
Aert: An Architbcture for Transforming a Passive DBMS
into an Active DBMS

Ulf Schreier’ Hamid Pirahesh Rakesh Agrawal C. Mohan
&reier~forwiss,uni-erJangen.de piraheshOibm.com ragrawaJ@ibm.com mohan@ibm.com

IBM AImaden Research Center

650 Harry Road, San Jose, CA 95120, USA

Abstract
Alert is an extension architecture designed for
transforming a passive SQL DBMS into. an ac-
tive DBMS. The salient features of the design
of Alert are reusing, to the extent possible, the
passive DBMS technology, and making mini-
mal changes to the language and implementa-
tion of the passive DBMS. Alert provides a lay-
ered architecture that allows the semantics of a
variety of production rule languages to be sup-
ported on top. Rules may be specified on user-
defined as well as built-in operations. Both
synchronous and asynchronous event, monit,or-
ing are possible. This paper presents the de-
sign of Alert and its implementation in the
Starburst extensible DBMS.

1 Introduction
Passive database management syst.ems (DBMSs) are
program-dnuen - users query the current stat.e of
database and retrieve the information ctrrrenf/y avail-
able in the database. Active DBMSs, on the other hand,
are data-dn’ven - users specify to the DBMS the infor-
mation they need. If the information of interest is cur-
rently available, the DBMS immediately provides it to
the relevant users; otherwise, the DBMS actively moni-
tors the arrival of the desired information and provides
it to the interested users as it becomes available. Tn
other words, the scope of a query in a passive DBMS is
limited to the past and present data, whereas the scope
of a query in an active DBMS additionally includes fu-
lure data. An active DBMS reverses the control flow
between applications and the DBMS - instead of only
applications calling the DBMS, the DBMS may also call
applications in an active DBMS.

Active DBMS have recently been the focus of much
research [CBB+89, HlM88, MD89, RCBB89, DBBt88.
SLR88, SHP88, SHP89, SJGPQO, WFQO, WCLQl, ZBQO].
The research seems to be aimed at developing new lan-
guage constructs, defining new execution paradigms,

*Current address: AHP Havermann & Partner GmbH,
Robert-Koch&r. la, 8033 Planegg, Germany

ProCedings of the 17th International
Conference on Very Large Data Bases

and devising new implementation techniques. Later, we
survey some of the important results that have emerged.

Alert is an extension architecture, implemented in
the Starburst extensible DBMS [HCL+QO] at the IBM
Almaden Research Center, for experimentation with ac-
tive databases. Rather than starting from scratch, Alert
takes an evolutionary viewpoint and extends a passive
DBMS into an active DBMS. Alert takes advantage of
the passive DBMS services to the extent possible and
adds active elements to them only if necessary. For
example, rather than introducing a new rule language
[WFQO, SJGPQO], Alert introduces active queries to ex-
press triggers and unifies them with the regular pas-
sive queries so that active queries may be -expressed in
SQL with minimal additions to the language; rather
than adding AI techniques like RETE network [For791
or designing entirely new techniques such as the tuple
marking algorithm in [SHP88] for event detection, Alert
employs indexing and query optimization techniques for
the same purpose. Alert recognizes that the next gener-
ation DBMSs will have many features of object-oriented
syst.ems. In particular, the typed database objects may
only be manipulated through the methods defined for
them [ADLQl]. Therefore, rather than limiting the event
monitoring to low-level database operations like SQL
INSERT, DELETE, and UPDATE on base tables as in
[Syb87, ISOQO, SJGPQO, WFQO], Alert allows monitoring
of user-defined operations like hire specified on abstract
objects like views.

Alert proposes a layered architecture as shown in Fig-
ure Figure 1. This architecture has been motivated by
the need for providing efficient support to multiple rule
languages and sharing the same database between them
and non-rule-based applications. Given the commercial
availability and success of several production languages
such as KRL [BW77], OPS5 [ForSl], and KEE [IBM88],
it is undesirable to require all users to use one rule-
processing model. These languages have different se-
mantics Y they have different strategies for conflict
resolution, modularization of rule sets, and execution
modes.

The layered architecture proposed by Alert has a
lower layer, the monifor, that provides the basic ser-

469

PD%%E ALERT
MONtTOR

I

el 00
Figure 1: Architecture

vices. In particular, it provides different communica-
tion protocols between triggering and triggered actions:
synchronous or asynchronous cooperation, deferred or
immediate notification, and execution of the triggered
action in the same or in a different transaction as the
triggering action. Various rule languages form the upper
layer and use the services of the monitor. The desired
execution mode is communicated to the monitor at the
time of rule activation. Language specific operations
such as conflict resolution are not the responsibility of
the monitor - they are carried out in the correspond-
ing language system. This architecture is in contrast, to
an architecture such as that of KEE [IBM88], where thr
data from the database is extracted and cached in the
rules system, and the cache is not shared between the
rule system and the other users of the database.

The rest of the paper is organized as follows. We
present Alert’s extensions to the relat,ional model in Sec-
tion 2. Section 3 presents Alert’s rule language, which is
aslight extension ofSQL with the primitives introduced
in Section 2. Several examples of trigger definitions are
included in this section. This section also presents the
implementation of the Alert rule system in the Star-
burst extensible relational DBMS [HCL+90]. The Alert
monitor component is presented in Section 4. Section 5
discusses related work. We conclude with a summary
and directions for future work in Section 6.

2 Active And Passive Queries

Current relational DBMSs support only passive tables
and passive queries. In standard SQL [ISO90], one can
define a cursor for a passive query specified over one or
more passive tables. Once a cursor has been opened,
successive fetch operations yield tuples satisfying the
query. Following the return of the first EOF (end-of-

Proceediigs of the 17th International
Conference on Very Large Data Bases

file) after all the tuples have been returned, all future
fetches on this cursor yield EOF.

We introduce the notions of ache iables and active
queries. Active tables are append-only tables in which
the tuples are never updated in-place and new tuples
are added at the end. Active queries are queries that
range over active tables. Active queries differ from pas-
sive queries in their cursor behavior. When a cursor is
opened for an active query involving one or more active
tables, tuples added to an active table after the cursor
was opened also contribute to answer tuples. Thus, it
is possible that a cursor opened for an active query gets
an EOF in response to a fetch, but then gets new tuples
in response to future fetches if new tuples are added to
the underlying active tables. A fetch on a cursor opened
for a passive query never returns tuples added to a table
over which the query ranges, after an EOF has been re-
turned. Thus, the active queries are defined over past,
present, and future data, whereas the domain of the
passive queries is limited to past and present data.

The standard SQL fetch can be viewed as a non-
blocking read: if no more tuples are available in the
answer set of the query, the process doing a fetch is not
blocked but is simply returned an EOF. We introduce
a new SQL primitive - fetch-wait - to iterate over
active queries. The fetch-wait corresponds to a blocking
read. The process doing a fetch-wait is returned a tuple
if one is available. However, if the current answer set
is exhausted, the process doing a fetch-wait is blocked
until one becomes available. A fetch-wait returns EOF
only if it is guaranteed that no more answer tuples will
ever be generated.

Thus, by defining asuitable query over an appropriate
active table, the user may monitor events being logged
in the active table by opening the active query and ap-
plying the fetch-wait operation on the resulting cursor.
The user may also monitor events in a polling mode by
applying fetch operations on an opened cursor for an
active query.

An active database contains user-defined active ta-
bles. The user-defined operations are logged in these
tables. As with other database tables, the format of
these tables is the user’s responsibility, and applications
are responsible for adding tuples to these tables. These
tables are akin to journals created by many applications,
such as banking transactions [TPC89].

In addition to the user-defined active tables, the
DBMS creates an active table for every user-defined
passive table. The system automatically logs all the
system-defined operations on a passive table in the cor-
responding active table. These tables are accessible to
the users, and the owner of a passive table is responsible
for the management of the associated active table. In
particular,.the user may truncate old tuples to limit the
size of an active table.

It is possible to define an active query that involves
both active and passive tables. Some of the active tables
in an active query may be system-defined and others
may be user-defined active tables.

470 Barcelona, September, 1991

NO new SQL syntax has been introduced to define
active queries - syntactically they appear identical to
passive queries. The only difference is that an active
query includes at least one active table in its range.
This unification of the language for active and passive
queries is similar to the unification of forward chaining
and backward chaining languages. We will further dis-
cuss this point as part of the discussion on the related
research in Section 5. Due to this unification, active
queries inherit the closure property of standard SQL,
allowing active queries to be defined in terms of other
active and passive queries.

We now give an example to illustrate active queries.
Let there be an active table, journal, defined a6 follows:
Create Active Table journal

(ename string, company string, event string,
purpose string, expenseamount integer,
method-name string, timestamp integer,
transid integer, date integer);

Assume a user-defined operation, expense-claim, de-
fined a6
expenserlaim (ename, expense-amount, purpose, date):

This operation increments the number of trips taken
by an employee, decreases the remaining travel budget
of employee’s department by the expense-amount, and
appends a summary tuple to journal.

We can now define an active query, embedded in an
application program, that retrieves a t,uple whenever an
expense-claim exceeds $1000 a6 follows:
declare Cl cursor for

SELECT ename, purpose FROH journal
WHERE method-name=‘expense-claim’

AND expense-amount > 1000
open Cl;

while (TRUE)
{fetch-wait Cl into :ename, :purpose;
/*This call completes when there is an answer
/*do whatever is desired with the fetched tuple.*/

1
This query first retrieves all the tuples in journal sat-

isfying the given predicate, and t,hen remains open to
receive future appends to journal by the method ex-
pense-claim. Retrieval of the past data can be avoided,
if desired, by using the timestamp column of journal in

a predicate in the Where clause.
Observe that the definition and manipulation of

an active query is identical to the passive standard
SQL query, the only differences being that the active
query has been defined over an active table and t,hc
fetch-vait call is used rather than ietch.

3 Alert Rule System
We have implemented a rule system, henceforth referred
to 66 the Alert Rule System, based on the concept of
active queries introduced in Section 2. This section de-
scribes how Alert rules are defined, activated, and exc-
cuted.

Procwdiigs of the 17th International
Chfemce on Very Large Data Bases

3.1 Rule Definition
Alert rules are production rules that are fired when their
conditions are satisfied. Syntactically, Alert rules are
naned active queries. They are defined by specifying
rule conditions in the SQL FROH and WHERE clauses, and
by specifying rule action6 in the SELECT clause. The
SQL view mechanism is used for naming the rules.

We give Borne example6 of rule6 written in S
9

L en-
hanced with user-defined function6 [HFLP89, I 0901.
We first define a rule cost-vatch that sends mail to Irv,
using the function sbmail whenever an expense claim
for more than $1000 is filed. This rule is specified 88 an
active query over journal. The rule condition is spec-
ified in the WHERE clause. The rule action of invoking
abmail is specified in the Select clause. This action
is performed for each tuple selected by the query. The
rule name is specified in the Create rule clause, that
mimicks the Create viev clause. Here is the rule defi-
nition:
Create rule cost-watch as

SELECT sbmail(‘Irv’,ename)
FROH journal
WHERE method-namez’expense-claim’

AND expenseamount > 1000

A rule, as defined above, is a SQL view. Hence, like
views, it can be referred to in any other query. This
definition unifies rule6 and views.

Since a rule is a query, it can refer not only to base
tables, but. also to views in its definition. It is an impor-
tant feature, given the central role played by view6 in
complex database applications. To illustrate a rule defi-
nition involving views, let us create a view trip-events
on journal, which rovides the public relations depart-

% ment information a out all trips, but hide6 from them
the expense amounts:
Create view trip-events (name, purpose, date, company, even

as
SELECT ename, purpose, date, company
FRO!4 journal
WHERE methodmame=‘expense-claim’

Let us now define a rule on the view trip-events. This
rule informs the public relations department about all
the trips taken by Irv.
Create rule pr-watch as

SELECT shmail(‘prdept’,name, purpose)
FROM trip-events
WHERE name = ‘Irv’

We now give an example that illustrates the clo-
sure property and the rule reuse facility of Alert rule6
by re-using the definition of a condition in two dif-
ferent rules. Suppose Laura has defined a condition,
called laura-condit ion, for checking whether an ex-
pense claim exceed6 $2000. By defining this named con-
dition separately as
Create rule laura-condition as

SELECT ename, expense-amount, purpose
FROM journal
WHERE methodmame=‘expenseclaim’

AND expense-amount > 2000

Idaura can allow others to use the condition without
their knowing exactly what that condition is. Laura

471 Barcelona. September, 1991

can use this condition in a rule, called laura-watch, as
follows:

Create rule Iaura-watch a8
SELECT sbmail(‘Laura’, ename, purpose)
FROH laurarondition

SO cm Irv, who refines it with a stricter condition in his
rule, called irv-wat ch:

create rule irv,watch a8
SELECT sbmail(‘irv’,ename, purpose)
FROH laurarondition
UHERE expenseamount > 5000

Both references to laura-condition use standard SQL
view nesting.

Since Alert rules output data as well as executing rule
actions, they can be nested into quite complex rules.
For example, we can define a rule watch-hierarchy that
causes different levels of management, to be informed,
depending on the amount of travel expenses involved.
If the expense amount is more than $2000 Laura is in-
formed, and if the amount is more than $5000 Irv is also
informed:

Create rule watch-hierarchy as
SELECT sbmail(‘irv’,ename, purpose)
FRO!! irv (ename, expense-amount, purpose) AS

(SELECT ename, expense-amount, purpose,
sbmail(‘laura’,ename, purpose)
FRON journal laura
WHERE laura.method-name = ‘expense-claim’
AND laura.expense-amount > 2nOO
)

WHERE irv.expenseamount > 5000

The conditions of Alert rules can even be a union of
multiple events on multiple tables, as illustrated by the
following major-events rule. It not.ifies the lab director
if an expense-claim with amount more t,han SlOOOO is
filed or if a new department is created. To do this,
it makes use of the system-generated act iw t.ahle for
logging the actions on the passive hblr dept. Thcsr
system-defined tables are accessed using the notat.ion
elog(table, operation).

Create rule major-events as
SELECT sbmail(‘Matisoo’, ‘Significant expense Alert’,

name, amount)
FWt! dt(name, amount) AS

(SELECT ename, expense-amount,
FRO!! journal
WERE method~ame=‘expense-claim’

AND expense-amount > 10000
Union

SELECT deptname, budget
FROH et AS elog(dept,ins)

)

The conditions of Alert rules can also involve joins
of multiple active tables, as illustrat.ed in the following
speech-watch rule. This rule notifies a marketing direc-
tor about the effect of a major speech given by an em-
ployee of a company on the stock of the company. We
assume we have another active table containing stock
transactions.

Proceediigs of the 17th International
Conference on Very Large Data Bases

Create rule speech-watch 88
SELECT sbmail(‘Marketing Director’, name,

stocktype,stockprice)
FRDH trip-events, stock
WEBE trip-events.event=‘Major speech’

AND trip-events.company=stock.etocktype
AND within-week(trip-events.date,stock.date)

This rule returns an employee’s name who has given a
major speech, and information about the stocks traded
within a week of that speech. Observe that both
operands of the join are active tables in this rule. When
a major speech tuple is inserted, the rule joins it with
the stock transaction tuples for the week before, and
when a stock transaction is inserted, the rule joins it
with the major speech tuples for the week before. The
rule sends a notification if there is a match in either
case.

In all the examples considered above, the rule action
was specified to be a scalar function [HFLP89, ISO90].
However, the action can be any SQL DML statement.
The action can also be any general program with embed-
ded active SQL queries in them, including table func-
tions [HFLP89].

3.2 Rtile Activation
Before a rule can fire, it must be activated. We have
added two new SQL commands to activate and deac-
tivate rules. The Activate command takes a named
active query, opens it, and sets up an iteration in the
fetch-wait mode. It also returns a handle that can be
used to deactivate the rule. The Deactivate command
uses the handle to close the query. It is possible to
create several simultaneous activations of a rule since a
SQL query may be opened several times.

With each activation of a rule, it is possible to spec-
ify the attributes of the execution. The user may define
t,he t,ransaction coupling mode, the time coupling mode,
and the assertion mode for the rule execution, if and
when the mile is fired. A rich set of rule execution at-
tributes were identified in HiPAC [CBB+89]. Hdwever,
in HiPAC, the execution attributes are rule properties,
whereas they are activation properties in Alert . Thus,
the same rule may be activated differently by different
users.

The details of the execution modes will be dis-
cussed momentarily, but let us first. give the syntax for
Activate and Deactivate:

Activate
<RuleName>,
Transcoupling = Same 1 Separate,
Timecoupling = Sync 1 Async
Assertion = Immediate 1 Deferred

The Activate command returns a unique rule-id for
each rule activation. This rule-id is used in the
Deactivate command:

DEACTIVATE <rule-id>

412
Barcelona, September, 1991

The defaults for transaction coupling, time coupling,
and assertion mode are Same, Synchronous, and Imme-
diate respectively. We now discuss the details of these
execution attributes:

l Transaction Coupling Mode: Separate, Sam?.

A rule is triggered due to state changes made to
a database by some triggering lransaciion that
causes the rule conditions to become true. From
a DBMS viewpoint, the triggering and triggered
actions are two applications that may be part of
the same or different transactions. The transaction
coupling mode specifies whether the triggered ac-
tion should be executed as part of the triggering
transaction, or as a separate transaction.
The transaction coupling mode Same means that
the triggered action runs as part of the triggering
transaction. For instance, a rule that checks the
limits on the travel expense items should run as
part of transaction of expense-claim method, allow-
ing it to correct any mistakes before it commits.
Separate means that the triggered action runs as
a separate transaction. Suppose there is an active
table containing stock transactions. Stock brokers
may define rules with conditions on price, stock
type, etc, the actions being selling or buying st,ocks.
Potentially, a very large number of such rules may
be defined. A stock transaction may trigger one
or more of these rules. The triggered rules should
perform their actions in a separate transaction.

l Time Coupling: asynchronous, synchronous.
The synchronous time coupling means that if a rule
is triggered due to an action of a triggering t,rans-
action, the action of the triggered rule is executrd,
and the execution control returns t,o the triggcr-
ing transaction only aft,er the completion of tfhe
triggered action. For example, it is desirable to
run synchronously a rule that checks the limits on
spending items in order to detect any errors imme-
diately.
The a-synchronous coupling means t,hnt the t.riggcr-
ing action and the action of any t,riggered transac-
tion runs in parallel. In the stock example ahove,
the broker rules should run asynchronously.

l Assertion Mode: Immediate, Deferred.
The assertion mode immediate means that the rule
is triggered as soon as the rule condition is satisfied.
This mode may be used, for example, to make snrc
that the raise given to an employee is not negat,ive.
The deferred assertion mode is used in conjunction
with the same transaction coupling mode. This
mode means that the rule condition is evaluated
only in a region of a triggering transaction brack-
eted by Begin-assert and End-assert commands.
The Begin-assert and End-assert commands are
similar to the Set constraint on and Set constraint.
off commands in standard SQL. The deferred mode

Proccedigs of the 17th International
Conference on Very Large Data Bases

can be used for enforcing deferred constraints using
rules [MargO].

The same transaction coupling can be used only in
conjunction with synchronous time coupling. Separate
transaction coupling can be used only in conjunction
with asynchronous time coupling. The deferred mode is
applicable only in conjunction with the same transac-
tion coupling mode. However, the immediate mode can
be used in conjunction with both same and separate
transaction couplings.

A much richer set of coupling modes have been pro
posed by the HiPAC project [CB8+89]. We feel that
some of the HiPAC’s coupling modes are not useful
enough to justify their implementation complexity (con-
dition testing in a separate transaction, for example),
and some can be simulated using the coupling modes
proposed here. For example, nested top transaction in
HiPAC is equivalent to separate but synchronous cou-
pling, a combination not directly supported by Alert .
To simulate this coupling, we define a rule with same
and synchronous coupling, and the first action of this
rule creates a new top-level transaction.

3.3 Rule Execution
We now describe the implementation of how Alert rule
system triggers and executes rules. The previous sec-
t,ion explained how one defines and activates Alert rules.
Alert Rule system stores in a catalog the definitions and
activations. The catalog also has some state informa-
tion - for example, if a deferred rule is in the asserting
state or not.

Let us trace the control flow of a rule execution. First,
assume that the rule has been specified with the at-
tributes asynchronous, separate, and immediate modes.
The active query associated with this rule is over the
act.ive table stocli wit,h predicate stocktype=‘IBM’ AND
vafue>$J50. Assume that the stock table is initially
empty. Upon the activation of the rule, the Alert
rule system opens the active query associated with this
rule. At some point, a triggering ticker-tape transac-
tion inserts a tuple in the stock table with values stock-
type=‘IBM’and price=%151 (message (1) in Figure 2).
As a result of this update to the database, Alert mon-
it,or checks the condition of all active queries on this
active table to determine which ones have new data
to process. In our example, the query associated with
our rule qualifies. In general, there might be a set of
such active queries. From the viewpoint of the Alert
rule system, all the rules in this set can be triggered in
some order. Alert. monitor gives the list of qualifying
act,ive queries to the conflict resolver component of the
Alert rule system, which determines the order of execu-
tion (Figure 2, message (2)). The conflict resolver saves
this list and it returns the control immediately to Alert
monitor, which in turn returns the control to the trig-
gering action (messages (3) in Figure 2). The triggering
action’s transaction may now commit. Note that the
t,riggering transaction does not wait for initiation of the
t,riggered rule, making this execution asynchronous.

473 Barcelona, September, 1991

i\J
1 3 cd

FETCH

t t

ACTIVE
\

DBMS

--if5-
Figure 2: Triggering message flow

The conflict resolver chooses a rule to be triggered.
Alert rule system does a fetch on that rule (messages (4)
in Figure 2), causing its qualified tuples to be passed to
the associated action. The processing of this rule stops
when there are no more qualified tuples, resulting in an
EOF to be returned to Alert rule system. Now, the con-
flict resolver can choose the next rule to be processed.
This process of choosing and processing rules continues
until no more rules need to be triggered, in which case
the conflict resolver goes to sleep, waiting for another
message from Alert monitor.

Now, let us examine the control flow for the syn-
chronous, same, immediate case. The triggered rule
must run as part of the triggering transaction. There-
fore, the Alert rule system should open a new active
query for each triggering transaction. But how can the
Alert monitor inform the Alert rule system about this
triggering event caused by a triggering transaction, if no
active query has yet been opened for this rule? To solve
this problem, Alert rule system does an extra open for
the associated active query at the rule activation time,
if the activation mode is synchronous same. No transac-
tion is assigned to this open (i.e., it runs with degree 0
consistency [GLPT76]). N ow, when a triggering transac-
tion changes the database state, the Alert monitor sends
a message to the the conflict resolver, which chooses a
synchronous rule to execute. The rest of the control flow
is similar to the synchronous, separate, immediate case
discussed earlier.

Proceedings of the 17th International
Conference on Very Large Data Bases

For rules activated with the deferred option, Alert
rule system defers execution until the rules are in the as-
serting mode (i.e., between begin-assert and end-assert
commands.). Otherwise, the behavior is the same as for
immediate.

4 Alert Monitor Subsystem

We now describe the implementation of the Alert mon-
itor. The Alert monitor has been implemented as an

extension.to the Starburst DBMS (see Figure 1). The
Alert monitor manages the active tables associated with
passive tables, and monitors changes to the database
state.

The management of active tables is identical to the
management of passive tables, except for insertions. For
active tables, inserts should be done in such a way that
the cursors on these tables see the inserted data. Active
tables are implemented as table queues [PMC+90].

An active table may become the major source of lock
contention. To see why, let us go through an example.
Suppose a stock monitoring rule referencing table stocli
has a predicate: stocktype=‘ZBM’, and has been acti-
vated to run as a separate transaction. A large num
ber of tuples that will be appended to stock will not
be of interest to this rule. When DBMS reads a tuple,
a standard locking protocol would require that a lock
be obtained on behalf of the transaction processing this
rule. After the lock is granted, the associated page is
latched for assuring physical consistency [Moh90], the
rule condition is evaluated, the tuple is extracted from
the page (assuming it qualifies), the page is unlatched,
and the qualified tuple is returned.’ This approach of
acquiring a lock before evaluating the predicates has
some serious drawbacks. Assuming that many transac-
tions are .concurrently inserting tuples into stock, the
rule which is trying to read these inserted tuples has to
wait frequently for write locks held by these inserting
transactions. Furthermore, after the locks are granted,
a large number of the tuples would be found to belong to
non-IBM stocks and waiting for such locks would turn
out to have been totally unnecessary.

To avoid this problem, we slightly extend the concur-
rency control protocols for such read accesses for active
tables. The rule reads a tuple by latching the page,
accessing the tuple, and evaluating the predicate with-
out first obtaining a lock on the tuple. If the predicate
is false, then the rule continues to the next tuple. If
no qualifying tuple is found on the page, then the rule
unlatches the page and continues to the next page. If
the rule finds a qualified tuple, then it requests a lock
on the tuple. This technique is an enhancement of the
technique of postponing locking to the time after pred-
icate evaluation, proposed in [Moh90]. With this en-
hanced method, the rule gains significant performance
by avoiding unnecessary wait for locks on unqualified

’ For further optimization, the page can be kept under the
latch until a qualified tuple is found or the scan of this page
is finished, whichever happens first.

474 Barcelona, September, 1991

tuples. Avoiding locking under these conditions is not
only a concurrency advantage, but also a performanct
advantage because acquiring and releasing a lock costs
hundreds of instructions,

The intuitive reasoning for why the above simple and
effective scheme works is as follows. If a tuple qualifies,
then we get a lock. This is what standard locking would
have done. If a tuple does not qualify and it is not in
the committed state, then two things can happen to it,:
either the changes will be committed, or the inserting
transaction will rollback, thereby resulting in the tuple
being eliminated. If the transaction were to commit.
subsequently, then our decision made without locking
will turn out to be the same as the one that would have
resulted from waiting for the lock: still the tuple does
not qualify. If the transaction were to rollback, then
there would not be any inconsistencies between the two
decisions. Note that we need to consider only insert and
undo of insert since update operations are not allowed
on active tables’ tuples .2 Even in the case of tuples
which qualify, we may be able to avoid locking by mak-
ing use of the Commit-LSN idea presented in [MohOO].

As explained in Section 2, an active query may re-
ceive an EOF and later do fetch-wait and receive more
tuples. Passive queries close their cursors once an EOF
is encountered. Hence, we need to enhance DBMS op-
erators for active queries. In Starburst, this problem is
solved by decoupling the closing of cursors and return
of EOF. Hence, low level operators may return EOF,
and then when they are called again, they may return
a tuple. For instance, the union operator returns EOF
when all of its operands return EOF. Lat,er on, when it
is activated again, it does fetch on all of it,s operands,
and returns any newly fetched tuple.

For fetch-wait, the Alert monitor must do efficient
monitoring of data changes and filt,erjng of the changes
that are irrelevant to an active query. We do two lev-
els of filtering: the first level filtering only deals with
changes at the table level, whereas the second level fil-
tering deals with changes at t.he tuple level. WP now
provide some filtering details.

An active query references a set, of active tahlcs,
and only changes to these tables can affect this ac-
tive query. The Alert monitor creat.es a Starburst at.-
tachment [LMP87] f or each active table the rules refer
to. The Starburst data manager sends a message to
the Alert monitor whenever there is a change affect.ing
such tables. The Alert monitor keeps, for each active
query, a list of active tables that it refers to. For first
level filtering, the Alert monitor uses this list to decide
which active queries might be affected by a change to
the database.

‘We use this locking scheme only if the cursot is not part
of a universal quantification, such as ALL subqueries. For
universal quantification, lack of existence of a tuple is sig-
nificant, hence we must know if the inserting transaction
commits 01 rolls back before we can proceed. This is not
a drawback since rules typically do not contain universal
quantification.

Proceedings of the 17th International
Conference on Very Large Data Bases

The tuple-level filtering is more complex. Varia-
tions of RETE networks [For791 have been used in ac-
t.ive DBMSs to perform this kind of filtering. Instead
of extending RETE to apply in a concurrent/shared
database environment, we are extending database in-
dices to perform the task of prefiltering for active
queries.

Let us consider an example. Suppose (1) we define an
act.ive query with condition stocktype=‘ZBM’ on stock
and (2).we want to avoid doing a complete scan of stock
to answer this query, then we may create an index on
the column stocktype of stock. Whenever the DBMS
inserts a tuple into stock, an entry will be added to
this index. If this entry has stocktype=‘ZBM’, then we
can conclude that our rule might be affected. As stated
earlier, active queries must see future appends. Let us
see how an index manager can be extended to support
this requirement. Suppose we use a variant of the B+-
tree index. When we insert a tuple into active table
stock with stocktype=‘IBM’, we need to add the TID of
this tuple to the end of the list of TIDs already present
in the index that are associated with this key value.
As a result, the active cursor on this index will see the
new appends in the future. Further, when the cursor
reaches the end of this list, it will stay there, so that it
can read new TIDs when they are appended to the list.
We can also use a hash index to achieve the same effect.
Associated with a hash key value, there is a list of TIDs,
and new TIDs must be appended to this list, similar to
the B+-tree case. Note that the index is shamd among
rules, active and passive queries.

We are investigating the extension of indices to sup-
port more complex predicates on active tables, such as
range and join predicat,es. Postgres is also investigating
a variant of B+ trees to handle range predicates [KS91].
[HCKW90] discusses another approach for handling of
range predicates; however, unlike our index, this index
cannot be used for passive queries.

5 Related Work

This section briefly surveys the related work in this area
and contrasts our approach with previous efforts. The
HiPAC project [CBB+89] at CCA addressed several im-
portant issues and put forward several important re-
sults. The HiPAC work was not done in the context
of a particular DBMS or a particular data manipula-
tion language, and the results were not implemented
in an integrated comprehensive system prototype. The
HiPAC project used the relational model for the over-
all framework and the nested transaction model as the
framework for the execution of rules. The paradigm of
event-condition-action is used to express rules, where
events can be built-in or user-defined. However, there
is no such concept as set of events that one can refer to.
In contrast, Alert has formalized events aa first class tu-
ples of active tables, which can be queried using the rela-
tional query language. Fteuse of the relational language
for this purpose has greatly simplified our event speci-

415
Barcelona. September, 1991

fication, particularly event composition, such as union
and joins of active tables. HiPac introduces a special
language to express event composition, HiPac keeps the
changes made by built-in operations to database tuples
in A relations (A&), which are similar to our active ta-
bles for built-in operations on passive tables. However,
Ah% contain only the net-effect of changes, Further-
more, Alert emphasizes user-defined active tpbles, such
as journal in our examples, where method activities are
recorded. In this context, it is not clear what net-effect.
of changes means. For instance, the net-effect of insert
followed by update is insert. But what is the net-effect
of Hire followed by promote?

POSTGRES Rules System (PRS) is an integrated
DBMS/rule system, as opposed to the layered approach
of Alert. The first version of tha.t syst,em’s design
is described in [SHP88]. A second version (PR.S II)
[SHP89, SRH90] is still under development. Alert
rules are based on operations on data (events), whereas
PRS rules cannot refer to operations, This limitation of
PRS has been addressed in PRS II, where the syntax for
rules is more like that of HiPAC; however, events associ-
ated with only update, insert, delete operations can be
specified. PRS and PRS II, unlike Alert,, support, only
synchronous immediate triggers, and there is no explicit’
notion of transaction couplings. In PRS as well as PRS
II, the mechanism used for rule firing is a tuple-marking
algorithm in which special locks are acquired on tuples
whose changes or retrievals would be relevant to one
or more rules. When such data get,s changed, then the
modifying transaction notices the existence of the new
types of locks and triggers the rules. In Alert,, we hsvc
explored the idea of using indices on active tables for
this purpose.

Another effort in the Starburst, project has taken a
somewhat different approach to supporting rules [WF90,
WCL91]. Similar to Alert , it is based on SQL. Unlike
Alert, however, rules can only refer to events associ-
ated with the built-in operations: update, insert, delrfp.
Triggers are deferred and assert.4 at, t.ransact.ion com-
mit time. The database changes arc kept, in transition
logs similar to HiPac’s A Relations or Alert’s active
tables for built-in operations. Unlike Alert, transit’ion
logs are not persistent since they are only used within a
transaction and there is no support for continuation of
transactions after a system crash. An in-memory t,r;ln-
sition Iog storage manager is used f.o mainfain f hr t’ran-
sition logs. The transition log st.oragc manager part.ic-
ipates in transaction rollbacks. Similar t.o HiPac, t.hrre
is a notion of net-effects. However, unlike HiPac, nct-
effects are not associated with transition logs, rather,
they are associated with each rule. The net-effects of
each rule are computed for each rule separat)ely based
on the last time the rule was considcrrd for firing. Iin-
like Alert’s layered architeclurtb, an irlf.cgrarcd rule sxs-
tern/DBMS solution is adopted. There is a built,-in colt-
flict resolver which works based on a user-specified par-
tial order among the rules.

Commercial DBMSs have been introducing support

Proceedings of the 17th International
Conference on Very Large Data Bases

for triggers, at various levels, for sometime, mainly due
to customer needs for better support for integrity con-
straints. As a result, there has been a major effort in
the SQL standard committee [ISO90] to support trig-
gers arid constraints. In the SQL standard, checking
of constraints, such as salary> 0, or existence of a ref-
erential integrity constraint between departments and
employees, is triggered by the DBMS. Users can spec-
ify whether constraints are to be checked at the end of
each SQL statement or to be deferred and checked by an
explicit command, similar to the begin(end) assert com-
mand of the Alert rule system. Support for triggers in
the SQL standard is limited. The trigger events can only
be built-in SQL operations (update, insert, delete) on a
single base table, Triggers over views are not allowed.
Triggers can only be part of the triggering transactions,
and triggers cannot be nested.

Sybase supp0rt.s triggers. Unlike Alert, only one trig-
ger can be associated with an operation on a table. The
action part of a trigger is limited to a sequence of SQL
statements. Further, triggering is limited to one level,
where the triggered actions themselves do not cause trig-
gers to be fired.

KEE [IBM88], a commercial expert system, can in-
teract with DBMSs using KEE Connection. However,
unlike Alert, the emphasis is not on providing an in-
tegrated shared DBMS. KEE extracts data from the
DB and builds a cache, and all the rules are applied
to this cache. KEE provides a unified rule language
for forward and backward chaining. Use of the unified
active/passive query language in Alert is analogous to
this. Forward chaining is analogous to Alert rules ex-
ecuted by triggering. Backward chaining is similar to
using an Alert (nested) rule as a regular query, invoked
by users. KEE rules are on instances of objects (tuples).
Alert rules are set-oriented, in the sense that SQL is set-
oriented, allowing (active) queries to deal with a set of
tuples. KEE’s the rule language does not have the
closure property, support for rule nesting, and creation
of rules on views. Triggering is based only on changes
made by built-in operations. There is no notion of trig-
gering based on invocation of methods.

6 Summary
We presented the design of Alert and its implementa-
t.ion in the Starburst relational DBMS. Alert is an ex-
tension architecture designed for transforming a pas-
sive SQL DBMS into an active DBMS. The salient
feature of t,he design of Alert is the reuse to the ex-
tent possible the passive DBMS technology and minimal
changes to the language and implementation of the pas-
sive DBMS. Alert provides a layered architecture that
allows t,he semant,ics of a variety of production rule lan-
guages t,o he supported on top. Rules may be specified
on user-defined a.5 well as built-in database operations.
Both synchronous and asynchronous event monitoring
are possible.

The Alert approach of reusing passive DBMS technol-

476 Barcelona, September, 1991

ogy paid-off handsomely in its implementat.ion. By hav-
ing a rule language that is basically identical to the pas-
sive SQL, we reused almost all of the existing semantic
checking, optimization, and execution implementations.
By using active queries to specify rules and unifying ac-
tive queries with passive queries, we developed a rule
language that inherits the rich set of SQL construct,s
to specify arbitrarily complex rule conditions involving
multiple tables, nesting of query expressions, and par-
ticularly the closure property. By modeling events as
tuples in active tables, we reused most of the storage
management of regular tables to keep track of sets of
events. We could use database indices and query opti-
mization techniques for event detection. We could also
translate large body of concurrency control and recovery
knowhow for contention reduction and use of product.ion
rules in a shared environment.

Several issues need to be further explored in the con-
text of our approach to adding active DBMS capabili-
ties to a passive DBMS. These include extension of ef-
ficient monitoring of changes using indices, particularly
for range predicates, concurrency control issues involv-
ing already executing transactions and rule activations,
multi query optimization of active queries associat,ed
with rules, and parallel execution of conditions and ac-
tions.

7 Acknowledgements

We would like to acknowledge George Lapis for implc-
menting the DDL for active tables and creating at.t arh-
ments for Alert. John McPherson’s insight. in defining
Starburst operator protocols so that. they can cont,inlrr
after returning EOF made Alert. feasible. IIruw I,inds;ly
and John McPherson implemcnt,ed the union operator
that made it possible to specify Alert, rules involving
union. We would also like to thank Guy Lehman for
many useful discussions on the Alert concepts and for
his suggestions for some of the examples of Alert, rules
presented in this paper. Thanks are also due to Laura
Haas and Guy Lohman for their comments on an earlier
version of this paper.

References

(ADLSl] R. Agxaual, L. G.
DeHichiel, and B. G. Lindsay. Poly-
glot: An Object-Onentcd T,ype Sy.stem for
Multt-Language Support. Technical Re-
port, IBM Almaden Research Cent,er, 1991.
under preparation.

[BW77] D. G. Bobrov and R. Uinograd. A n
Overview of h’RL, a h’nowledge Reprcsen-
tation Language. Cognitive Science, 1:s.
46, 1977.

[CBBt89] S. Chakravarthy, B. Blaustein,
A. B~~hmann, N. Carey, U. Dayal,
D. Goldhirsch, M. HSU, R. Jauhari,
R. Ladin, N. Livny, D. McCarthy,

Proceedings of the l’hh International
Conference on Very Large Data Bases

[DBB+88]

[For791

[For811

[GLPT76]

[HCKW90]

[HCL+90]

(HFLP89]

[HLM88]

[IBM881

477

i-L. McKee, and A. Rosenthal. HiPA C:
A Research Project in Aciive, Time-
Constrained Database Management - Final
Techntcal Report. Technical Report XAIT-
89-02, Xerox Advanced Information Tech-
nology, July 1989.

U. Dayal, 8. Blaustein,
A. Buchmann, 0. Chakravarthy,
H. Hsu, R. Ladin, D. !4cCarthy,
A. Rosenthal, S. Sarin, N. Carey,
M. Livny, and R. Jauhari. The HiPAC
Project: Combining Active Daiabases and
Timing Constraints. ACM-SIGMOD
Record, 17(1):51-70, March 1988.

C. L. Forgy. On the Efficient Im-
plementation of Production Systems.
PhD Thesis, Department of Computer Sci-
ence, CMU, February 1979.

C. L. Forgy. OPS5 User’s Manual. Tech-
nical Report CMU-CS-81-135, Carnegie-
Mellon University, 1981.

J. Gray, R. Lorie, G. Putzolu, and
I. Traiger. Granularity of Locks and De-
grees of Consistency in a Shared Database.
In G . Ni jssen (Ed. > , Modeling in Data
Base Management Systems, pages 365-
394. North-Holland, Amsterdam, 1976.

E. Hanson,
H . Chaabouni, C. Kim, and Y. Wang. A
Pr-edzcatc Matching Algorithm for Database
Rule Systems. In Proc. ACM-SIGMOD
International Conference on Manage-
ment of Data IPro90aJ.

L. Haas, W. Chang, G. Lehman,
J. HcPherson, P. Wilms, G. Lapis,
B. Lindsay, H. Pirahesh, H. Carey,
and E. Shekita. Starburst Mid-Flight: As
the Dust Clears. IEEE Transactions
on Knowledge and Data Engineering,
pages 143-160, March 1990.

L. H. Baas, J. C. Freytag,
G. M. Lehman, and H. Pirahesh. Exten-
sible Query Processing in Starburst. In
Proc. ACM-SIGMOD International
Conference on Management of Data
[Pro89], pages 377-388.

N. HSU, R. Ladin, and D. McCarthy.
An Execution Model for Active Data Base
Management Systems. In Proc. 3rd In-
ternational Conference on Data and
Knowledge Bases - Improving Usabil-
ity and Responsiveness [ICD88].

IBM. IBM Knowledge Engineering
Environment/370 (KEE/370), User’s
Guide, Release 1, Document No. SC26-
4540, December 1988.

Barcelona, September, 1991

[ICD88]

[ISO90]

[KS911

[LMP87]

[Mar901

[MD891

[Moh90]

[PMC+90]

(Pro891

(Pro90aj

[Pro90b]

[RCBB89]

Proc. 3rd International Conference
on Data and Knowledge Bases - Im-
proving Usability and Responsive-
ness, Jerusalem, June 1988.

ISO-ANSI. ISO-
ANSI Workrng Drafi: Dafabasr Languagr
SQL2 and SQLS; X3H2/90/39R; ISO//EC
JTCl/SC.??l/WG3, 1990.

C. Kolovson and H. Stonebraker. Seg-
mented search trees and their appltcalron to
databases. Technical Report, 1991. under
preparation.

B. Lindsay,
J. HcPherson, and H. Pirahesh. Data
Management Extension Architeciure. In
Proc. ACM-SIGMOD International
Conference on Management of Data.
pages 220-226, San Francisco, May 1987.

V. Harkoaitz. Referenltal fniegnly Revts-
iled: An Objec&Onenled Perspecltue. ln
Proc. 16th International Conference
on Very Large Data Bases [Pro90b].

D. McCarthy and U, Dayal. The Archr-
lecture of an Active Database Management
System. In Proc. ACM-SIGMOD In-
ternational Conference on Manage:-
ment of Data [Pro89].

C. Hohan. Commtl-LSN: A Nourl and
Stmple Method for Reductng Locktng and
Latching in Transaction Processing Sys-
lens. In Proc. 16th International
Conference on Very Lakge Data
Bases [Pro90b]. Also available as IBM
Research Report RJ7344, IBM Almaden
Research Center, February 1990

H. Pirahesh, C. Hohan, J. Cheng,
T. Liu, and P. Selinger. Parallelism zn
Relational Data Base Systems: Archlter-
lural Issues and Desrgn Approaches. In
Proc. 2nd International Symposium
on Databases in Parallel and Dis-
tributed Systems, Dublin, July 1990.

Proc. ACM-SIGMOD International
Conference on Management of Data,
Portland, May-June 1989.

Proc. ACM-SIGMOD International
Conference on Management of Data,
Atlantic City, May 1990.

Proc. 16th International Conference
on Very Large Data Bases, Brisbane,
August 1990.

A. Rosenthal, S. Chakravarthy,
B. Blaustein, and J. Blakely. Silua-
lion Monl2on’ng for Active Databases. Jn
Proc. 15th Internatioual Conference

Proceedings of the 17th International
Conference on Very Large Data Bases

[SHP88]

[SHP89]

[SJGP90]

[SL R88]

[SRH90]

[SW71

[TPC89]

[wCL91]

Pw

[ZB90]

478

on Very Large Data Bases, Amsterdam,
August 1989.

M. Stonebraker, E. Hanson, and
S. Potamianos. The POSTGRES Rule
Manager. IEEE Transactions on Soft-
ware Engineering, 14(7):897-907, July
1988.

H. Stonebraker,
H. Hearst, and S. Potamianos. A Com-
mentary on the POSTGRES Rules Sys-
tem. ACM SIGMOD Record, 18(3):5-
11, September 1989.

U. Stonebraker, A. Jhingran,
J. Goh, and S. Potamianos. On Rules,
Procedures, Caching and Views in Data
Base Sys2ems. In Proc. ACM-SIGMOD
International Conference on Manage-
ment of Data [Pro9Oa].

T. Sellis,
C.-C, Lin, and L. Raschid. Implemenl-
tng Large Produc2ion Systems in a DBMS
Enutronmenl: Concepts and Algorithms. In
Proc. ACM-SIGMOD International
Conference on Management of Data,
pages 404-412, Chicago, June 1988.

H. Stonebraker,
L. Rowe, and H. Hirohama. The Imple-
menfaizon of POSTGRES. IEEE Trans-
actions on Knowledge and Data Engi-
neering, 2(l), March 1990.

Sybase, Inc. Transact-SQL User’s
Guide, 1987.

TPC benchmark group. TPC Benchmark,
A Drafl 6-PR Proposed Standard, 1989.
Available from ITOM International
co.) POB 1450, Los ,Altos, CA 94023.

J. Widom, R. J. Cochrane, and B. G.
Lindsay. Implementing Set-Oriented Pro-
duction Rules as an Extension 20 S2arbursl.
Research Report RJ 7979, IBM Almaden Re-
search Cknt.er, February 1991.

J. Widom
and S. Finkelstein. Set-Oriented Pro-
duction Rules in Relational Database Sys-
tems. In Proc. ACM-SIGMOD Inter-
national Conference on Management
of Data [Pro90a], pages 259-270.

D. R. Zertuche and A. P. Buchmann.
Execufion Models for Active Database Sys-
tems: A Comparison. Technical Memoran-
dum TM-0238-01-90-165, GTE Laborato-
ries, 1990.

Barcelona, September, 1991

