
C S 5 6 1 - S P R I N G 2 0 1 2
W P I , M O H A M E D E LTA B A K H

CS561- ADVANCED TOPICS IN
DATABASE SYSTEMS

1

INTRODUCTION & LOGISTICS

HISTORY OF DBMS

•  Database systems have evolved since 70s to
replace the file system w.r.t storing and querying the
data

2

File system DBMS

WHY DBMS ???

Storing and querying the data in file system has many disadvantages

•  Data redundancy and inconsistency
•  Multiple file formats, duplication of information in different files
•  Multiple records formats within the same file
•  No order enforced between fields

•  Difficulty in accessing data
•  Need to write a new program to carry out each new task
•  No indexes, always scan the entire file

•  Integrity problems
•  Modify one file (or field in a file), and not changing the dependent

fields or files
•  Integrity constraints (e.g., account balance > 0) become “buried”

in program code rather than being stated explicitly

3

WHY DBMS (CONT’D) ???

•  Concurrent access by multiple users
•  Many users need to access/update the data at the same time

(concurrent access)
•  Uncontrolled concurrent access can lead to inconsistencies
•  Example: Two people are updating the same bank account at the

same time

•  Security problems
•  Hard to provide user access to some, but not all, data

•  Recovery from crashes
•  While updating the data the system crashes

•  Maintenance problems
•  Hard to search for or update a field
•  Hard to add new fields

4

DBMS PROVIDES SOLUTIONS

•  Modeling of applications semantics and constraints

•  Data consistency even with multiple users

•  Efficient access to the data

•  Data integrity embedded in the DBMS

•  Recovery from crashes, security

5

TRADITIONAL APPLICATIONS OF DBMS

•  Transactional data, banking systems, retail stores,
airline reservations, restaurant systems, etc…

•  Characteristics of these applications
•  Simple and well-structured data
•  No complex relationships or operations
•  Simple data types
•  Querying and reporting is not very complex

6

Given these ingredients è Relational Database Systems
(RDBMS) is a perfect system

EMERGING APPLICATIONS !!!

•  DBMSs are the natural home of the data
•  Because of all DBMSs desired properties

•  But, applications are getting more complex
•  The assumed characteristics of simplicity no longer hold

•  Database management systems have to change and expand
to cope with the new requirements and challenges

•  Tons of research on advanced topics in DBMSs in many
directions
•  New data models and data formats
•  New features and access methods
•  New optimizations and query processing
•  …

7

EXAMPLES OF EMERGING
APPLICATIONS

•  Data Stream Management Systems
•  Data are continuously arriving (no persistency)
•  One-pass main memory processing
•  Load balancing and load shedding

•  Moving objects and spatio-temporal applications
•  Continuous streams of moving objects
•  Data, by definition, has two key dimensions (space & time)
•  Special query types, e.g., range queries, KNN queries

8

EXAMPLES OF EMERGING
APPLICATIONS

•  Scientific Data Management
•  E.g., in biology, chemistry, physics, atmospheric science, etc.
•  Complex data types, e.g., arrays, images, sequences, structures
•  Metadata, annotations and comments about the data
•  Complex processing and workflows
•  Provenance and lineage information

•  Large-Scale Data Analytics and Distributed Processing
•  Massive scale data processing (terabytes and petabytes)
•  Highly distributed and parallel processing
•  New infrastructure and computing paradigms
•  Distributed DBMSs and Hadoop/MapReduce
 framework

9

EXAMPLES OF EMERGING
APPLICATIONS

•  Data Models for Complex Structures
•  Object-oriented data model (OODBMS)
•  Object-relational data model (ORDBMS)
•  Semi-structured data model (XML)

•  Data Integration and Data Mining/OLAP
•  Integrating data from various sources
•  Entity resolution, schema mapping, etc.
•  Discovering hidden knowledge (without the users knowing

what they want)

10

The list goes on and on….

COURSE PLAN AND ROADMAP

•  Touch various advanced topics in database systems

•  Lectures will have two flavors
•  Typical presentations (given by the instructor) covering

book chapters
•  Research-oriented presentations (given by students)

covering research papers

11

COURSE PLAN AND ROADMAP
(WHAT YOU EXPECT TO LEARN)

•  Typical presentations will cover (By instructor)
•  Object-oriented and object-relational data models
•  Semi-structured (XML) data model
•  Distributed and parallel database
•  Active Databases and authorizations
•  Information Integration and OLAP
•  Hadoop and scientific data management

•  Research-oriented presentations (By students)
•  Flexibility based on your interest
•  Suggested areas are:
•  Scientific data management
•  Hadoop/MapReduce Infrastructure
•  Keyword search in database systems
•  Cloud computing
•  Data integration

12

50% of
lectures

50% of
lectures

BRIEF OVERVIEW ON
COURSE’S TOPICS

(Typical Presentations)

13

1- OBJECT-ORIENTED & OBJECT-
RELATIONAL MODEL

•  Relations are the key concept, everything else is
around relations

•  Primitive data types, e.g., strings, integer, date, etc.

•  Great normalization, query optimization, and theory

•  Application are getting more complex
•  CAD: Computer Aided Design, CAM: Computer aided

manufacture

•  Multimedia, document management,
telecommunication

•  What is missing in relational model ??
•  Handling of complex objects and complex relationships
•  Handling of complex data types
•  Code is not coupled with data

•  No inherence, encapsulation, etc.

14

Relational model

Object-Oriented model

1- OBJECT-ORIENTED & OBJECT-
RELATIONAL MODEL

•  Object-Oriented Database (OODBMS)

•  Depends purely on concepts from OO programming, e.g., C++ or
Java

•  Define classes, objects, inheritance, etc.
•  Tries to take some concepts from the relational model, e.g., SELECT

statement
•  New languages ODL (object definition language) & OQL (object

query language)

•  Object-Relational Database (ORDBMS)
•  Still the fundamental concept is ‘Relation’

•  Extend the relational model with concepts from OO programming,
e.g., complex types, inherence, encapsulation, etc.

•  Extended SQL called SQL3 (or SQL-99)

15

!

Introduction to Database Systems 26

Stonebraker’s Application Matrix

No Query Query

Complex Data

Simple Data File System

OODBMS

RDBMS

ORDBMS

Thesis: Most applications will move to
 the upper right.

CHAPTER 4. OTHER DATA IVODELS 4.2. INTRODUCTION TO ODL 137

that suggested by Fig. 4.1. Objects have fields or slots in which values are Example 4.2: In Fig. 4.2 is an ODL declaration of the class of movies. I t
placed. These values may be of common types such as integers, strings, is not a complete declaration; we shall add more to it later. Line (1) declarw
or arrays, or they may be references to other objects. Movie to be a class. Following line (1) are the declarations of four attributes

that all Movie objects will have.
When specifying the design of ODL classes, we describe properties of three

1) c l a s s Movie {
1. Attributes, which are values associated with the object. We discuss the 2) a t t r i b u t e s t r i n g t i t l e ;

legal types of ODL attributes in Section 4.2.8. 3) a t t r i b u t e in teger year;
4) a t t r i b u t e in teger length;

2. Relationships, which are connections between the object at hand and an- 5) a t t r i b u t e enum Film Ccolor,blackAndMite) filmType;
other object or objects.

3. Methods, which are functions that may be applied to objects of the class.
Figure 4.2: An ODL declaration of the class Movie

Attributes, relationships, and methods are collectively referred to as properties.
The first attribute, on line (2), is named t i t l e . Its type is string-a

4.2.2 Class Declarations character string of unknown length. U'e expect the value of the t i t l e attribute
in any Movie object to be the name of the movie. The next two attributes, year

A declaration of a class in ODL, in its simplest form, consists of: and length declared on lines (3) and (4), have integer type and represent the
year in which the movie was made and its length in minutes, respectively. On

1. The keyword class, line (5) is another attribute f ilmType, which tells whether the movie was filmed
in color or black-and-white. Its type is an enumeration, and the name of the

2. The name of the class, and enumeration is Film. Values of enumeration attributes are chosen from a list
3. A bracketed list of properties of the class. These properties can be at- of le'terals, color and blackAndWhite in this example.

tributes, relationships, or methods, mixed in any order. An object in the class Movie as we have defined it so far can be thought of
as a record or tuple with four components, one for each of the four attributes.

That is, the simple form of a class declaration is

c l a s s <name> { ("Gone With the Wind", 1939, 231, color)
<list of properties, is a Movie object. 0

Example 4.3 : In Example 4.2, all the attributes have atomic types. Here is
4.2.3 Attributes in ODL an example with a nonatomic type. We can define the class S ta r by

The simplest kind of property is the attribute. These properties describe some 1) c las s S t a r C
aspect of an object by associating a value of a fixed type with that object. 2) a t t r i b u t e s t r i n g name;
For example, person objects might each have an attribute name whose type is 3) a t t r i b u t e St ruct Addr
string and whose value is the name of that person. Person objects might also {s t r ing s t r e e t , s t r i n g c i ty) address;
have an attribute b i r thdate that is a triple of integers (i.e., a record structure)
representing the year, month, and day of their birth.

In ODL, unlike the E/R model, attributes need not be of simple types, such Line (2) specifies an attribute name (of the star) that is a string. Line (3)
as integers and strings. l i e just mentioned bi r thdate as an example of an specifies another attribute address. This attribute has a type that is a record
attribute with a structured type. For another example, an attribute such as structure. The name of this structure is Addr, and the type consists of two
phones might have a set of strings as its type, and even more complex types fields: s t r e e t and c i ty . Both fields are strings. In general, one can define
are possible. \Ire summarize the type system of ODL in Section 4.2.8. record structure types in ODL by the keyword St ruct and curly braces around

428 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LANGUAGES

Arrows and Dots

OQL allows the arrow -> as a synonym for the dot. This convention is
partly in the spirit of C, where the dot and arrow both obtain compo-
nents of a structure. However, in C, the arrow and dot operators have
slightly different meanings; in OQL they are the same. 111 C, expression
a.f expects a to be a structure, while p->f expects p to be a pointer to a
structure. Both produce the value of the field f of that structure.

If it makes sense, we can form expressions with several dots. For example,
if myMovie denotes a movie object, then myMovie. ownedBy denotes the Studio
object that owns the movie, and mynovie. ownedBy .name denotes the string
that is the name of that studio.

9.1.3 Select-From-Where Expressions in OQL
OQL permits us to write expressions using a select-from-where syntas similar

. to SQL's familiar query form. Here is an example asking for the year of the
movie Gone IVzth the Wind.

SELECT m. year
FROM Movies m
WHERE m.title = "Gone With the Wind"

Xotice that, escept for the double-quotes around the string constant, this query
could be SQL rather than OQL.

In general, the OQL select-from-where expression consists of:

1. The keylvord SELECT follolved by a list of expressions.

2. The keyrvord FROM followed by a list of one or more variable declarations.
d variable is declared by giving

(a) .An expression whose value has a collection type, e.g. a set or bag.
(b) The optional keyn-ord AS, and
(c) The name of the variable.

Typically. the expression of (a) is the extent of some class, such as the
extent Movies for class Movie in the example above. An extent is the
analog of a relation in an SQL FROM clause. However, it is possible to
use in a variable declaration any collection-producing expression, such as
another select-from-where expression.

9.1. INTRODUCTION T O OQL 429

3. The keyword WHERE and a boolean-valued expression. This expression, like
the expression following the SELECT, may only use as operands constants
and those variables declared in the FROM clause. The comparison operators
are like SQL's, except that ! =, rather than <>, is used for "not equal to."
The logical operators are AND, OR, and NOT, like SQL's.

The query produces a bag of objects. We compute this bag by considering
all possible values of the variables in the FROM clause, in nested loops. If any
combination of values for these variables satisfies the condition of the WHERE
clause, then the object described by the SELECT clause is added to the bag that
is the result of the select-from-where statement.

Example 9.2 : Here is a more complex OQL query:

SELECT s.name
FROM Movies m, m.stars s
WHERE m . t i t l e = "Casablanca"

This query asks for the names of the stars of Casablanca. Notice the sequence
of terms in the FROM clause. First we define m to be an arbitrary object in the
class Movie, by saying m is in the extent of that class, which is Movies. Then,
for each value of m we let s be a S t a r object in the set m.stars of stars of
movie m. That is, n-e consider in two nested loops all pairs (m, s) such that m is
a movie and s a star of that movie. The evaluation can be sketched as:

FOR each m i n Movies DO
FOR each s i n m.stars DO

IF m . t i t l e = "Casablanca" THEN
add s.name t o t h e output bag

The WHERE clause restricts our consideration to those pairs that have m equal
to the Movie object whose title is Casablanca. Then, the SELECT clause produces
the bag (~ h i c h should be a set in this case) of all the name attributes of star
objects s in the (my s) pairs that satisfy the WHERE clause. These names are
the names of the stars in the set m,. s t a r s , where m, is the Casablanca movie
object. 0

9.1.4 Modifying the Type of the Result
.A query like Example 9.2 produces a hag of strings as a result. That is, OQL
follows the SQL default of not eliminating duplicates in its answer unless &-
rected to do so. However, we can force the result to be a set or a list if we
wish.

To make the result a set, use the keyword DISTINCT after SELECT, as in
SQL.

ODL & OQL

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

454 CHAPTER 9. OBJECT-ORIENTATION IN QUERY LAXGU-AGES

1) CREATE TYPE MovieType AS (
2 t i t l e CHAR(30) ,

year INTEGER,
3, 4) i n c o l o r BOOLEAN

1 ;

5) CREATE TABLE Movie OF MovieType (
6) REF I S movieID SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

1;

Figure 9.11: Creating a referenceable table

GENERATED" by "DERIVED," then new tuples would get their value of movieID
by some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year from the same tuple.

Example 9.25 : Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S t a r s I n that contains tuples with the keys of
Movie and MovieStar. As an alternative, we may define S t a r s I n to have
references to tuples from these-two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s t a r I D SYSTEM GENERATED

1;

Then, we may declare the relation S t a r s I n to have two attributes, ~vhich
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S t a r s I n (
s t a r REF(StarType1 SCOPE MovieStar,
movie REF(MovieType1 SCOPE Movie

1;

Optionally, we could have defined a UDT as above, and then declared S t a r s I n
to be a table of that type.

9.4.5 Exercises for Section 9.4
Exercise 9.4.1 : Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

9.5. OPERATIONS ON OBJECT-RELATIONAL DATA 455

* b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus-
band and wife.

Exercise 9.4.2: Redesign our running products database schema of Exer-
cise 5.2.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC: Laptop, and P r i n t e r make the model at-
tribute be a reference to the Product tuple for that model.

! Exercise 9.4.3: In Exercise 9.4.2 we suggested that model numbers in the
tables PC, Laptop, and P r i n t e r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

* Exercise 9.4.4: Redesign our running battleships database schema of Exer-
cise 5.2.4 to use type declarations and reference attributes where appropriate.
The schema from Exercise 9.1.3 should suggest where reference attributes are
useful. Look for many-one relationships and try to represent them using an
attribute with a reference type.

9.5 Operations on Object-Relational Data
-111 appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a CDT. There are
also some entirely new operations we can use, such as reference-follo~ving. How-
ever, some familiar operations. especially those that access or modify columns
\\-hose type is a UDT, involve new syntax.

9.5.1 Following References
Suppose x is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t: by two means:

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if x is a reference to a tuple t. and a is an attribute of t, then
x->a is the value of the attribute n in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer-
enced.

Example 9.26: Let us use the relation S t a r s I n from Example 9.25 to find
the movies in which JIel Gibson starred. Recall that the schema is

S t a r s I n (s t a r , movie)

SLQ-99

2-SEMISTRUCTURED (XML)
DATA MODEL

•  Key motivation is the flexibility
•  Schema is not fixed or not known in advance
•  New attributes or optional attributes
•  Different cardinality for different objects

•  Other models have schema, but semi-
structured model is schemaless
•  Data is self-describing through the tagging system

•  XML has two modes
•  Well-formed XML ---No Schema at all
•  Valid XML --- governed by DTD (Document Type

Definition)
•  More flexible than relational or OO models
•  Allows validation and more optimizations and pre-

processing

16

Semi-structured model (Tree—without
relationships, Graph—with relationships)

XML document

2-SEMISTRUCTURED (XML)
DATA MODEL

•  Programming and Query Languages
•  XPath: Path expressions to navigate in a graph of semi-structured data

•  XQuery: extension to XPath by adopting features from SQL

•  XSLT: document transformation to produce another XML document or HMTL document

17

XPath example XQuery example XSLT example

3-DISTRIBUTED AND PARALLEL
DATABASES

•  Traditional Distributed Databases
•  Distributed transactions
•  Distributed concurrency control and two-phase

commit
•  Distributed query processing

•  Hadoop/MapReduce Infrastructure
•  New computing paradigm with high scalability,

flexibility and fault tolerance
•  Storage paradigm (HDFS)
•  Computing paradigm (Map phase & Reduce

phase)

18

Distributed DB

Hadoop Infrastructure

4-INFORMATION INTEGRATION & OLAP

•  Data exist in multiple sources (databases or others)

•  Information integration is about merging (integrating) the data from all these sources
•  Make all data query-able
•  E.g., Kayak (search engine for hotels/flights) integrates data from many sources

•  Three main architectures
•  Federated database

•  Databases are independent of each other
•  But there a communication link between the individual sources

•  Data warehousing:
•  One storage (warehouse) materializing all data (possibly aggregated)
•  Issues of periodic updates

•  Mediation
•  Virtual database (with a virtual schema), has no data
•  It routes a query (after transformation) to each source, and then composes the final answer to the

individual ones

19 Data warehouse Mediation

4-INFORMATION INTEGRATION & OLAP

•  OLAP: Online Analytic Processing
•  Complex queries involving aggregations over one or more

dimensions of the data
•  Touch large amount of data for discovering patterns

•  Two important concepts
•  Star schema: one fact table and multiple dimension tables
•  Data cubes: data aggregated over different dimensions

20

Star schema
Data cubes

COURSE LOGISTICS

21

COURSE MANAGEMENT

•  Web page: http://web.cs.wpi.edu/~cs561/s12/

•  WPI electronic system
•  Blackboard pilot: https://blackboard.wpi.edu/

•  Lectures
•  Tuesday/Thursday: (4:00pm -5:20pm)
•  Location: SL-407

•  Office Hours
•  Tuesday/Thursday: (2:00pm -3:00pm)
•  Location: My office FL-235

•  Course content (slides, presentations) will be available on both
systems

•  Homework submissions, discussions among students, and grading
will be within blackboard system

22

•  No required textbook

•  Depend on slides + papers +
scanned documents that will
be posted

COURSE LOAD

•  Homework (10%)
•  4 short homeworks covering the topics given by the instructor
•  Tentative release dates available on the website

•  Presentation (25%)
•  2 presentations in the semester ---Select dates

•  Reviews & Participation (15%)
•  Will talk more about this task
•  Basically, when another student is presenting, you should go

over the paper and submit a 1-page review
•  Participate in the class discussion

•  Final exam (15%)
•  Covering the topics given by the instructor

•  One semester-long project (35%)
23

LATE POLICY

•  Homework
•  One-day late submission is accepted with 10% off the max

grade.
•  Two-day late submission is accepted with 20% off the max

grade.
•  Beyond that, no late submission is accepted.

•  Reviews
•  No late submission is accepted.
•  Each student may skip at most two reviews without affecting

his/her grade.

•  Policy is available on the website (under Grading tab)

24

PRESENTATIONS

•  Several candidate papers in different areas are available on
the website

•  Select your topic of interest + lecture slot
•  Then discuss with the instructor which paper to cover

•  Paper to be presented should be scheduled at least one week
before the presentation
•  So others can prepare a review

•  First-come-first-served
•  Empty slots will be assigned by the instructor

•  Hints for good presentation are available on the website
(under Grading tab)

25

EXPECTED SCHEDULE

26

REVIEWS

•  When a student is presenting a paper, others are reviewing
that paper
•  Reading and understanding the paper
•  Preparing a 1-page review
•  This process will help the discussion in the lecture

•  Structure of good review
•  Summary (one paragraph 5-10 lines): describe briefly the addressed

problem and main challenges, and the solution.

•  Strong Points (2-3 points): why this work is novel, what is the most

interesting idea behind the solution, does the paper have enough
evaluation and performance measures.

•  Weak Points (2-3 points): what do you think have not been addressed
adequately, possible weaknesses, assumptions that are not practical,
or extensions you think are good.

27

PROJECT

•  Teams of 2 (or 3)

•  Several candidate projects to select from (or come up with new
ideas)

•  Platform to work on:
•  PostgreSQL, or
•  Hadoop

•  Work closely with instructor for continues feedback and directions

•  Study and comparison between different techniques or exploring
new ideas

•  By next Thursday (Jan. 26) groups should be formed and the
project is selected

28

