

Lecture 6 Part 2 JDBC

Objectives

• Discuss setting up JDBC connectivity.
• Demonstrate a JDBC program
• Discuss and demonstrate methods associated with JDBC connectivity

Setting Up JDBC

Before you can begin to utilize JDBC, you must setup ODBC connectivity to the
instance of Oracle that you are connecting to. This is done through the control
panel. Depending upon the version of Windows that you are running, you may find
the ODBC administrator under administrative tools or it may just be an option in the
control panel. Figure 1 shows the main screen of the ODBC administrator.

 Figure 1

I already have Oracle setup. If you do not, you will need to add a User DSN to
connect to Oracle by clicking on Add. Once you do this, the screen shown in Figure
2 (or something similar) will appear:

 Database Programming Fundamentals Page: 1
Lecture 6 Part 2 JDBC

 Figure 2
Please be sure that you select Oracle in OraHome92 and that the driver is for
Oracle 9.2. For Oracle 10g, it will be Oracle in OraHome10g. Click on Finish. A
screen similar to Figure 3 should now appear.

 Figure 3

 Database Programming Fundamentals Page: 2
Lecture 6 Part 2 JDBC

You should specify ORCL as the TNS Service name, unless you are connecting to
another instance of Oracle through your employer (in that case, check with your
DBA.) You should name the data source name Oracle or something similar. Once
you have entered this information, click on Test Connection. A screen similar to
Figure 4 will appear. Enter a valid username and password. If the connection is
successful, you will get a message indicating this.

 Figure 4

Remember the name of the DSN, since this is what you will use to reference tables
in your JDBC programs.

Install J2SE

You should install on your PC the J2SE 5.0 SDK. This can be downloaded from
http://java.sun.com/j2se/1.5.0/download.jsp

Make sure that you select the JDK. If you already have an IDE for Java installed,
you can use this.

Textpad – a handy tool for Java development

If you are not using an IDE for Java, a handy tool is Textpad, which is available for
download at www.textpad.com You can compile and run your Java applications
and applets directly from Textpad.

Java Tutorial

If you are new to Java, it would be worth your time to look at a tutorial on-line. One
such tutorial is available at
http://www.ibiblio.org/javafaq/javatutorial.html#xtocid90007. Ignore the instructions
about installing Java.

JDBC – an Introduction

 Database Programming Fundamentals Page: 3
Lecture 6 Part 2 JDBC

http://java.sun.com/j2se/1.5.0/download.jsp
http://www.textpad.com/

 Database Programming Fundamentals Page: 4
Lecture 6 Part 2 JDBC

Java Database Connectivity or JDBC, is an API which consists of classes written in
Java for connecting to a database. While similar to ODBC, it was developed
especially for Java and provides a means to access databases independent of the
database vendor and platform.

Figure 6 contains a simple JDBC application using our Shore to Shore shipping
case study.

 Figure 6 (display_captain.java)

If you use Textpad, you can compile this directly by pressing the ctrl-1 key
combination. The ctrl-2 key runs the application in an MS-DOS window. Let’s look
at each portion of the code.

 Database Programming Fundamentals Page: 5
Lecture 6 Part 2 JDBC

Setting up the Driver

Lines 1 and 2 are simply importing libraries into our Java program. We must
have java.sql.* in order to use JDBC. For those of you who are not familiar with
Java, line 3 defines our class and line 4 the main function on the class. We then
call the jdbc drivers in line 9 using the Sun drivers (you can also use Microsoft
drivers.) Notice that we “wrap” line 9 in a try/catch. This is Java’s version of
exception handling.

Lines 14-16 prompt the user for the Oracle username and password and store
these to string variables. You could hardcode these values into your program or
also pass them as arguments when you call the Java application.

 Database Programming Fundamentals Page:
Lecture 6 Part 2 JDBC

Open the Connection Class

Line 18 opens up an instance of the connection class, using the driver specified
in line 9. Notice that we specify the name of the DSN as well as the username
and password. The DSN could be setup for any RDBMS, such as Oracle, SQL
Server, MySQL, MS Access, etc. Line 20 creates a new instance of Statement
using the createStatement method. There are three different types of
statements, which we will discuss later.

Create a Resultset

Line 24 creates an instance of a ResultSet called RS. We use the method
executeQuery here to return some information from the captain table. This is

The name of
the DSN
defined in
ODBC
configuration
6

.

similar to a cursor in PL/SQL. Notice in this line that we convert the date to a
character string. Line 28 loops through the resultset using the next() method.
rs.next() will return false when we have reached the end of the result set. The
getString method returns columns in the resultset. In our example, we have
three columns, so we use getString(1) for the firstname, getString(2) for the
lastname and getString(3) for the date of birth. There are other methods for
other types of data, which we will see in our next example.

readString Function

This function, which we will use in many of our examples, reads user input from
the keyboard into a string using the StringBuffer class.

Example 1.1

Let’s look at another example where we return information of different types.
Let’s use the following query, which returns the shipment_id, shipment_date and
shipment_weight, for our ResultSet:

 select shipment.shipment_id,to_char(shipment_date,’MM-DD-YYYY’) as
 shipment_date, sum(weight*quantity) as shipment_weight
 from shipment,shipment_line,item
 where shipment.shipment_id = shipment_line.shipment_id
 and shipment_line.item_no = item.item_no
 group by shipment.shipment_id, to_char(shipment_date,’MM-DD-YYYY’);

 Database Programming Fundamentals Page: 7
Lecture 6 Part 2 JDBC

 Figure 7 display_shpweight.java

Notice that line 32 uses the getFloat method instead of getString since our third
column returned is a number, The results returned from this program are shown in
Figure 8.

 Database Programming Fundamentals Page: 8
Lecture 6 Part 2 JDBC

 Figure 8

We could have written this a bit differently, if we did not know the exact numbers of
the columns that we wanted from the resultSet. In Figure 9, we use the name of the
column instead of the number.

 Figure 9

On Your Own Exercises

Write JDBC code to complete the following queries:

1.1 List item numbers and descriptions for all items that are of the same type as
beans. (On Your Own Exercise 1.1 from Lecture 6 Part 1) The query is
shown below.

 Database Programming Fundamentals Page: 9
Lecture 6 Part 2 JDBC

1.2 For each ship, list the average distance traveled for all shipments of building

materials shipped on the ship.

Passing Login Information as Command Line Arguments

You might not always want to prompt the user for the login name and password.
You can add the username to the DSN, however, you cannot add the password.
Figure 10 shows lines 15 and 16 of example 1.1 changed to use parameters.

 Figure 10

When you run this from the command prompt, you can simply enter the username
and password as arguments. From within Textpad, you need to make sure that you

 Database Programming Fundamentals Page: 10
Lecture 6 Part 2 JDBC

set your preferences to prompt for parameters. The next few figures show the steps
involved to do this.

Leave the
parameters set to
$basename.

s

Once you have configured your preferences, you will th
parameters. Leave $basename in the parameters box
class) and add your parameters after it (make sure that
$basename.)

 Database Programming Fundamen
Lecture 6 Part 2 JDBC

Check thi

en be prompted for the
(this is the name of your
 you have a space after

tals Page: 11

The ResultSet Method and Multiple ResultSets

Table 1 summarizes the methods for the ResultSet class.

Method Returns Description
Next Boolean Moves the cursor (or pointer) of resultset to

the first row. The cursor is initially positioned
before the first row, so you must call next to
access the first record. Returns false at end
of resultset

Close Void Closes resultset
wasNull Boolean Returns true if previous column value read

was null
getString String Retrieves column value of current row in

resultset. Can be passed either the column
number or column name

getXXX Depends on type Same as getString, but for different data
types. For example, there is a getFloat,
getBoolean and getInt methods. See
http://java.sun.com/j2se/1.4.2/docs/api/java/s
ql/ResultSet.html for a complete list

getMetaData ResultSetMetaData Returns metadata on resultset
 Table 1

We can open up more than one resultset at a time and work through each one.
For example, let’s rewrite example 6.1 from Lecture 6 using ODBC. As you may
recall, example 6.1 lists all of the line items for each shipment. Figure 11 shows
the code.

 Database Programming Fundamentals Page: 12
Lecture 6 Part 2 JDBC

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html

 Figure 11 Show_shipmentdetail.java

 Database Programming Fundamentals Page: 13
Lecture 6 Part 2 JDBC

A few things to note here: notice how we declare two instances of Statement (stmt1
and stmt2) Each one will hold a resultset.
An error in your PL/SQL program is called an exception. Exceptions can be caused
Also, notice how we are creating a new resultset each time that we loop through the
outer resultset.

On Your Own Exercise

 2.1 For each captain, produce a list of each shipment that he has been the
 captain of, including the shipment_id, origin, destination, date of shipment
 and date of arrival. The output should look like the following:

NonQuery SQL Statements

In order to execute nonquery SQL statements (such as DDL command, stored
procedures and functions) we need to use one of the following statement object:
 Statement
 PreparedStatement
 CallableStatement

We will take a look at statement and PreparedStatement in this lecture. We will look
at CallableStatement next week.

Statement

We have already used Statement in order to execute SQL queries. We can also
use the Statement to execute a DDL command, such as an insert, create table or
update.

Example 3.1

 Database Programming Fundamentals Page: 14
Lecture 6 Part 2 JDBC

Figure 12 shows the code for a Java application to prompt the user for
information about a captain. This is then added to the captain table. Notice the

use of more exception handling (the try and catch statements). This is needed
to be sure that we have successfully completed the operation.

 Figure 12 insert_capt.java

 Database Programming Fundamentals Page: 15
Lecture 6 Part 2 JDBC

Notice on line 27 that we are using the to_date function to convert the date from
MM/DD/YYYY to an Oracle format.

We can also create tables, delete records and update records using the
Statement object. Figure 13 shows an example of a create_table command.
Figure 14 shows an example of an update command.

 Figure 13 create_inspct.java

 Database Programming Fundamentals Page: 16
Lecture 6 Part 2 JDBC

 Figure 14 Update_Capt.java

 Database Programming Fundamentals Page: 17
Lecture 6 Part 2 JDBC

 Database Programming Fundamentals Page: 18
Lecture 6 Part 2 JDBC

PreparedStatement Object

The PreparedStatement object is used to execute a statement several times with
different parameters. For example, you could insert a series of captains. In this
lecture, we will take a look at a simple example. Next week, we will look at how to
read from a file and insert into a table.

Example 3.2

In our example, we wish to insert a number of captains into the captain table.
Figure 15 shows the code for this. Notice that we first define the prepared
statement with some parameters. We later specify what values those
parameters take and then execute the query.

On Your Own Exercise

3.1 Write a program in Java using JDBC to create a table which has the capt_id,
an origin and destination pair as well as a count of the number of shipments
shipped from that origin and to that destination with that captain. Once the table

 Database Programming Fundamentals Page: 19
Lecture 6 Part 2 JDBC

 Database Programming Fundamentals Page: 20
Lecture 6 Part 2 JDBC

has been created, your program should insert rows for all captains in the captain
table.

Summary

In this lecture, we covered the basics of JDBC including the Statement and
PreparedStatement classes. Next, we will continue with a discussion of the
CallableStatement class as well as using JDBC within applets.

