies
those to the output. To avoid communication among proeessors, we store those
tuples ¢ in o¢:(R) at the same processor that has ¢ on its disk. Thus, the result
relation oo (R) is divided among the processors, just like R is.

Since oc(K) may be the input relation to another operation, and since we
want to minimize the elapsed time and keep all the processors busy all the
time, we would like () to be divided evenly among the processors, I we
were doing a projection, rather than a selection, then the mumber of tuples in
7 (R) at each processor would be the same as the number of tuples of R at
that processor. Thus, if I¥ is distributed evenly, s0 would be ifs projection.
However, a selection could radically change the distribution of tuples in the
result, compared to the distribution of i,

Example 20.1: Suppose the selection is 7,19 (8}, that is; find all the tuples
of It whose value in the attribute a is 10, Suppose also that we have divided R
according to the value of the attribute . Then all the tuples of B with e = 10
‘are at one processor, and the entire relation ,..14(#) is at one processor. [

To avoid the problem suggested by Example 20.1, we need to think carefully
about the policy for partitioning our stored relations among the processors.
Probahly the best we can do is to use a hash function . that involves all the
components of a tuple in such a way that changing one component of a tuple
t can change h(2) to be any possible bucket number. For example, if we want
B buckets, we might convert each component somehow to an integer between
0 and B - 1, add the integers for each component, divide the result by B, and
take the remainder as the bucket number. It B is also the munber of processors,
then we can associate each processor with a bucket and give that processor the
contents of its bucket.

20.1.3 Parallel Algorithms for Full-Belation Operations

First, let us consider the operation 6{R). I we use a hash function to distribute
the tuples of B as in Seetion 20.1.2, then we shall place duplicate tuples of B at
the same processor. We can produce 8{R) in parallel by applying a standard,
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950 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

uniprocessor algorithin {as in Section 15.4.2 or 15.5.2, e.g.) to the portion of B
at each processor. Likewise, if we use the same hash fonction to distribute the
tuples of both & and 5, then we can take the union, intersection, or difference
of R and S by working in parallel on the portions of B and § at each processor,

However, suppose that K and 5 are not distributed using the same hash
function, and we wish to take their union.* In this case, we ficst must make
copies of all the Tupla‘s of R and § and distribute them dm“(}rcimg to & single
‘hash function A2

In parallel, we. hash the tuples of R and 5 at each processor, using hash
function k. The hashing proceeds as described in Section 15.5.1, but when the
buffer corresponding to-a bucket { at one processor 7 is filled, instead of moving
it to the disk atj, we ship the contents of the buffer to processor i. If we have
room for several blocks per bucket in main memory, then we may wait to fill
several buffers with tuples of bucket i before shipping them to processor i.

Thus, processor 4 receives all the tuples of H and S that belong in bucket .
In the second stage, each processor performs the union of the tuples from R and
S belonging to its bucket. As a result, the relation B U § will be distributed
over all the processors. I hash function A truly randomizes the placement of
tuples in buckets, then we expect appmxumateh ﬂl? sare number of tuples of
R U S to be at each processor,

The operations of intersection and difference may be performed just like
a umion; it does not matter whether these are set or bag versions of these
operations. Morebver:

o To take a join R{X,Y) = 5(V,Z), we hash the tuples of R and § to
a mumber of buckets equal to the number of processors. However, the
hash function 7 we use must depend only on the attributes of ¥, not all
the attributes, so that joining tuples are always sent to the same bucket.
As with union, we ship tuples of bucket ¢ to processor . We may then
perform the join at each processor using any uniprocessor join algorithm.

s To perform grouping and aggregation vz (R), we distribute the tuples of
R using a hash function &y that depends only on the grouping attributes
in list L. I each processor has all the tuples corresponding to one of the
buckets of h, then we can perform the ~;, operation on these tuples locally,
using any uniprocessor «y algorithm.

20.1.4 Performance of Parallel Algorithms

Now, let us consider how the running time of a parallel algorithm on a p-
processor machine compares with the time to execute an algorithm for the

I privciple, this union couid be either a set- or bag-union. But the simple bag-union
techniqize from Section 15.2.3 of copying all the tupies from both arguments works in parallel,
so we probably would net want to use the algordthm described here for a bag-union.

2If the hash function used &o distribute tuples of B or § i3 known, we can use that hash
function for the other and not distribute both relations.
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20.1. PARALLEL ALGORITHMS ON RELATIONS 991

same operation on the same data, using 4 uniprocessor. The total work - disk
F/(¥s aud processor eycles - cannot be smaller for a parallel machine than
for a wniprocessor. However, because there are p processors working with p
disks, we can expect the elapsed, or wall-clock, time to be much smaller for the
multiprocessor than for the uniprocessor.

A unary operation such as o{R) can be completed in 1/pth of the time it
would take to perforin the operation at a single processor, provided relation R
is distributed evenly, as was supposed in Section 20.1.2. The number of disk
[/(s is essentially the same as for a uniprocessor selection. The only difference
is that there will, on average, be p half-full blocks of R, one at each processor,
rather than a single half-full block of £ had we stored all of B on one processor’s
disk.

Now, consider a binary operation, such as join. We use a hash function on
the join attributes that sends each tuple to one of p buckets, where p is the
number of processors. To distribute the tuples belonging to one processor, we
st read sach tuple from disk to memory, compute the hash function, and
ship all tuples except the one out of p tuples that happens to belong to the
bucket at its own processor.

If we are computing B(X.Y) pa S(Y, Z), then we need to do B(R) + B(8)
disk I/0% to read all the tuples of B and S and determine their buckets., We
then must ship ((p — 1)/p)(B(R) + B(S)) blocks of data across the machine’s
internal interconnection network to their proper processors; only the (1/p)th
of the tuples already at the right processor need not be shipped:. The cost of
shipment can be greater or less than the cost of the same number of disk I/0’s
depending on the architecture of the machine. However, we shall assume that
shipmeut across the internal network is significantly cheaper than movement
of data between disk and memory, becanse no physical motion is mvoived in
shipment among processors, while it is for disk 1/0. o

In principle, we might suppose that the receiving processor has to store the
data on its own disk, then execute a local join on the tuples received. For
exarnple, if we used a two-pass sort-join at each processor, a naive parallel

algorithm would use 3(5(}?) + B(S)}/p disk I/O% at each processor, since
the sizes of the relations in each bucket would be approximately B(R)/p and
B(8)/p, and this type of join takes three disk I/ 0% per block ocenpied by each of
the argument relations. To this cost we would add another 2(B(E) + B(S) Nip
disk I/O% per processor, to account for the first read of each tuple and the
storing away of each tuple by the processor receiving the tuple during the hash
and distribution of tuples. We should also add the cost of shipping the data,
but we have elected to consider that cost negligible compared with the cost of
disk I/0O for the same data. _

The above comparison demonstrates the value of the multiprocessor. While
we do more disk I/0 in total —- five disk I/O%s per block of data, rather than
three - the elapsed time, as measured by the number of disk I/0s performed
at each processor has gone down from 3(B(R) + B(S)) to 5(B(R) + B(S)) /p.
a significant win for large p.
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992 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

Biiig Mistake

When using hash-based algorithims to distribute relatious among proces-
sors and to execute operations, as in Example 20.2, we must be careful
not. to overuse one hash function. For instance, suppose we used a hash
function k& to hash the tuples of relations R and S among processors, in
order to take their join. We might be terpted to use h to hash the tu-
ples of 5 locally into buckets as we perform a one-pass hash-join at each
processor. But if we do so, all those tuples will go to the same bucket,
and the main-memory join suggested in Example 20,2 will be extremely
inefficient.”

Moreover, there are ways to improve the speed of the parallel algorithm so
that the total nember of disk I/0% is not greater than what is reguired for a
uniprocessor algorithm. In fact, since we operate on smaller relations at each
processor; we.may be able to use a local join algorithm that uses fewer disk
[/O’s per block of data. For instance, even if R and § were so large that we
need 4 two-pass algorithm on a uniprocessor, we may be-able to use a one-pass
algorithm on (1/p)th of the data. '

We can avoid two disk 1/0% per block if, when we ship a block to the
processor of its bucket, that processor can use the block immediately as part
of its join algorithm. Many algorithms known for join and the other relational
operators allow this use, in which case the parallel algorithm looks just like
& multipass algorithm in which the first pass uses the hashing technique of
Section 15.8.3.

Example 20.2: Consider our running example from Chapter 15 of the join
R(X,Y) ba S(Y, Z), where B and S occupy 1000 and 560 blocks, respectively.
Now, let there be 101 buffers at each processor of a 10-processor machine. Also,
assume that B and 5 are distributed uniformly among these 10 processors.

We begin by hashing each tuple of B and S to one of 10 “buckets,” us-
ing a hash function h that depends only on the join attributes Y. These 10
“buckets” represent the 10 processors, and tuples are shipped to the processor
corresponding to their “bucket.” The total number of disk I/O’s needed to read
the tuples of R and S is 1500, or 150 per processor. Each processor will have
about 15 blocks worth of data for each other processor, so it ships 135 blocks
to the other nine processors. The total communication is thus 1350 blocks.

We shall arrange that the processors ship the tuples of S before the tuples
of R. Since each processor receives about 50 blocks of tuples from 8, it can
store those tuples in a main-memory data structure, using 50 of its 101 buffers.
Then, when processors start sending B-tuples, each one is compared with the
local S-tuples, and any resulting joined tuples are output.

In this way, the only cost of the join is 1500 disk 1/0%. Moreover, the
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20.2. THE MAP-REDUCE PARALLELISM FRAMEWORK 993

clapsed time is primarily the 150 disk I/(’s performed at each processor, plus
the time to ship tuples between processors and perforin the main-memory com-
putations. Note that 150 disk I/0’s is less than 1/10th of the time to perform
the same algorithm on a uniprocessor; we have not only gained because we had
10 processors working for us, but the fact that there are a total of 1010 buffers
among those 10 processors gives us additional efficiency. O

20.1.5 FExercises for Section 20.1

Exercise 20.1.1: Suppose that a disk I/ O takes 100 milliseconds. Let B(R) =
100, so the disk I/Q’s for compiiting oo {R) on a uniprocessor machine will take
about 10 seconds. What is the speedup if this selection is executed on a parallel
machine with p processors, where: (a) p =8 (b) p= 100 (¢) p = 1000.

Exercise 20.1.2: In Example 20.2 we described an algorithm that computed
the join &R p<e & in parallel by first hash-distributing the tuples among the
processors dnd: then performing a one-pass join at the processors. In terms of
B(R) and B{8), the sizes of the relations involved, p {the number of processors),
and M (the number of blocks of main memory at each processor), give the
condition under which this algorithm can be executed successfully.

20.2 'The Map-Reduce Parallelism Framework

Map-reduce is a high-level programming system that allows many important
database processes to beé written simply. The user writes code for two functions,

map and reduce. A master controller divides the input data into chunks, and
assigng different processors to execute the map function on each chunk. Gther
processors, perhaps the same ones, are then assigned to perform the reduce

Tunction on pieces of the output from the map function.

20.2.1 The Storage Model

For the map-reduce framework to malée sense, we should assume a massively
parallel machine, most likely shared-nothing. Typically, the processors are com-
modity computers, mounted in racks with a simple communication network
among the processors on a rank. H there is more than one rack, the racks are
also conrected by a simple network.

Data is assumed stored in files. Typically, the liles are very large compared
with the files found in conventional systems. For example, one file might be all
the tuples of a very large reélation. Or, the file might be a terabyte of “market-
baskets,” as discussed in Section 22.1.4. For another example of a single file,
we shall talk in Section 23.2.2 of the “transition matrix of the Web,” which is
a represemtation of the graph with all Web pages as nodes and hyperlinks as
edges.
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994 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

Files are divided into chunks, which might be complete eylinders of a disk,
and are typically many megabytes. For resiliency, each chunk is replicated
several times, so it will not be lost if the disk holding it crashes.

Map Reduce
S
—n \\‘ e -
Input Cutput
Key~¥Yalue List
Pairs oot =
B e e I

Sort Intermediate
Key-Value
Pairs by Key

Figure 20.4: Execution of map and reduce functions

20.2.2 The Map Function

The outline of what user-defined map and reduce functions do is suggested
in Fig. 20.4. The input is generally thought of as &' set of key-value records,
although in fact the input could be objects of any type.® The function magp is
executed by one or more processes, located at any number of processors. Each
map process is given a chunk of the entire input data on which to work.

The map function is designed to take one key-value pair as inpnt and to
produce a list of key-value pairs as outpnt. However:

e The types of keys and values for the output of the map function need not
bethe same as the types of input keys and values.

e The “keys” that are output from the map function are not true keys in
the database sense. That is, there can be many pairg with the same key
value. However, the key field of ontput pairs plays a special role in the
reduce process to be explained next.

The result of executing all the map processes is a collection of key-value pairs
called the intermediate result. These key-value pairs are the outputs of the map
function applied to every input pair. Each pair appears at the processor that
generated it. Remember that there may be many map processes executing the
same algorithm on a different part of the input file at different processors.

3 Ax we shall see, the ouiput of a map-reduce algorithm is always a set of key-value pairs.
Hince it is usefal in some applications 1o compose 1wo or mere map-redoce operations, it 1
conventional to assume that both input and output are sets of key-valie pairs.

instructors.coursesmart.com/print 7xmlid=013187330X/985&pagestoprint=10 1010



1/25/12 CourseSmarn - instructors - Print

User name: Mohamed Eltabakh Book: Database Systems: The Complete Book, Second Edition Page: 995. Nofart of any book may be reproduced or transmitted by any means
w;thhou;: the publisher's prior permission. Use {other than qualified fair use) in violation of the faw or Terras of Service is prohibited, Viclaters will be prosecuted to the full extent
of the taw,

20.2. THE MAP-REDUCE PARALLELISM FRAMEWORK 995

Example 20.3: We shall consider as an example, consiructing an inverted
index for words in documents, as was discussed in Section 14.1.8. That is, our
input isa collection of documents, and we desire to construct as the final cutput
(not as the cutput of map) a list for each word of the documents that contain
that word at least once. The input is a set of pairs each of whose keys are
document ID’s and whose mia:g&s:.&m the corresponding documents.

The map function takes a pair consisting of a document ID 4 and a document
d. This function scans d character by character; and for each word w it finds,
it emits the pair (w,i). Notice that in the output, the word is the key and
the document ID is the associated value. The output of map for a single ID-
document pair is a list of word-1D pairs. It is not necessary to catch duplicate
words in the document; the elimination of duplicates can be done later, at the
reduce phase. The intermediate result is the collection of all word-TD. pairs
created Trom all the dormments in the input databage, D

20.2.3 The Redure Function

The second user-defined function, reduce, i8 also executed by one or more pro-
cesses, located at any number of processors. The input to reduce is a single
key value from the intermediate result, together with the list of all values that
appear with this key in the intermediate result, Duplicate values are not elim-
inated.

In Fig. 20.4, we suggest that the output of map at each of four processors
is distributed to four processors, each of which will execute reduce for a subset
of the intermediate keys. However, there are a number of ways in which this
distribution conld be managed. For example, Bach map process could leave its
output on its local disk, and a reduce process could retrieve the portion of the
intermediate résult that it needed, over whatever network or bus interconnects
the processors. S

The reduce function itself combines the list of values agsociated with & given
key k. The result is k paired with a value of some type. In many simple cases,
the reduce function is associative and commutative, and the entire list of values
is reduced to a single value of the same type as the list elements. For instance,
if reduce is addition, the result is the some of a list of numbers.

When reduce is associative and commutative, it is possible to speed up the
execution of reduce by starting to apply its operation to the pairs produced by
the map processes, even before they finish. Moreover, if n given map process
produces more than one intermediate pair with the same key, then the reduce
operation can be applied on the spot to combine the pairs, without waiting for
themn to be passed to the reduce process for that key,

Example 20.4: Let us consider the reduce function that lets us complete
Example 20.3 to produce inverted indexes. The intermediate result consists of
pairs of the form (w, [i1,is, ... ,is]), where the §’s are a list of document IDYs,
one for each oceurrence of word w. The reduce function we need takes a list of
ID’s, eliminates duplicates, and sorts the list of unique IDs.
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Notice how this orpganization of the computation makes excellent use of
whatever parallelism is available. The map function works on a single document,
so we could have as many processes and processors as there are documents in
the database. The reduce function works on a single word, 80 we could have as
many processes and processors as there are words in the database. Of course,
it is unlikely that we would use so many processors in practice. O

Example 20.5: Suppose rather than construeting an inverted index, we want
to construet a word count. That is, for each word w that appears at least
once in our database of documents, we want our cutput to have the pair (w, ¢),
where ¢ is the mumber of times w appears among all the documents. The map
function takes an input document, goes through the document character by
character, and each time it encounters another word w, it emits the pair (w, 1).
The intermediate result is a list of pairs (wy,1), (wy,1),.. ..

In this example, the reduce function is addition of integers. That 15, the
input to reduce is a pair (w,[1,1,...,1]}; with a 1 for each occurrence of the
word w. The reduce function sams the U's, producing the count. O

Example 20.6: It is a little trickier to express the join of relations in the
map-reduce framework. In this simple special case, we shall take the natural
join of relations R(A, B) and S{B,C). First; the input to the map function is
key-value pairs (z,%), where i either B or §, and # is a tuple of the relation
named by z. The output is a single pair consisting of the join value B taken
from the tuple  and a pair-consisting of @ (to let us remember which relation
this tuple came from) and the othier component of ¢, either 4 (if » = R) or
C (if ¢ = §). All these records of the form (b, (R,a)) or {5, {S,c)) form the
intermediate result.

The reduce function takes a B-value b, the key, together with a list that
consists of pairs of the form (R,a) or {S,¢). The result of the join will have
as many tuples with B-value b as we can form by pairing an o from an (R, a)
element on the list with a ¢ from an {S,c¢) element on the list. Thus, reduce
must extract from the st all the A-values associated with B and the list of all
C-values associated with S. These are paired in all possible ways, with the &
in the middle to forin a tuple of the result. [

20.2.4 Exercises for Section 20.2

Exercise 20.2.1: Modify Example 20.5 to count the number of documents in
which each word w appears.

Exercise 20.2.2: Express, in the map-reduce framework, the following oper-
ations on relations: (a) o () 7z (¢} Reep § () RUS {e) RN S.
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20.3 Distributed Databases

We shall now consider the elements of distributed database systems. In a dis-
tributed system, there are many, relatively autonomous processors that may
participate in database operations. The difference between a distributed sys-
tern and a shared-nothing parallel systemn is in the assumption about the cost
of communication. Shared-nothing parallel systems usually have a message-
passing cost that is small compared with disk accessés and other costs. In a
distributed system, the processors are typically physically distant, rather than
in the same room. The network connecting processors may have mupch less
capacity than the network in a shared-nothing system.

Distributed databases offer siguificant advantages. Like parallel systems, a
distributed system can use many processors and thereby accelerate the response
to queries. Further, since the processors are widely separated, we can increase
resilience in the face of failures by replicating data at several sites.

On the other hand, distributed processing increases the complexity of every
aspect of a database system, so we need to rethink how even the most basic
components of a DBMS are designed. Since the cost of communicating may
dominate the cost of processing in main memory, a critical issue is how many
messages are sent between sites. In this section we shall introduce the principal
issues, while the next sections concentrate on solutions to two important prob-
lems that come up in distributed databases: distributed commit and distributed
locking.

20.3.1 Distribution of Data

One important reason to distribute data is that the organization is itself dis-
tributed among many sites, and the'gites each have data that is germane pri-
marily to that site. Some examples are:

1. A bapk may have many branches. Eachi branch {or the group of branches
in a given city) will keep a database of accounts maintained at that branch
{or city). Customers can choose to baiik at any bianch, but will normally
bank at “their” branch, where their account. data is stored. The bank
may also have data that is kept in the central office, such as employee
records and policies such as current interest rates. Of course, a backup of
the records at each branch is also stored, probably in a site that is neither
a branch office nor the central office.

2. A chain of department stores may have many individual stores. Each
store {or a group of stores in one ¢ity) has a database of sales at that
store and inventory at that store. There may also be a central office
with data about employees, a chain-wide inventory, data about credit-
card customers, and information about suppliers such as unfilled orders,
and what each is owed. Tn addition, there may be a copy of all the stores’
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sales data in a data warshouse that is used to analyze and predict sales
through ad-hoc queries issued by analysts.

3. A digital library may consist of a consortium of universities that each hold
on-line hooks and other documents. Search at any site will examine the
catalog of documents available at all sites and deliver an electronic copy
of the document to the user if any site holds it.

In some cases, what we might think of logically as a single relation has
been partitioned among many sites. For example, the chain of stores might be
imagined to have a single sales relation, such as

Sales(item, date, price, purchaser)

However, this relation does not exist physically. Rather, it is the union of a
number of relations with the same schema, one at each of the stores in the
chain, These local relations arve called frogments, and the partitioning of a
logical relation into physical fragments is called horizontal decomposition of
the relation Sales. We regard the partition as “horizontal” because we may
visualize a single Sales relation with its tuples separated, by horizontal lines,
into the sets of tuples at each store.

In other situations, a distributed database appears to have partitioned a
relation “vertically,” by decomposing what might be one logical relation into
two or more, each with a subset of the attributes, and with each relation at a
different site. For instance, if we-want to find out which sales at the Boston store
were made to customers who aré more than 90 days in arrears on their credii-
card payments, it would be useful to have a relation {or view) that included the
item, date,.and purchaser information from Sales, along with the date of the
last eredit-card payment by that purchaser. However, in the scenario we are
describing, this relation is decomposed vertically, and we would have to join the
credit-card-customer relation at the central headquarters with the fragment of
Sales at the Boston store.

20.3.2 Distributed Transactions

A consequence of the distribution of data is that a transaction may involve pro-
cesses at several sites. Thus, our model of what a transaction is must change.
No longer is a transaction a piece of code executed by a single processor com-
municating with a single scheduler and a single log manager at a single site.
Rather, a trausaction consists of communicating fransaction components, each
at a different site and commmunicating with the local scheduler and logger. Two
important issues that must thus be looked at anew are:

1. How do we manage the commmit/asbort decision when a transaction is dis-

tributed? What happens if one component of the transaction wants to
abort the whole transaction, while others encountered no problem and
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want to commit? We discuss a technique called “two-phase commit™ in
Section 20.5: it allows the deeision to be made properly and also frequently
allows sites that are up to operate even if some other site{s) have failed.

2. How do we assure serializability of transactions that involve components
at several sites? We look at locking in particular, in Section 206 and
see how local lock tables can be used to support global locks on database
elements and thus support serializability of transactions i a distributed
environment.

20.3.3 Data Replication

One important advantage of a distributed system is the ability to replicate data,
that is, to make copies of the data at different sites. One motivation is that if a
site fails, there may be other sites that can provide the same data that was at
the failed site. A second use is in improving the speed of query answering by
making a copy of needed data available at the sites where qieries are initiated.
For example: SVETEERIE RS

1. A bank may make copies of current interest-rate policy available at eéach
branch, so a query about rates does not have to be sent to the central
office.

2. A chain store may keep copies of information about suppliers at each
store, so loeal requests for information about suppliers (e.g., the manager
ticeds thie phone number of a supplier t6 check on & shipment) can be
handled without sending messages to the central office.

3. A digital library may temporarily cache a copy of a'popular document at
a school where students have been assigned to read the document.

However, there are several problems that must be faced when data is repli-
rated.

a) How do we keep copies identical? In essence, an update to a replicated
data elament becomes a distributed transaction that updates all copies.

b) How do we decide where and how many copies to keep? The more copies,
the more effort is required to update, but the easier queries become. For
example, a relation that is rarely updated might: have copies everywhere
for maximum efficiency, while a freqguently updated relation might have
only one copy and a backup.

¢) What happens when there is a communication failure in the network, and

different copies of the same data have the opportunity to evalve separately
and must then be reconciled when the network reconnects?
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20.3.4 FExercises for Section 20.3

1 Exercise 20.3.1: The following exercise will allow you to address some of
the problems that come up when deciding on a replication strategy for data.
Suppose there is a relation R that is accessed from n sites. The ith site issues
¢ queries about R and u; updates to B per second, for i = 1,2,... ,n. The
cost, of execoting a query if there is a copy of R at the site issuing the query is
¢, while if there is no copy there, and the query must be sent to some remote
site, then the cost is 10c. The cost of executing an update is d for the copy of
R at the issuing site and 10d for every copy of R that is not at the issuing site.
As a funciion of these parameters, how would vou choose, for large n, a set of
sites at” which to replicate R.

20.4 Distributed Query Processing

We now turn to optimizing queries on a network of distributed machines. When
communication among processors is a significant cost, there are some guery
plans that can be more efficient than the ones we developed in Section 20.1 for
processors that could cominunicate locally. Our principal objective is a new
way of computing joins, using the semijoin operator that was infroduced in
Exercise 2.4.8.

20.4,1 The Distributed Join Problem

Suppose we wait to compute R{A, B) pa 5(B,C). However, R and § reside at
different nodes of a network, as suggested in Fig. 20.5. There are two obvious
ways to compute the join.

S(B,L)

Figure 20.5: Joining relations at different nodes of a network

1. Send a copy of R to the site of 5, and compute the join there.
2. Send a copy of 5 to the site of B and compute the join there.

In many situations, either of these methods is fine. However, problems can
arise, such as:

a) What happens if the channel between the sites has low-capacity, e.g., a
phone line or wireless link? Then, the cost of the join is primarily the
time it takes to copy one of the relations, so we need to design our guery
plan to minimize communication.
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b} Even if communication is fast, there may be a better query plan if the
shared attribute B has values that are much smaller than the values of
Aand ¢ For example, B could be an identifier for documerits or videos,
while A and ' are the documents or videos themselves,

20.4.2 Semijoin Reductions

Both these problems can be dealt with using the same type of guery plan, in
which only the relevant part of each relation is shipped to the site of the other.
Recall that the semijoin of relations R(X, ") and S(V, 2), where X, Y, and Z
are sets of atiributes, is RP><S = R pa (7y(S5)). That is, we project § ento the
common attributes, and then take the natural join of that projection with K.
7y (5} is a set-projection, so duplicates are eliminated. It is unusual to take a
natural join where the attributes of one argument are-a subset of the attributes
of the other, but the definition of the join covers this case. The effect is that
RD< 8 contains all those tuples of R that join with at least one tuple of 8. Put
another way, the semijoin B P<S. eliminates the dangling tuples of R.

Having sent 7y(S5) to the site of K, we can compute R P<.S5 there. We
know those tuples of R that are not in B P<YS cannot participate in R og S,
Therefore it is sufficient to send R ©< 5, rather than all of R, to the site of
5 and to compute the join there, This plau is suggested by Fig. 20.6 for the
relations B{(A, B) and S(B,C). Of course there is & symmetric plan where the
roles of R and S are interchanged.

i Ty ()

S(Y,Z2)

RDLE o
Figure 20.6:. Exploiting the semijoin to minimize communication

Whether this semijoin plan, or the plan with R and S interchanged is more
efficient than onie of the obvious plans depends on several factors. First, if the
projection of S onto Y results in 2 relation much smaller than S, then it is
cheaper to send 7wy (S) to the site of A, rather than S itself. ny(9) will be
small compared with S if either or both of the following hold:

1. There are many duplicates to be eliminated; i.e., many tuples of 5 sharve
Y-values.

2. The components for the attributes of Z are large compared with the
components of ¥ e.g., 2 includes attributes whose values are andios,
videos, or documents,

In ordér for the semijoin plan to be superior, we also need to know that the size
of B <5 is smaller than B, That is, B must contain many dangling tuples in
its join with 5.
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20.4.3 Joins of Many Relations

When we want to take the natural join of two relations, only one semijoin is
useful. The same holdsfor an equijoin, since we can act as if the equated pairs of
attributes had the sameé name and treat the equijoin as if it were a natural join.
However, when we take the natural join or equijoin of three or more relations
at different sites, several surprising things happen.

¢ We may need several semijoing to eliminate all the dangling tuples fromn
the relations before shipping them to other sites for joining.

¢ There are sets of relation schemas such that no finite sequence of semijoins
eliminates all dangling tuples.

e It is possible to identify those sets of relation schemas such that there is
a finite way to eliminate dangling tuples by semijoins.

Example 20.7: To see what can go wrong when we take the natural join of
more than two relations, consider R{4, B), S(B, (), and T(C, A). Suppose R
and .8 have exactly the same n tuples: {(1,1), (2,2),...,(nn)}. Thasn—1
tuples: {(1,2), (2,3),....(n—1,n)}. The relations are shown in Fig. 20.7.

A B B o A

1 1 1 1 1 2

2 2 32 2 3

non T n—-1 n
B 5 T

Figure 20.7: Three relations for which elimination of dangling tuples by semi-
jons 15 very slow

Notice that while B and S join to produce the n tuples

{(L 1,1), {2,2,2),... ,(n,n,n)}

none of these tuples can join with any tuple of T'. The reason is that all tuples
of R S agree in their 4 and C components, while the tuples of 1" disagree
in their 4 and ¢ components. That is, R 0o § o T is empty, and all tuples of
each relation are dangling.

However, no one semijoin can eliminate more than one tuple from any re-
lation. For example, .5 B<T eliminates only {(n,n) from 5, because = (T) =
{1,2,...,n — 1}, Similarly, F P<T" eliminates only {1,1) from R, because
m4(T) = {2.3,... ,n}. We can then continue, say, with B <5, which elin-
iates (n,n) from R, and T B< R, which eliminates (n — 1, n) from 7. Now
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we can compute 5 P<T again and eliminate {n — 1,n - 1) from S, and so on.
While we shall not prove it, we in fact need 3n — 1 semijoins to make all three
relations empty. [

Since n in Example 20.7 is arbitrary, we see that for the particular relations
discussed there, no fixed, finite sequence of semijoins is guaranteed to eliminate
all dangling tuples, regardless of the data currently held in the relations. On
the other hand, as we shall see, many typical joing of three or more relations
do hawve fixed, finite sequences of semijoins that are guaranteed to eliminate all
the dangling tuples. We call such a sequence of semijoins a full reducer for the
relations in question.

20.4.4 Acyclic Hypergraphs

Let us assume that we are taking a natural join of several relations, although
as mentioned, we can also handle equijoins by pretending the names of equated
attributes from different relations are the same, and renaming attributes o
make that pretense a reality. H we do, then we can draw a useful picture of
every natural join as a hypergreph, that is a set of nodes with hyperedges that are
sets of nodes. A traditional graph is then a hypergraph all of whose hyperedges
are sets of size two.

The hypergraph for a natural join is formed by creating one node for each
attribite name. Each relation is represented by a hyperedge containing all of
its attributes. I

Figure 20.8: The hypergraph for Example 20.7

Example 20.8: Figure 20.8 is the hypergraph for the three relations from
Example 20.7. The relation R(A, B) is represented by the hyperedge {4,B}; S
is represented by the hyperedge { B, C}, and T is the hyperedge {4, C'}. Notice
that this hypergraph is actually a graph, since the hyperedges are each pairs of
nodes. Also observe that the three hyperedges form a cycle in the graph. As
we shall see, it is this cyclicity that causes there to be no full reducer.
Haowever, the question of when a hypergraph is cyclic has a somewhat unin-
tuitive answer. In Fig. 20.9 is another hypergraph, which could be used, for in-
stance, to repregent the join of the relations R{A, E, F), 5(A4,B,C), T(C. D, E),
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and U{A,C, E}. This hypergraph is a true hypergraph, since it has hyperedges
with more than two nodes. It also happens to be an “acyclic” hypergraph, even
though it appears to have cycles. 0O

Figure 20.9: An acyclic hypergraph

To define acyclic hypergraphs correctly, and thus get the condition under
which a full reducer exists, we first need the notion of an *ear” in a hyper-
graph. A hyperedge H is an enar if there is some other hyperedge G in the same
hypergraph such that every node of H is either:

1. Found only in H, or

2. Also found It &G

We shall say that G consumes H, for a reason that will become apparent when
we discuss reduction of the hypergraph.

Example 20.9: In Fig. 20.9, hyperedge H = {4 E F} is an ear. The role
of & is played by {4,C,E}. Node F is unigue to H; it appears in no other
hyperedge. The other two nodes of H (4 and E) are also members of . O

A bypergraph is acyclic if it can be reduced to a single hyperedge by a
sequence of ear reductions. An ear reduction is simply the elimination of ane
ear from the hypergraph, along with any nodes that appear only in that ear.
Note that an ear, if not eliminated at one step, remains any ear after another
ear is eliminated. However, it is possible that a hyperedge that was not an ear,
becomes an ear after another hyperedge is eliminated.

Example 20.10: Figure 20.8 is not acyclic. No hyperedge is an ear, so we
cannot get started with any ear reduction. For example, {4, B} is not an ear
because neither 4 nor B is unique to this hyperedge, and no other hyperedge
contains both 4 and B.

On the other -hand, Fig. 20.9 is acyclic. As we mentioned in Example 20.9,
{A,E,F}isanear;so are {A, B,Cland {C, D, E}. We can therefore eliminate
hyperedge {4, E, F'} from the hypergraph. When we eliminate this ear, node F
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Figure 26.10: After one ear reduction

disappears, but the other five nodes and three hyperedges remain, as suggested
in Fig. 20.10.

Since {4, B, C'} is an ear in Fig. 20.10, we may eliminate it and node B in
a second ear reduction. Now, we are left with only hyperedges {4,C, E} and
{C, D, E}. Each is now an ear; notice that {4, C, E} was not an ear until now.
We can eliminate either, leaving a single hyperedge and proving that Fig. 20.9
is an acyclic hypergraph. (0

20.4.5 Full Reducers for Acyclic Hypergraphs

We can construct a full reducer for any acyclic hypergraph by following the
sequence. of ear reductions. We construct the sequence of semijoins as follows,
by induction on the number of .hypézredgeb in an acyclic hypergraph.

BASIS: If there is only one hyperedge, do nothing. The “join™ of one relation
is the relation itself, and theré aré surely no dangling tuples.

INDUCTION: If the acyclic hypergraph has more than one hyperedge, then it
must have at least one ear. Pick one, say H, and suppose it is consumed by
hyperedge G

1. Execute the semijoin G = G'P< H; that is, eliminate from G any of its
tuples that do not join with H.*

W]

. Recursively, find a semijoin sequence for the hypergraph with ear H elim-
inated.

3. Execute the semijoin H = H G,

Example 20.11: Letus construct the full reducer for the relations R{A, E, F},
S(4,B,C), T(C,D,E), and U(4,C, EY, whose hypergraph we saw in Fig. 20.9.

*We are identifying hyperedges with the relations that they represent for convenience in
notation. Moareover, if the sets of tuples corresponding to a hyperedse are stored tables, rather
y f & ¥p
than temporary relations, we do not actually replace a relation by a semijoin, as Mm.id he
~ 1 v P N } J ALE]
suggested by a step Hke & = (7 B<H, but instead we store the result in & new temporary,
L
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We shall use the seguence of ears F, then 5, then I7, as in Example 20.10. Since
U consumes £, we begin with the semijoin U7 == U7 < K.

Recursively, we reduce the remaining three hyperedpes. That reduction
starts with € consmming 5, so the next step is U = U <5, Another level of
recursion has T' copsuming U, so we add the step T =T b<{/. With only T
remaining, we have the basis case and do nothing.

Finally, we complete the elimination of ear & by adding U ;= U ><T". Then,
we complete the elimination of S by adding S ;= § </, and we complete the
elimination of R with R = RDP<U. The entire sequence of semijoins that forms
a full reducer for Fig. 20.9 is shown in Fig. 20.11. O

i=Up<RH
[Fioee [T B S
T=T<l
Ui=0p<T
Si=5p<U
R = Rp<lJ

Figure 20.11: A full redacer for Fig. 20.9

Once we have executed all the semijoins in the full reducer, we can copy all
the reduced relations to the site of one of them, knowing that the relations to
be shipped contain no dangling tuples and therefore are as small as can be. In
fact, if we know at which site the join will be performed, then we do not have
to eliminate all dangling tuples for relations at that site. We can stop applying
semijoins to a relation as soon as that relation will no longer he used to reduce
other relations.

Example 20.12: H the full reducer of Fig. 20.11 will be followed by a join at
the site of 5, then we do uot have to do the step S = S <. However, if the
join is to be conducted af. the site of T', then we still have to do the reduction
T =T p<U, because T is used to reduce other relations at later steps. [

20.4.6 Why the Full-Reducer Algorithm Works

We can show that the algorithm produces a full reducer for any acyclic hyper-
graph by induction on the number of hyperedges.

BASIS: One hyperedge. There are no dangling tuples, so nothing needs to be
done.

INDUCTION: When we eliminate the ear H, we eliminate, from the hyperedge
(G that consumes H, all tuples that will not join with at least one tuple of
H. Thus, whatever further reductions are done, the join of the relations for
all the hyperedges besides H cannot contain a tuple that will not join with H.
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Note that this statement is true because G is the only link between H and the
remaining relations.

By induction, all tuples that are dangling in the join of the remaining rela-
tions are eliminated. When we do the final semijoin H = H b<G to eliminate
dangling tuples from H, we know that no relation hay dangling tuples.

20.4.7 Exercises for Section 20.4

omm

Exercise 20.4.1: Suppose we want to take the natural join of R{A, B) and
S{(B,C), where R and § are at different sites, and the size of the data comiu-
nicated is the dominant cost of the join. Suppose the sizes of R and 5 are sp
and sg, respectively. Suppose that the size of 75 (R) is fraction pp of the size of
R and 7g(S) is fraction pg of the size of . Finally, suppose that fractions dg
and dg of relations R and S, respectively, are dangling. Write expressions, in
terms of these six parameters, for the costs of the four strategies for evalnating
R pa 5, and determine the conditions under which each is the best strategy.
The four strategies are:

i) Ship R to the site of S.

it} Ship S to the site of R.
1i2) Ship m(8) to the site of R, and then R P<§ to the site of S.
iv) Ship mp{R) to the site of S, and then -5 P< R to the site of R.

Exercise 20.4.2: Determine which of the following hypergraphs are acyelic.
Each hypergraph is represented by a list of its hyperedges.

a) {4, B}, {B,C,D}, {B,E,F}, {F.G, H}, [G, 1}, {H,]).
b) {4,B}, {B,C,D}, {B,E,F}, {F,G.H}, {G.I}, {B,H}.
¢) {4,B,C,D}, {A,B,E}, {B,D,F}, {0,D,G}, {4,C,H}.

Exercise 20.4.3: For those hypergraphs of Exercise 20.4.2 that are acyclic,
construct a full reducer.

! Exercise 20.4.4: Besides the full reducer of Example 20,11, how many other
full reducers of six steps can be constructed for the hypergraph of Fig. 20.9 by
choosing other orders for the elimination of ears?

s

Exercise 20.4.5: A well known property of acyclic graphs is that if you delete
an edge from an acyclic graph it remains acyclic. Isthe analogous statement
true for hypergraphs? That is, if you eliminate a hyperedge from an acydlic
hypergraph, is the remaining hypergraph always acyclic? Hint: consider the
acyclic hypergraph of Fig. 20.9.
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11 Exercise 20.4.6: Not all binary operations on relations located at different

nodes of a network can have their execution time reduced by preliminary op-
erations like the semijoin. Is it possible to improve on the obvious algorithm
(ship one of the relations to the other site) when the operation is (a) union
(b) intersection (c) difference?

20.5 Distributed Commit

In this section, we shall address the problem of how a distributed transaction
that has components at several siles can execute atomically. The next section
discusses another important property of distributed transactions: executing
them serializably, '

20.5.1 Supporting Distributed Atomicity
We shall begin with an example that illustrates the problems that might arise.

Example 20.13: Consider our example of a chain of stores mentioned in Sec-
tion 20.3. Suppose a manager of the chain wants to query all the stores, find the
inventory of toothbrushes at each, and issue instructions to move toothbrushes
from store to store in order to balance the inventory. The operation is done
by a single global transaction T that has compouent T at the ith store and
a component Ty at-the office where the manager is located. The sequence of
activities performed by T are summarized below:

1. Compauent Ty is created at the site of the manager.

2. Ty sends messages to all the stores instructing them to create components
T;.

3. Each T; executes a query at store ¢ to discover the number of toothbrushes
i inventory and reports this number to 75.

4. Ty takes these numbers and determines, by some algorithi we do not
need to diseuss, what shipments of toothbrushes are desired. T then
sends messages such as “store 10 should ship 500 toothbrushes to store
77 to the appropriate stores (stores 7 and 10 in this instance).

5. Stores receiving instructions update their inventory and perform the ship-
ments. '

There are a nomber of things that could go wrong in Example 20.13, and
many of these result in violations of the atomicity of T. That is, some of the
actions comprising 7' get executed, but others do not. Mechanisms such as
logging and recovery, which we assume are present at each site, will assure that
each T; 1§ executed atomically, but do not assure that T itself is atomic.
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Exarmaple 20.14: Suppose a bug in the algorithm to redistribute toothbrushes
might cause store 10 to be instructed to ship more toothbrushes than it has. Tig
will therefore abort, and no toothbrushes will be shipped from store 10; neither
will the inventory at store 10 be changed. However, T7 detects no problems
and commits'at store 7, npdating its inventory to reflect the supposedly shipped
toothbrushes. Now, not only has T failed to execute atomically (since Ty never
completes), but it has left the distributed database in an inconsistent state. D

Another source of problems is the possibility that a site will fail or be dis-
connected from the network while the distributed transaction is runuing.

Example 20.15: Suppose Tiy replies to Ty’s first message by telling its inven-
tory of toothbrushes. However, the machine at store 10 then crashes, and the
instructions from Ty are never received by Tip. Can distributed transaction T
ever conumit? What should Ty do when its site recovers? O

20.5.2 Two-Phase Commit

In order to avoid the problems suggested in Section 20.5.1, distributed DBMS’s
use a complex protocol for deciding whether or not to commit a distributed
transaction. In this section, we shall describe the basic idea behind these pro-
tocols, called two-phase- commit.® By making a global decision about commit-
ting, each component of the transaction will commit, or none will. As usual,
we assuine that the atomicity mechanisms at each site assure that either the
local component commits or it has no effect on the database state at that site;
i.e., components of the transaction are atomic. Thus, by enforcing. the rule
that either all components of a distributed transaction commit or none doss,
we make the distributed transaction itself atomic.
Several salient points about the two-phase commit protocol follow:

& In atwo-phase commnit, we assume that each site logs actions at that site,
but there is no global log.

e We also assume that one site, called the coordinator, plays a special role
in deciding whether or not the distributed transaction can comimit. For
example, the coordinator might be the site at which the transaction orig-
inates, such as the site of Ty in the examples of Section 20.5.1.

¢ The two-phase comumit protocol involves sending certain messages be-
tween the coordinator and the other sites. As each message is sent, it is
logged at the sending site, to aid in recovery should it be necessary.

With these points in mind, we can describe the two phases in terms of the
messages sent between sites.

5o not conluse two-phase comunit with two-phase locking. They are independent jdeas,
designed to sotve different problems,
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Phase I

Irr phase 1 of the two-phase commit, the coordinator for a4 distributed trans-
action T decides when to attempt to commit T Presumably the attempt to
commit occeurs after the component of T at the coordinator site is ready to
commit, but in principle the steps must be carried out even if the coordina-
tor’s component wants to abort {but with obvious simplifications as we shall
see). The coordinator polls the sites of all components of the trausaction T to
determine their wishes regarding the commit/abort decision, as follows:

1. The coordinator places a log record <Prepare T> on the log at its site.

2. The coordinator serds to each component’s site {in principle including
itself) the message prepare T.

3. Each site receiving the message prepare I decides whether to comrmit or
abort-its component of T, The site can delay if the component has not
yet completed its activity, but must eventually send a response.

4. I a site wants to commit its component, it must enter a state called
precommitted. Once in the precommitted state, the site cannot ahort its
component of T without a directive to do so from the coordinator. The
following steps are done to’hecome precommitted:

(a) Perform whatever steps are necessary to be sure the local component
of T' will not have to abort, even if there is a system failure followed
by recovery at the site. Thus, not only must all actions associated
with the local T be performed, but the appropriate actions regarding
the log must he taken so that T will be redone rather than undone
in a recovery. The actions depend on the logging method, but surely
the log records associated with actions of the local T must be flushed
to disk.

(b) Place the record <Ready T'> on the local log and flush the log to
disk.

{c) Send to the eoordinator the message ready 7'

However, the site does not commmit its component of T at this time; it
must wait for phase 2.

5. H, instead, the site wants to abort its component of T, then it logs the
record <Don’t commit 7> and sends the message don’t commit T to
the coordinator. It is safe to abort the component at this time, since T

will surely abort if even one component wants to abort.

The messages of phase 1 are sunmarized in-Fig. 20.12.
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prepare
ready or
O—O - don’t commit
Coordinator
Figure 20.12: Messages in phase 1 of two-phase comnit
Phase 11

The second phase beginsg when responses ready or don’t commit are received
from each site by the coordinator. However, it is possible that some site fails to
respond; it may be down, or it has been disconnected by the network. In that
case, after a suitable timeout period, the coordinator will treat the site as if it
hid sent don’t commit.

1. If the coordinator has received ready T from all components of T, then
it decides to commit T'. The coordinator logs <Commit 7> at its site and
then sends message commit T to all sites involved in T

2. However, if the coordinator has received don’t commit 7 from one or
more sites, it logs <Abort T> at its site and then sends abort T mes-
sages to all sites involved-in T,

3. If a site receives a‘commit T miessage, it commits the componerit of T at
that site, logging ' <Commit T'> as it does.

4. H a site receives the message abort T, it aborts 7' and writes the log
record <Abort 1>.

The messages of phase 2 are summarized in Fig, 20.13,

commit or

abort A

Coordilm

Figure 20.13: Messages in phase 2 of two-phase commit

20.5.3 Recovery of Distributed Transactions

At any time during the two-phase commit process, a site may fail. We need
to make sure that what happens when the site recovers 18 consistent with the
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global decision that was made about a distributed transaction 7. There are
several cases to consider, depending on the last log entry for 7.

1. If the last log record for T was <Commit T'>, then 7 must have been
cominitted by the coordinator. Depending on the log method used, it
may be necessary to redo the component of T at the recovering site.

2. I the last log record is <Abort T>, then similarly we know that the
global decision was to abort 7. If the log method requires it, we undo the
component of T° at the recovering site.

3. I the last log record is <Don’t commit T'2>, then the site knows that the
global decision must have been to abort T. If necessary, effects of T on
the local database are undone.

4. The hard case is when the last log record for T is <Ready T>. Now, the
recovering site does not know whether the global decision was to commit
or abort T'. This site mwust communicate with at least one other site to
find out the global decision for T'. If the coordinator is up, the site can
ask the coordinator: If the coordinator ig not up at this time, some other
site may be asked to consult its log to find out what happened to 7", In
the worst case, no other site can be contacted, and the local component
of T' must. be kept active until the commit/abort decision is determined.

. It may also be the case that the local log has no records about T that
come from the actions of the two-phase commit protocol. If so, then the
recovering site may unilaterally decide to abort its component of T, which
is consistent with all logging methods. 1t is possible that the coordinator
already detected a timeout from the failed dite and decided to abort T If
the failure was brief, T may still be active at other sites, but it will never
be inconsistent if the recovering site decides to abort its component of T
and résponds with don’t commit T if later polled in phase 1.

o

The above analysis assumes that the failed site is not the coordinator. When
the coordinator fails during a two-phase comunit, new problems arise. First, the
surviving participant sites must either walt for the coordinator to recover or
elect a new coordinator. Since the coordinater could be down for an indefinite
period, there iz good motivation to elect a new leadér, at least after a brief
waiting period o see if the coordinator comes hack up.

The matter of leader election is in its own right a complex problem of dis-
tributed systems, beyond the scope of this book. However, a simple method
will work in most situations. For instance, we may assune that all participant
sites have unique identifying numbers, e.g., IP addresses. Each participant
sends messages announcing its availability as leader to all the other sites, giv-
ing its identifying number. After a suitable length of time, each participant
acknowledges as the new coordinator the lowest-numbered site from which it
has heard, and sends messapes to that effect 1o all the other sites. If all sites
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receive consistent messages, then there is a unigue choice for new coordinator,
and evervone knows about it. I there is inconsistency, or a surviving site has
failed to respond, that too will be universally known, and the election starts
Over.

Now, the new leader polls the sites for information about each distributed
transaction T'. Each site reports the last record on its log concerning T, if there
is one. The possible cases are:

1. Some site hag <Commit T> on its log. Then the original coordinator
must have wanted to send commit [ messages everywhere, and it is safe
to commit T'.

2. Similarly, if some site has <&bort T> on its log, then the original coordi-
nator must have decided to abort T, and it is safe tor the new coordinator
to order that action.

3. Suppose now that no site has <Commit T> or <Abort > on itslog, but
at least one site does not have <Ready T> on its log. Then since actions
are logged before the corresponding messages are sent, we know that the
old coordinator never received ready 7T from this site and therefore could
not have decided to commit. It is safe for the new coordinator to decide
to abort T.

4, The most problematic situation is when there is no <Commit 1> or
<Abort. T> to be found, but every surviving site has <Ready T>. Now,
we tanndt be sure whether the old coordinator found some reason to ahort
T or not; it could have decided to do so because of actions at its own site,
or because of a don’t commit 7 message from another failed site, for
example. Or the old coordinator may have decided to commit T and al-
ready committed its local component of T. Thaus, the new coordinator is
not able to decide whether to commit or abort T and must wait until the
original coordinator recovers. In real systems, the database’administrator
has the ability to-intervene and manually force the waiting transaction
components to finish. The result is a possible loss of atomicity, but the
person execnting the blocked transaction will be notified to take some
appropriate compensating action.

20.5.4 Exercises for Section 20.5

! Exercise 20.5.1 : Cousider a transaction T initiated at a home computer that
asks bank B to transfor $10,000 from an account at B to an aceount al another
bank C.

a) What are the components of distributed transaction 77 What should the
components at B and ' do?

b)Y What ean go wrong if there is not $10,000 in the account at BY
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ey What can go wrong if one or both banks’ computers crash, or if the
network is disconnected?

d) If one of the problems suggested in (¢) occurs, how could the transaction
resume correctly when the computers and network resume operation?

Exercise 20.5.2: In this exercise, we need a notation for describing sequences
of messages that can take place during a two-phase comnit. Let (4, 7, M) mean
that site 7 sends the message M tosite j, where the value of A{ and its meaning
can be P (prepare}, R (ready), D (don’t commit), C (commit}, or 4 {(abort).
We shall discuss a simple situation in which site 0 1s the coordinator, but not
otherwise part of the transaction, and sites 1 and 2 are the components. For
instance, the following is one possible sequence of messages that could take
place during a successful commit of the transaction:

(0,1,P), (0,2, P), (2,0,R), (1,0,R), (0,2,C), (0,1,C)

a) Givean example of a sequence of messages that could oceur if site'1 wants
to comanit and site 2 wants to abort.

I'b) How many possible sequences of messages such as the above are there, if
the transaction successfully commits?

Yoy If site.] wants to commit, but site 2 does not, how many sequences of
messages are there, assuming no faillures oceur?

I'd) If site 1 wants'to commit, but site 2'is down and does not respond to
messages, how many sequences are there?

s
—

Exercise 20.5.3: Using the notation of Exercise 20.5.2, suppose the sites are
a coordinator and n other sites that are the transaction components. As a
function of n, how many sequences of messages are there if the transaction
succassfully commits?

20.6 Distributed Locking

In this section we shall see how to extend a locking scheduler to an environment,
where transactions are distributed and consist of components at several sites.
We agsume that lock tables are managed by individual sites, and that the
component of a transaction at a site can request locks on the data elements
only at that site.

When data is replicated, we must arrange that the copies of a single ele-
ment X are changed in the same way by each transaction. This requirement
introduces a distinetion between locking the logicel database element X and
locking one or more of the copies of X. In this section, we shall offer u cost
model for distributed locking algorithms that applies to both replicated and
nonreplicated data. However, before introdicing the model, let us consider an
obvious (and sometimes adequate) solution to the problem of maintaining locks
in a distributed database - centralized locking.
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20.6.1 Centralized Lock Systems

Perhaps the simplest approach is to designate one site, the lock site, to maintain
a lock table for logical elements, whether or not they have coples at that site.
When a transaction wants a lock on logical element X, it sends a request to
the lock site, which grants or denies the lock, as appropriate. Since obtaining a
global lock on A is the same as obtaining a local lock on X at the lock site, we
can be sure that global locks behave correctly as long as the lock site administers
locks conventionally. The usual cost is three messages per lock (request, grant,
and release), unless the transaction happens to be running at the lock site.

The use of a single lock site can be adequate in some situations, but i there
are many sites and many simultaneous transactions, the lock site could become
a bottleneck. Further, if the lock site crashes, no transaction at any site can
obtain locks. Because of these problems with centralized locking, there are a
number of other approaches to maintaining distributed locks, which we shall
introduce after discussing how to estimate the cost of locking,

20.6.2 A Cost Model for Distributed Locking Algorithms

Suppose that each data element exists at exactly one site {i.e., there is no
data replication) and that the lock manager at each site stores locks and lock
requests for the elements at its site. Transactions mmay be distributed, and each
transaction consists of components at one or more sites.

While there are several costs associated with managing locks, many of them
are fixed, independent of the way transactions request locks over a network.
‘The one. cost factor over which we have control is the munber of messages
sent between sites when a transaction obtains and releases its locks. We shall
thus connt, the number of messages required for various locking schemes on the
assumption that all locks are granted when requested. Of course, a lock request
may be denied, resulting in an additional message to deny the reqguest and a
later message when the lock is granted. However, since we cannot predict the
rate of lock denials, and this rate is not something we can control anyway, we
shall ignore this additional requirement for messages in our comparisons.

Example 20.18: As we mentioned in Section 20.6.1, i the central locking
method, the typical lock request uses three messages, one to request the lock,
one from the central site to grant the lock, and a third to release the lock. The
exceptions are:

1. The messages are unnecessary when the requesting site is the central lock
site, and

2. Additional messages must be sent when the initial reguest cannot be
granted.

However, we assume that both these situations are relatively rare; i.e., most lock
requests are from gites other than the centeal Tock site, and most lock requests
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can be granted. Thus, three messages per lock is a good estimate of the cost of
the centralized lock method. O

Now, consider a situation more flexible than central locking, where there is
no replication, but each database element X can maintain its locks at its own
site. It might seem that, since a transaction wanting to lock X will have a
component at the site of X, there are no messages between sites needed. The
local component simply negotiates with the lock manager at that site for the
lock on X. However, if the distributed transaction needs locks on several ele-
meits, say X, Y, and Z, then the transaction tannot complete its computation
until it has locks on all three elements, £ X, ¥, and Z are at different sites,
thett the components Qf'.ﬂ'ae'i_;r_angactiuns at those sites must at least exchange
‘synchronization messages'to prevent the transaction from proceeding before it
has all the locks it needs.

Rather than deal with all the possible variations, we shall take a simple
model of how transactions gather locks., We assume that one component of each
transaction, the lock coordinetor for that transaction, has the responsibility to
gather all the locks that all components of the transaction require. The lock
coordinator locks elements at its own site without messages, but locking an
element X at any other site requires three messages:

1. A message to the site of X requesting the lock.

2. A reply message granting the lock (recall we assume all locks are granted
immediately; if not, a denial messagefollowed by a granting message later
will be sent).

3. A message to the site of X releasing the lock.

If we pick as the lock coordinator the site where the most locks are needed by
the transaction, then we minimize the requirement for messages. The number
of messages required is three times the number of database elements at the
other sites.

20.6.3 Locking Replicated Elements

When anp elernent X has replicas at several sites, we must be careful how we
interpret the locking of X,

Example 20.17: Suppose there are two copies, X; and X3, of a database
element X. Suppose also that a transaction 7 gets a shared lock on the copy
A at the site of that copy, while transaction U gets an exclusive lock on the
copy Xy at its site. Now, U can change X but cannot change Xy, resulting in
the two copies of the element X becoming different. Moreover, sinee T and 7
may lock other elements as well, and the order in which they read and write
X is not forced by the locks they hold on the copies of X, there is also an
opportunity for T and I to engage in unserializable hehavior., O

instructors.coursesmart.com/print?xmlid=013187330X/1014&pagestoprint=10 310



1/25/12 CourseSmart - Instructors - Print

User name: Mohamed Eltabakh Book: Database Systems: The Com?Iete Book, Second Edition Page: 1017, No part of any book may be reproduced or transmitted by any means
wfit?iz‘louf the publisher's prior permission. Use {other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted te the fill extent
of the law.

20.6. DISTRIBUTED LOCKING 1617

The problem ilhustrated by Example 20.17 is that when data is replicated,
we must distinguish between getting a shared or exclusive lock on the logical
element X and getting a local lock on a copy of X. That is, in order to
assure serializability, we need {or transactions to take global locks on the logical
elements. But the logical elements don’t exist physically - only their copies
do - and thereis no global lock table. Thus, the only way that a transaction
can ebtain a global lock on X is to obtain local locks on one or more copies
of X at the site{s) of those copies. We shall now consider methods for turning
local locks into global locks that have the required property:

e A logical element X can have either one exclusive lock and no shared lock,
or any number of shared locks and no exclusive locks.

20.6.4 Primary-Copy Locking

An inproverment on the centralized locking approach, one whichk also allows
replicated data, is to distribute the function of the lock site, but still maintain
the principle that each logical clement has a single site responsible for its global
lock. This distributed-lock method, called primary copy, avoids the possibility
that the central lock site will become a bottleneck, while still maintaining the
simplicity of the centralized method.

In the primary copy lock method, each logical element X has one of its
copies designated the “primary copy.” In order to get a lock on logical element
X, atransaction sends a request to the site of the primary copy of X. The site
of the primary copy maintains dn entry for X in its lock table and grants or
denies the request as appropriate. Again, global (logical) locks will be adminis-
tered correctly as long as each site administers the lncks for the prunary copies
correctly:

Also as with a centralized lock site, most lock requests reguire three mes-
sages, except for those where the transaction and the primary copy are at the
same site. However, if we choose primary copies wisely, then we expect that
these sites will frequently be the same,

Example 20.18: In the chain-of-stores example, we should make each store’s
sales data have its primary copy at the store. Other copies of this data, such
as at the central office or at a data warehouse used by sales analysts, are not
primary copies, Probably, the typical transaction is executed at a store and
upddates only sales data for that store. No messages are needed when this type
of transaction takes its locks. Only if the transaction examined or modified
data at another store would lock-related messages be sent. 0

20.6.5 Global Locks From Local Locks

Another approach is to synthesize global locks from collections of local locks. In
these schemes, no copy of a database element X iy “primary”; rather they are
symmetric, and local shared or exclusive locks can be requested on any of these
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Distributed Deadlocks

There arc many opportunities for transactions to get deadlocked as they
try to acquire global locks on replicated data. There are also many ways to
construct a global waits-for graph and thus detect deadlocks. However, in
a distributed environment, it is often siimplest and also most effective to use
a timeout. Any transaction that has not completed after an appropriate
amount of time is assumed to have gotten deadlocked and is rolled back,

copies. The key to a successful global locking scheme is to require transactions
to obtain a certain number of local locks on eopies of X before the transaction
can assime it has a global lock on X,

Suppose database element A has n copies. We pick two numbers:

1. 5 is the number of copies of A that must he locked in shared mode in
order for a transaction to have a global shared lock on A.

2. z is the number of copies of 4 that must be locked in exclusive mode in
arder for a transaction to have an exclusive lock on A.

As long as 2x > n and 5 + @ > n, we have the desired properties: there
can be only one global exclusive lock on A, and there camnot be both a global
shared and global exclusive lock on A. The explanation is as follows. Since
2z > n, if two transactions had global exclusive locks on A, there would be at
least one copy that had granted local exclusive Iocks to both {becanse there are
more local exclusive locks granted than there are copies of 4), However, then
the local locking method would be incorrect. Similarly, since s + 2 > n, if one
transaction had a global shared lock on 4 and another had a global exclusive
lock on A, then some copy granted both local shared and exclusive locks at the
same time,

In general, the number of messages needed o obtain a global shared lock Is
3s, and the munber to obtain a global exclusive lock is 3. That number seems
excessive, compared with ceniralized methods that require 3 or fewer messages
per lock on the average. However, there are compensating arguments, as the
following two examples of specific (s, ) choices shows.

Read-Locks-One; Write-Locks-All

Here, s = 1 and = = n. Obtaining a global exclusive lock is very expensive,
hut a global shared lock requires three messages at the most.. Moreover, this
scheme has an advantage over the primary-copy method: while the latter allows
us to avold messages when we read the primary copy, the read-locks-one scheme
allows us to avold messages whenever the transaction is at the site of any copy
of the database element we desire to read. Thus, this scheme can be superior
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!

when most transactions are read-culy, but transactions to read an element X
initiate at different sites. An example would be a distributed digital library
that caches copies of documents where they are most frequently read.

Majority Locking

Here, s = o = [{n + 1)/2]. It seems that this system requires many messages
no matter where the transaction is. However, there are several other factors
that may make this scheme acceptable. First, many network systems support
broadcast, where it is possible for a transaction to send out oue general request
for local locks on an element X, which will be received by all sites. Similarly,
the release of locks may be achieved by a single message.

Moreover, this selection of s and 2 provides an advantage others do not:

it allows partial operation even when the network is disconnected. As long as

there is one component of the network that contains a majority of the sites with
copies of X, then it is possible for a iransaction to obtain a lock on X. Even if
other sites are active while disconnected, we know that they cannot even get a
shared lock on X, and thus there is no risk that transactions running in different
components of the network will engage in behavior that is not serializable.

20.6.6 Exercises for Section 20.6

Exercise 20.6.1: We showed how to create global shared and exclusive locks
from local locks of that type. How would you create:

a) Global shared, exclusive, and inerement locks
b) Global shared, exclusive, and update locks
! ¢) Global shared, exclusive, and intention locks for each type

from local locks of the same types?

Exercise 20.6.2: Suppose there are five sites, each with a copy of a database.

element X. One of these sites P is the dominant site for X and will be used
as X's primary site in a primary-copy distributed-lock systern. The statistics
regarding accesses to X are:

i. 50% of all accesses are read-only accesses originating at P.

ii. Bach of the other Tour sites originates 10% of tlie accessés, and these are
read-only.
i7i. The remaining 10% of accesses require exclusive access and may originate

at any of the five sites with equal probability (i.e., 2% originate at each).

For each of the lock methods below, give the average number of messages needed
to obtain a lock. Assume that all requests are granted, so no denial messages
are needed.
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Grid Computing

Grid computing is a term that means almost the same as peer-to-peer
computing. However, the applications of grids vsually involve sharing of
computing resources rather than data, and there is often a master node
that controls what the others-do. Popular examples include SETI, which
attempts to distribute the analysis of signals for signs of extraterrestrial
intelligence among participating nodes, and Folding-at-Home, which at-
tempts to do the same for protein-folding.

a) Read-locks-one; write-locks-all.
b) Majority locking.

¢) Primary-copy locking, with the primary copy at P.

20.7 Peer-to-Peer Distributed Search

In this section, we examine peer-to-peer distributed systems. When these Sys-
temns are used to store and deliver data, the problem of search becomes surpris-
ingly hard. That is, each node in the peer-to-peer network has a subset of the
data elements, but there is no centralized index that says where something is
located. The method called “distributed hashing” allows peer-to-peer networks
to grow and shrink, yet allows us to find available data much more efficiently
than sending messages to every node.

20.7.1 Peer-to-Peer Networks

A peer-io-peer network 15 a collection of nodes or peers {participating machines)
that:

1. Are autonemous: [')dl”t]fl rants do not respect any central control and can
A
j()il’l or leave the network at will.

2. Are loosely coupled: they communicate over a general-purpose network
such as the Internet, rather than being hard-wired together like the pro-
cessors in a parallel machine.

3. Are equal in functionality; there is no leader or controlling node.
4. Share resources with cune another.

Peer-to-peer networks initially received a bad name, because their first pop-
ular use was in sharing copyrighted files such as music. However, they have
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Copyright Issues in Digital Libraries

In order for a distributed world-wide digital library to become a reality,
there will have to be some resolution of the severe copyright issues that
arise. Current, sinall-scale versions of this network have partial solutions.
For example, on-line university libraries often pass accesses to the AUM
digital library only from IP addresses in the university’s domain. Other
arrangements are based on the idea that only one user at a time can
access a particular copyrighted document. The digital library can “loan™
the right to another library, but then users of the first library cannot access
the document.. The world awaits a solution that is easily implementable
and fair to all interests.

many legitimate uses. For example, as libraries replace books by digital im-
ages, it becomes feasible for all the world’s libraries to share what they have,
It should not be necessary for each library to store a copy of every hook or
document in the world. But then, when you request a book from your local
library; that library’s node needs to find a peer library that does have a copy
of what you want.

As another example, we wight imagine a peer-to-peer network for the shar-
ing of personal collections of photographs or videos, that is, a peer-to-peer
version of Flickr orYouTube. The images are housed on participants’ personal
computers, so they will be turned on and off periodically. There can be millions
of participants, and each has ouly a small fraction of the resources of the entire
network.

20.7.2 The Distributed-Hashing Problem

Barly peer-to-peer networks such as Napster used a centralized table that told
where data elements could be found. Later systems distributed the funetion
of locating elements, either by replication or division of the task among the
peers. When the database is truly large, such as a shared worldwide library or
photo-sharing network, there is no choice but to share the task in somne way.

We shall abstract the problem to-one of lookup of records in a (very large)
set. of key-value pairs. Associated with each key K is a value V. For example,
K might be the identifier of a document. ¥ could be the document itself, or it
could be the set of nodes at' which the document can be fonnd.

If the size of the key-value data is small, there are several simaple solutions.
We could use a central node that holds the entire key-value table. All nodes
would query the central node when they wanted the value V associated with a
given key K. I that case; a pair of query-respounse messages would answer any
lookup guestion for any node. Alternatively, we could replicate the entire table
at each node, so there would be no messages needed at all.
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The problem becomes more interesting when the key-vahie table is too large
to be handled by a single node. We shall consider this problem, using the
following constraints:

1. At any time, only one node among the peers knows the value associated
with any given key K.

3%

. The key-value pairs are distributed roughly equally among the peers.

3. Any node can ask the peers for the value 'V associated with a chosen key
K. The value of ¥ should be obtained in a:way such that the number of
messages sent arnong the peers grows much more slowly than the number
of peers.

4. The amount of routing information needed at each node to help locate
keys must also grow much more slowly than the number of nodes.

20.7.3 Centralized Solutions for Distributed Hashing

If the set of participants in the network is fixed once and for all, or the set
of participants changes slowly, then there are straightforward ways to manage
lookup of keys. For example, we could use a hash function A that hashes keys
into node numbers. We place the key-value pair (K, V) at the node h{K).

Iu fact, Google and similar search engines effectively maintain a centralized
index of the entire Web and manage hige numbers of requests. They do so by
behaving logically as if there were a centralized index, when in fact the index
is replicated at a very. lirge mumber of nodes. Bach node consists of many
machines that together: share the index of the Web.

However, machines at Google are not really “peers.” They cannot decide
to leave the network, and they each have a specific function to perform. While
machines can fail, their load is simply assumed by a node of similar machines
until the failed machine is replaced. In the balance of this section, we shall
consider the more complex solution that is needed when the data is maintained
by a true collection of peer nodes.

i

20.7.4 Chord Circles

We shall now describe one of several possible algorithms for distributed hashing,
an algorithm with the desirable property that it uses a number of messages that
is logarithmic in the number of peers. In addition, the amount of information
other than key-value peers needed at each node grows logarithmically in the
nurber of nodes.

In this algorithin, we arrange the peers in a *chord circle.” BEach node
knows its predecessor and successor aroud the circle, and nodes also have
links to nodes located at an exponentially growing set of distances around the
circle (these links are the “chords™). Figure 20.14 suggests what the chord circle
tooks like.
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N3

Figure 20.14: A chord circle

To place a node in the circle, we hash its ID i, and place it at position
R{i). We shall henceforth refer to this node as Ny Thus, for example, in
Fig. 20.14, N3, is a node whose ID { has h() = 21. The successor of each node
is the mext higher one clockwise around the circle. For example, the successor
of Ny is Ngp, and N is the successor of Nig. Likewise, No; i the predecessor
of N3y, and Nig is the predecessor of Ny,

The nodes are loéated around the circle using a hash function /i that is capa-
ble of mapping both keys and node ID’s (e.g., IP-addresses) to m-bit numbers,
for some m. In Fig. 20.14, we suppose that m = 6, so there are 64 different
possibie locations for nodes around the circle: In a real application, m would
be much larger.

Key-value pairs are also distributed around the cirele using the hash function
h. ¥ (K,V) is & key-value pair, then we compute h{K) and place (K, V) at the
lowest. numbered node N; such that A{K) < 7. As a special case, if H{K) is
above the highest-munbered node, then it is assigned fo the lowest-numbered
node. That is, key K goes to the first node at or clockwise of the position h(K)
inn the circle.

Example 20.19: In Fig. 2014, any (K,V) pair such that 42 < A{K) < 48
would be stored at Nyg. H A{K) is any of 57,58,....63,0,1, then (K, V) would
be placed at &Ny, O
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20.7.5 Links in Chord Circles

Bach node around the circle stores Jinks to its predecessor and suceessor. Thus,
for example, in Fig. 20:14, &, has successor Ny and prédecessor Nzg. These
links are sufficient to send messages around the circle to look up the value
associated with any key. For instance, it Ng wants to find the value associated
witl: a key K such that A(K) = 54, it can send the request forward around
the circle until a node N, is found such that § > 34; it would be node Ny in
Fig. 20.14.

However, linear search is much too inefficient if the circle is large. Fo speed
up the search, each node has a finger fable that gives the first nodes found at
distances around the circle that are a power of two. That is, suppose that the
hash function A produces m-bit numbers. Node N; has entries in its finger table
for distances 1,2,4,8, ... ,2™ . The entry for is the first node we meet after
going distance 27 clockwise around the cirele. Notice that some entries may be
the same node, and there are only m — 1 entries, even though the number of
nodes could be as high as 27,

Distance | 1 2 4 8 16 32
Node |NM Nig Ny Ny Nypo Ny

Figure 20.15: Finger table for Ny

Example 20.20: Referring to Fig, 20.14, let us construct the Hnger table for
Ny; this table is shown in Fig. 26.15. For distance 1, we ask what is the lowest
numbered node whose number is at least 8 + 1 = 9. That node is Ny, since
there are no nodes numbered 9. 10, ..., 13. For distance 2, we ask for the lowest
node that is at least 8 4+ 2 = 10; the answer is Ny4 again. Likewige, for distance
4, N4 is is lowest-numbered node that is at least 84 4 = 12,

For distance 8, we look for the lowest-numbered node that is at least 8 +8 =
16. Now, N4 is too low. The lowest-mimbered node that is at least 16 is Nay,
so that is the entry in the finger table for 8. For 16, we need a node numbered
at least 24, so the entry for 16 is Nye. For 32, we need a node numbered at
least 40, and the proper entry is Ny Figure 20.16 shows the four links that
are i the finger table for Ng. O

20.7.6 Search Using Finger Tables

Suppose we are at node N; and we want to find the key-value pair (K, V) where
WMEK) = 7. We know that (A, V), if it exists, will be at the lowest-numbered
node that is at least 7.9 We can use the finger table and knowledge of successors

BAs always, “lowest” must be taken in the circular sense, as the first node vou mest
traveling clockwise around the circle, after reaching the point 7.
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Figure 20.16: Links in the finger table for Ny

to find (K, V}, if it exists, using at most w4+ 1 messages, where mn is the number
of bits in the hash values produced by hash function b, Note that messages do
not have to follow the entries of the finger table, which is needed only to help
each node find out what other nodes exist.

Algorithm 20.21: Lookup in a Chord Circle.

INPUT: An initial request by a node N; for the value associated with key value
K, where h{K) = j.

OUTPUT: A sequence of messages sent by various nodes, resulting in a message
to N; with either ‘the value of V in the key-value pair (K, V), or a statement
that such a pair does not exist.

METHOD: The steps of the algorithm are actually executed by different nodes.
At any tiine, activity is at some “corrent” node N, and initially N, is N;. Steps
{1) and (2) below are done repeatedly. Note that N is a part of gach reguest
message, so the current node always knows that N is the node to which the
answer must be sent.

1. End the search if ¢ < j < s, where N, is the successor of N, around the
circle. Then, N, sends a message to N, asking for (K, V) and informing
N, that the originator of the request is N;. N, will send a message to N
with either the value V or a statement that (K, V) does not exist.

2. Otherwise, N, consults its finger table to find the highest-numbered node
Ny, that is less than j. &, sends Ny a message asking it to search for
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{K,V) on behalf of N;. N, becomes the current node N, and steps (1)
and (2) are repeated with the new N..

a

Example 20.22: Suppose Nz wants to find the value V for key K, where
R{K) = 54. Sioce the successor of Ny is Nyy, and 54 is not in the range
9,10,...,14, Ny knows (K, V) is not at Ny, Ny thus examines its finger table,
and finds that all the entries are below 54. Thus it takes the largest, Nya, and
sends a message to Ny asking it to look for key K and have the result sent to
Ng.

Ny finds that 54 is oot in the range 43,44, ... 48 between Ny and its
successor Ngg. Thus, Ny examines its own finger table, which is:

Distance | 1 2 4 8 16 32
Node | Nags Nag Nag Nap Ay Ny

The last node (in the circular sense) that is less than 54 is Vs, s0 Ny sends a
message to Nsy, asking it to search for (K, V) on behalf of Ny.

Nsi finds that 54 is no greater than its successor, Nsg. Thus, if (K, V) exists,
it is at Ny, Ny seids a request to Ny, which replies to Ng. The sequence of
messages is shown in Fig. 20.17. O

Nsg

N3z

Figure 20.17: Message sequence in the search for (K, V)

In general, this recursive algorithm sends no more than e request messages.
The reason is that whenever a node N has to consult its inger table, it messages
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Dealing with Hash Collisions

Oceasionally, when we insert a node, the hash value of its ID will be the
same a4 that of some node already in the circle. The actual posttion of a
particular node doesn’t matter, as long as it knows its position and acts
as if that position was the hash value of its ID. Thus, we can adjust the
position of the new node up or down, until we find a position around the
circle that is unoccupied.

# node that is no more than half the distance {measured clockwise around the
circle) from the node holding (K, V) as V. is. One responsé message is seut in
all cases.

20.7.7 Adding New Nodes

Suppose a new node N; (i.e., a node whose ID hashes to ¢) wants to join the
network of peers. If N; does not know how to communicate with any peer, it
is not possible for N; to join. However, if V; knows even one peer, N; can ask
that peer what node would be IV;'s successor around the circle. To answer, the
known peer perfortis Algorithm 20.21 as if it were looking for a key that hashed
to i. The node at which this hypothetical key would reside is the successor of
N;. Suppose that the-saceessor of N; is N;.
We need to do two things:

1. Change predecéssor and successor links, so NV; is properly linked into the
circle.

2. Rearrange data so N; gets all the data at N; that belongs to Ny, that is,
key-value pairs whose key hashes to something i or less.

We could link ¥V into the circle at once, although it is difiicult to do so correctly,
because of concnrrency problems. That is; several nodes whose suecessor would
be N; may be adding themselves at once. To avoid concurrency problems, we
proceed in two steps. The first step is to set the successor of N to N; and its
predecessor to nil. N has no data at this time, and it has an empty finger table.

Example 20.23: Suppose we add to the circle of Fig. 20.14 a node Ny, i.e.,
a node whose ID hashes to 26. Whatever peer Nog contacted will be told that
Nog’s suecessor is Nyo. Nag sels its successor to Nys and its predecessor to
nil. The predecessor of Ny remains Ny for the moment. The situation is
sugeested by Fig. 20.18. There, solid lines are successor links and dashed lines
are predecessor links. 0
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32

Figure 20.18: Adding node Ny to the network of peers

The second step is done automatically by all nodes, and is not a dirvect
response to the insertion of Nj. All nodes must periodicaily perform a stabi-
lization check, duiing which time predecessors and successors are updated, and
if necessary, data is shared between a new node and its successor. Surely, Nag
in Fig. 20.18 will have to perform a stabilization to get Nys to accept Nog as
its predecessor, but Ny also needs to perform a stabilization in order to re-
alize that Nag is 1638 new succsgssor. Note that Nsp has not been mformed of
the existence of Nyg, and will not be informed until No, discovers this fact for
itself during its own stabilization. The stabilization process at any node N is
as follows. ' '

1. Let & be the successor of N. N sends a message to § asking for P, the
predecessor of S, and S replies. In normal cases, P = N, and if so, skip
to step (4).

2. If P lies strictly between N and 5, then & records that P is its successor,

3. Let S be the current successor of N; 8 could be either S or P, depending
on what step (2) decided. If the predecessor of 87 is nil or N lies strictly
between S" and its predecessor, then N sends a message to 5 telling S
that NV is the predecessor of &', 57 sets its predecessor to V.

4, 5" ghares its data with N. That is, all (K, V) pairs at 5 such that
WMEK) < N are moved to N.

Example 28.24: Following the events of Example 20.23, with the nredecessor
and successor Hnks in the state of Fig. 20018, node Nog will perform a stabiliza-
tion. For this stabilization, N = Nag, § = Ny, and P = Ny, Since P does not
lie between N and &, step (2) makes no change, so §'= 5 = Nyy at step (3).
Since N = Nag lies strictly between 57 = Nap and its predecessor Ny, we make
Nog the predecessor of Nys. The state of the links is shown in Fig. 20.19. At
step (4), all key-value pairs whose keys hash to 22 through 26 are moved from
Nas to Nag.
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Figure 20.19: After making Nog the predecessor of Nis

The circle has still not. stabilized, since Np; and many other nodes do not
know about Nag. Searches for keys in the 22-26 range will still wind up at N,
However, N3y knows that it no longer has keys in this range. Ny, which is N,
in Algorithm 20.21, simply continues the search according to this algorithim,
which in effect. causes the search to go around the circle again, possibly several
times.

Eventually, Ny runs the stabilization operation, which it, like all nodes,
does periodically. Now, N = Ny, 5 = Ny, and P = Nyg. The test of step (2)
is satisfied, so Nyg becomes the successor of Ny; . At step (3), 57 = Noy. Since
the predecessor of Nog is nil, we make Na, the predecessor of Nag. No data is
shared at step (4), since all data-at Nyg belongs there. The final state of the
predecessor and successor links is shown in Fig. 20.20.

At this time, the search for a key in the ranpe 22 26 will reach Nog and
be answered properly. It is possible, under rare circimsiances, that insertion
of many new nodes will keep the fietwork from becoming completely stable
for a long time. In that case, the search for a key in the range 2226 could
contimie running until the network finally does stabilize. However, as soon as
the network does stablize, the search comes to an end. O

Thera is still more to do, however. In terms of the running example, the
finger table for Nog needs to be constructed, and other finger tables may now
be wrong because they will link to N3y in some cases when they shounld link
to Nas. Thus, it is necessary that every node NV periodically checks its finger
table. For each ¢ = 1,2,4,8, ..., node N must execute Algorithm 20.21 with
§=N+1i mod 2™, When it gets back the node at which the network thinks
such a key would be located, N sets its finger-table entry for distance { to that
valie.

Motice that & new node, such as Nug in our running example, can construct
its initial finger table this way, since the construction of any entry requires only
entries that have already been constructed. That is, the entry for distance 1 is
always the successor, For distance 21, either the successor is the correct entry, or
we can find the correct entry by calling upon whatever node is the finger-table
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N

Figure 20.20: After Ny runs the stabilization algorithm

entry for distance £,

20.7.8 When a Peer Leaves the Network

A central tenet of peer-to-peer systems is that a node cannot be compelled to
participate. Thus, a node can leave the circle at any time. The simple case is
when a node leaves “gracefully,” that is, cooperating with other nodes to keep
the data available. To leave gracefully, a node:

1. Notifies its predecessor and successor that it is leaving, so they can become
each other’s predecessor and suceessor.

2. Transfers its data to its successor.

The network is still in a state that has errors; in particular the node that left
may still appear in the finger tables of some nodes. These nodes will discover
the error, either when they periodically update their finger tables, as discussed
in Section 20.7.7, or when they try to communicate with the node that has
disappeared. In the latter ease, they can recompule the erroneous finger-tablé
entry exactly as they would during periodic update.

20.7.9 When a Peer Fails

A harder problem -occurs when a node failg, is turned off, or decides to leave
without doing the “graceful” steps of Section 20.7.8. If the data is not replicated,
then data at the failed node is now unavailable to the network. To avoid total
unavailability of data, we can veplicate it at several nodes. For example, we can
place each {¥, V) pair at three nodes: the correct node, its predecessor in the
circle, and its successor.

'To reestablish the circle when a node leaves, we can have cach node record
not only its predecessor and successor, but the predecessor of its predecessor
and the successor of its successor. An alternative approach is to cluster nodes
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into groups of {say) three or more. Nodes in a cluster replicate their data
and can substitote for one another, if one leaves or lails. When clusters get
too large, they can be split into two clusters that are adjacent on the circle,
using an algorithm similar to that described in Section 20.7.7 for node insertion.
Similarly, clusters that get too small can be combined with a neighbor, a process
similar to graceful leaving as in Section 20.7.8. Insertion of a new node is
executed by having the node join its nearest cluster.

20.7.10 Exercises for Section 20.7

Exercise 20.7.1 ¢ Given the circle of nodes of Fig. 20.14, where do key-value
pairs reside if the key hashes to: (a) 24 (b} 607

Exercise 20.7.2: Given the circle of nodes of Fig. 20,14, construct the finger
tables for: (a) Ny (b) Ngg {¢) Ngs.

Exercise 20.7.5: Given the circle of nodes of Fig. 20.14, what is the sequence
of messages sent if:

a) N searches for a key that hashes to 27.
b) N searches for a key that hashes to .
¢} Nj searches for a key that hashes to 45.

Exercise 20.7.4: Show the sequence of steps that adjust successor and pre-
decessor pointers and share data, for the circle of Fig. 20.14 when nodes are
added that hash to: (a) 41 (b) 62.

s

Exercise 20.7.5: Suppose we want to guard against node failures by having
each node maintain the predecessor information, successor information, and
data of its predecessor and successor, as well as its own, as discussed in Sec-
tion 20.7.9. How would you modify the node-insertion algorithm described in
Section 20.7.77

20.8 Summary of Chapter 20

4 Parollel Machines: Parallel machines can be characterized as shaved-
memory, shared-disk, or shared-nothing. For database applications, the
shared-nothing architecture is generally the most cost-effective.

4 Parallel Algorithms: The operations of relational algebra can generally
be sped up on a parallel machine by a factor close to the number of
processors. The preferred algorithins start by hashing the data to buckets
that correspond to the processors, and shipping data to the appropriate
processor. Each processor then performs the operation on its local data.
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CHAPTER 20, PARALLEL AND DISTRIBUTED DATABASES

The Map-Reduce Framework: Often, highly parallel algorithms on mas-
sive files can be expressed by a map function and a reduce function. Many
map processes execute on parts of the file in parallel; to produce key-value
pairs. These pairs are then distributed so each key’s pairs can be handled
by one reduce process.

Distributed Data: In a distributed database, data may be partitioned hor-
izontally {one relation has its tuples spread over several sites) or vertically
{a relation’s schema is decomposed into several schenias whose relations
are at different sites). It is also possible to replicate data, 80 presumably
identical copies of a relation exist at several sites,

Distributed Joins: In an environment with expensive communication,
semijoins can speed up the join of two relations that are located at differ-
ent sites. We project one relation onto the join attributes, send it to the
other site, and return only the tuples of the second relation that are not
dangling tuples.

Full Reducers: When joining more than two relations at different sites, it
may or may not be possible to eliminate all dangling tuples by performing
semijoins. A finite sequence of semijoins that is guaranteed to eliminate
all dangling tuples, no matter how large the relations are, is called a full
recducer.

Hypergraphs: A natural join of several relations can be represented by a
hypergraph, which has a node for each attribute name and a hyperedge
for each relation, which contains the nodes for all the attributes of that
relation.

Acyelic Hypergrophs: These are the hypergraphs that can be reduced to a
single hyperedge by a series of ear-reductions — elimination of hyperedges
all of whose nodes are either in no other hyperedge, or in one particular
other hyperedge. Full reducers exist for all and énly the hypergraphs that
are acyclic.

Distributed Transactions: In a distributed database, one logical trans-
action may consist of components, each executing at a different site. To
preserve consistency, these components must all agree on whether to com-
mit or abort the logical transaction.

Two-FPhese Commit: This algorithmm enables transaction components to
decide whether to commit or abort, often allowing a resolution even in the
face of 4 systerm crash. In the first phase, a coordinator component polls
the components whether they want to commit or sbort. In the second
phase, the coordinator tells the components to commit if and only if all
have expressed a willingness to commit.
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4 Distributed Locks: If transactions must lock databage elements found at
several sites, a method must be found to coordinate these locks. In the
centralized-site method, one site maintaing locks on all elements. In the
primary-copy method, the home site for an element maintains its locks.

¢ Locking Replicefed Dufo: When database elements are replicated at sev-
eral sites, global locks on an element must be ohtained through locks on
one or wore replicas. The majority locking method requires a read- or
write-lock onr a'majority of the replicas to obtain a global lock. Alterna-
tively, we may allow a global read lock by obtaining a read lock on any
copy, while allowing a global write lock only through write locks on every
cOpY.

4+ Peer-to-Peer Networks: These networks consist of independent, autono-
mous nodes that all play the same vole in the network. Such networks are
generally used to share data among the peer nodes.

4+ Distributed Hashing: Distributed hashingis a central database problem in
peer-to-peer networks., We are given a set of key-value pairs to distribute
among the peers, and we must find the value associated with a given
key without sending messages to all, or a large fraction of the peers, and
without relying on anv one peer that has all the key-value pairs. -

4 Chord Circles: A solution to the distributed hashing problem begins by
using & hash function that hashes both node ID's and keys into the same
me-bit values, which we perceive as forming a circle with 2™ positions.
Keys are placed at the node at the position immediately clockwise of the
position to which the key hashes. By use of a finger-table, which gives the
nodes at distances 1,2,4,8, ... around the circle from a given node, key
lookup can be accomplished in time that is logarithmic in the number of
nodes.

20.9 References for Chapter 20

The use of hashing in parallel join and other operations has been proposed
several times. The earliest source we know of is [8]. The map-reduce framework
for parallelism was expressed in [2]. There is an open-souce implementation
available [6].

The relationship between full reducers and acyclic hypergraphs is from [1].
The test for whether a hypergraph is acyclic was discovered by {5] and [13].

The two-phase commit protocol was proposed in [7]. A more powerful
scheme (not covered here) called three-phase commit is from [9]. The leader-
election aspect of recovery was examined in [4].

Distributed locking methods have been proposed by [3] {the centralized lock-
ing method) [11] {primary-copy) and [12] (global locks from locks on copies).

The chord algorithn for distributed hashing is from [10].
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