Accessing XML Data Using SQL

(JDBC Driver for XML)

CS-561 Final Project

Sriram Krishnan

Kevin Menard
1 Introduction

XML is a natural data format for representing hierarchical data relationships. An XML document conveys three important pieces of information:

· Information contained in the data

· Hierarchical relationship between different data fragments

· Ordering of the data fragments

Anytime we talk about converting an XML document into another format, we have to preserve the relationship between the data fragments in order to make sense out of the XML data.
The approach we take in this project is mainly driven by the fact that XML is a very good data format for representing object oriented data. The XML data format can be clearly modeled using composite data pattern.

In XML:

· An element can contain zero or more elements
· An element can contain zero or more attributes
In object oriented data representation:

· An object can contain zero or more objects
· An object can contain zero or more attributes

2 Design

2.1 Project Goal
The goal of the project is to provide a means of querying over an XML document without having to explicitly store the data into an RDBMS. In order to achieve this, based upon the XML Schema, we derive SQL DDL statements and create an implicit database for the document via a lightweight embedded RDBMS. This action is transparent to the user, who will only supply the XML document to the JDBC driver.

In this project, we expect a schema definition for all XML documents; an XML document without a schema definition will not be considered. We support only a restricted subset of the XML Schema which we will present later in this document. Given an XML schema, we will generate a relational schema using the algorithm we propose in this project. We do not ask the user to specify any SQL annotations in the schema.

2.2 XML Schema

An XML Schema file is an XML document used for defining legal building blocks of XML documents that are based off of that schema.
The following are some of the specifications that an XML schema can specify:

· Elements that can appear in an XML document
· Attributes that can appear in an XML document
· Which elements are child elements
· The order of child elements
· Cardinality of child elements
2.3 Design Overview

We will be building an application that will generate a set of relational tables from a specified XML schema definition and subsequently populate the relational tables using data contained in the XML document. SQL queries will be allowed over the relational tables. Implementation of this design is achieved as follows:

· A relational schema will be generated by parsing the input XML schema. The rules for such a translation are described in the next section.

· The relational schema will be materialized using an embedded RDBMS (HSQLDB).

· The relational tables will be populated by parsing the XML document that adheres to the schema.

· Queries issued against the XML document will be executed over the embedded RDBMS.

In this project we will only support and parse a select core subset of the W3C schema definitions. Writing a parser that would process all the specifications of W3C XML Schema will be time consuming and will not fit in this project’s duration. Our solution, however, will still be useful for a large number of tasks.

The remainder of this document discusses our method of generating a relational schema from the XML schema.

Let us consider a simple XML schema:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Note">

 <xs:complexType>

 <xs:sequence>

<xs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>

<xs:element name="heading" type="xs:string"/>

<xs:element name="body" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element></xs:schema>

Representation in object oriented format (pseudo code):

Class Note

{

String to;

String from;

String heading;

String body;

}

Representation in relational format:

Create Table Note

{

to VARCHAR(100),

from VARCHAR(100),

heading VARCHAR(100),

body VARCHAR(100)

};

FIGURE 1 -- XML Schema to SQL DDL

Figure 1 shows the conversion of a simple XML Schema to relational schema. In this case the conversion was simple because the schema is simple and flat. Let us consider a more complicated schema next and use that to describe our relational schema generation algorithm.

2.4 Relational Schema Generation Algorithm:

First we will present the rules, following which we will use the rules on a sample XML document and convert it to relational format.

There are two classes of rules. One class of rules is used for representing XML data in relational format. The second class of rules is used for representing XML relationship in relational format. The first class of rules is presented below:

1. The root element of the XML document becomes a database.

2. All XML elements that have one or more attributes become a table.

3. All XML elements that contain a child element that can occur more than once become a table.

4. All XML elements that can appear more than once (i.e., maxoccurs > 1) become a table.

5. All XML attributes become a column of the table that represents the element.

6. All XML elements that have no attributes, and maxoccurs <= 1 become a column of the table representing the parent element.

7. All element tables created have a column called __key that will act as a primary key. The values for this key will be generated when the relational data is populated.

The above rules define ways to map the XML data to relational format. In any case where a table is created, that table will take on the name of its corresponding element tag name. We still have to define ways to map relationships. The following rules define how relationships between data fragments in XML document are converted into relational format:

1. All relationships are represented by tables.

2. For every data table that is created, there is a relationship table, if the element representing the data table contains directly or indirectly any other element for which we have a table.

3. The name of relationship table is of the form “<Name of the parent XML Element>Has<Name of the child XML element>”

4. The number of columns in the relationship table is always two. One called “LHS” standing for “Left Hand Side” Table and the other one called “RHS” standing for “Right Hand Side” table.

5. Both lhs and rhs have a foreign key constraint that refers to the __key field in their corresponding element table.

Let us apply these rules to the following, more complex XML schema and try to generate relational schema:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="bib">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="book" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element ref="author" maxOccurs="unbounded"/>

 <xs:element name="publisher" type="xs:string"/>

 <xs:element name="price" type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="year" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

 <xs:element name="author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="last" type="xs:string"/>

 <xs:element name="first" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>
Relation schema generated by applying the above rules:

Create database Bib;

Create Table Book

{

__key
NUMBER PRIMARY KEY,

title

VARCHAR(100),

publisher
VARCHAR(100),

price

NUMBER,

year

VARCHAR(100)

};

Create Table Author

{

__key NUMBER PRIMARY KEY,

last

VARCHAR(100),

first

VARCHAR(100)

}

Now the relationship tables:

Create Table BibHasBook

{

lhs
NUMBER FOREIGN KEY Bib(__key),

rhs
NUMBER FOREIGN KEY Book(__key)

};

Create Table BookHasAuthor

{

lhs
NUMBER FOREIGN KEY Book(__key),

rhs
NUMBER FOREIGN KEY Author(__key)

};

The following points explain how we arrived at the relational schema shown above.

· Element “bib” is the root of the XML element and hence it becomes a database for all the tables represented by its subelements.

· Element “book” has a “maxoccurs” value of “unbounded” and hence it becomes a table.

· “title”, “price”, “publisher” are elements under “book”. None of these child elements have any attributes and they can occur only once. Hence they become a field under “book” table.

· “year” is an attribute of “book” and hence it becomes a field in the “book” table.

· Element “author” has a “maxoccurs” value of “unbounded” and hence it becomes a table.

· “last” and “first” are elements under “author” with no attributes and can occur only once. Hence they become a column in “author” table.

· “bib” element contains “book” element. Since both “bib” and “book” elements have a table counterpart, we have a relationship table called “BibHasBook”.

· Similarly the “book” element contains an “author” element. Hence we have a relationship table called “BookHasAuthor”.

The remaining document will be filled in as we implement the project. We will also show some experimental results once we have the project running.

3 Implementation

The system is implemented in Java as JDBC driver, which acts as a façade over the HSQLDB JDBC driver. The JDBC driver, called XMLDriver, uses a URL format of:

xml: xml_schema_filename:xml_filename
In the bundled example application, there is an XML file named PO.xml and a corresponding XML schema file, PO.xsd. Thus, the JDBC driver URL for querying over this document is xml:PO.xsd:PO.xml.

XMLDriver parses the XML schema file and generates SQL DDL statements. Using HSQLDB as a transparent, embedded RDBMS, it materializes tables for the XML elements using the aforementioned mapping. XMLDriver then parses the content of the XML file and fills in the tables. All parsing is done using a SAX parser so that XMLDriver can scale to XML documents of arbitrary length. Likewise, the embedded database is materialized to disk, although it is possible for it to run resident in memory only.

Since XMLDriver is a façade to the HSQLDB JDBC driver, much existing JDBC code can be used to query over an XML document. Below is shown a few running examples using the bundled user application. The purchase order dataset will be used for the examples:

PO.xsd
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>

<xsd:documentation xml:lang="en">

 Purchase order schema for Example.com.

 Copyright 2000 Example.com. All rights reserved.

 </xsd:documentation>

</xsd:annotation>

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

<xsd:element name="comment" type="xsd:string"/>

<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>

<xsd:element name="billTo" type="USAddress"/>

<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="items" type="Items"/>

</xsd:sequence>

<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

<xsd:complexType name="USAddress">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="street" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

<xsd:element name="state" type="xsd:string"/>

<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>

<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

</xsd:complexType>

<xsd:complexType name="Items">

<xsd:sequence>

<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>

<xsd:element name="quantity">

<xsd:simpleType>

<xsd:restriction base="xsd:positiveInteger">

<xsd:maxExclusive value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="USPrice" type="xsd:decimal"/>

<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="partNum" type="SKU" use="required"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

<xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

PO.xml
<?xml version="1.0"?>

<purchaseOrder orderDate="1999-10-20">

 <shipTo country="US">

 <name>Alice Smith</name>

 <street>123 Maple Street</street>

 <city>Mill Valley</city>

 <state>CA</state>

 <zip>90952</zip>

 </shipTo>

 <billTo country="US">

 <name>Robert Smith</name>

 <street>8 Oak Avenue</street>

 <city>Old Town</city>

 <state>PA</state>

 <zip>95819</zip>

 </billTo>

 <comment>Hurry, my lawn is going wild</comment>

 <items>

 <item partNum="872-AA">

 <productName>Lawnmower</productName>

 <quantity>1</quantity>

 <USPrice>148.95</USPrice>

 <comment>Confirm this is electric</comment>

 </item>

 <item partNum="926-AA">

 <productName>Baby Monitor</productName>

 <quantity>1</quantity>

 <USPrice>39.98</USPrice>

 <shipDate>1999-05-21</shipDate>

 </item>

 </items>

</purchaseOrder>

The queries shown here were all entered into the bundled application. Notes on how to build and run it are in the README file included with the source code. The output is formatted to be table-like for convenience, but is actually returned as a ResultSet and can thus be formatted however an author would like.

A simple select query over the XML document can be performed:

SELECT productName FROM item;

PRODUCTNAME

===========

Lawnmower

Baby Monitor

An example of a slightly more complex select statement shown below uses a where clause with a string match:

SELECT * FROM item WHERE partNum LIKE '872%';

__KEY PARTNUM PRODUCTNAME QUANTITY USPRICE COMMENT SHIPDATE

===== ======= =========== ======== ======= ======= ========

1
 872-AA Lawnmower 1 148.95 Confirm this is electric

The XMLDriver even allows joining of elements in the XML document:

SELECT shipTo.state AS ShippingState, billTo.state AS BillingState FROM shipTo, billTo WHERE shipTo.country = billTo.country

SHIPPINGSTATE BILLINGSTATE

============= ============

CA PA

As can be seen, XMLDriver allows easy querying over XML documents using a broad set of SQL. It should be noted that XMLDriver currently can only handle read-only queries. However, the architecture is general enough that adding the ability to update XML documents should is mostly straightforward. We did not do the work due to time constraints.

