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ABSTRACT
Stream processing applications have recently gained signifi-
cant attention in the networking and database community.
At the core of these applications is a stream processing en-
gine that performs resource allocation and management to
support continuous tracking of queries over collections of
physically-distributed and rapidly-updating data streams.
While numerous stream processing systems exist, there has
been little work on understanding the performance charac-
teristics of these applications in a distributed setup. In this
paper, we examine the performance bottlenecks of streaming
data applications, in particular the Linear Road stream data
management benchmark, in achieving good performance in
large-scale distributed environments, using the Stream Pro-
cessing Core (SPC), a stream processing middleware we have
developed.

First, we present the design and implementation of the
Linear Road benchmark on the SPC middleware. SPC has
been designed to scale to tens of thousands of processing
nodes, while supporting concurrent applications and mul-
tiple simultaneous queries. Second, we identify the main
performance bottlenecks in the Linear Road application in
achieving scalability and low query response latency. Our
results show that data locality, buffer capacity, physical al-
location of processing elements to infrastructure nodes, and
packaging for transporting streamed data are important fac-
tors in achieving good application performance. Though we
evaluate our system primarily for the Linear Road appli-
cation, we believe it also provides useful insights into the
overall system behavior for supporting other distributed and
large-scale continuous streaming data applications. Finally,
we examine how SPC can be used and tuned to enable a very
efficient implementation of the Linear Road application in a
distributed environment.
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1. INTRODUCTION
With the widespread use of digital systems, there is an

emerging set of applications that involve processing of high-
volume, continuous data such as text and transactional data,
digital audio, video and image data, instant messages, net-
work packet traces, and sensor data, for purposes such as
filtering, aggregation, and correlation. The Stream Process-
ing Core (SPC) [6] is a distributed stream processing mid-
dleware designed with the goal of supporting such stream
data processing applications over large-scale configurations.
SPC provides a new application execution environment for
user-developed processing elements that ingest, filter, and
most importantly, analyze data streams.

There exists a large body of work on stream processing
systems such as Aurora [18], Borealis [5], TelegraphCQ [11,
14] and STREAM [8]. However, there are significant differ-
ences in the goals and architecture of the SPC and these sys-
tems. SPC has been designed to support distributed, large-
scale stream mining applications. The distinguishing fea-
tures of the SPC architecture are dynamic application com-
position, stream discovery, and reuse across applications.

Although there has been a lot of interest in the field of
distributed stream processing, there is a dearth of good
benchmarking tools, in particular, application and low-level
system-benchmarking tools. An exception is the Linear Road
benchmark [9] developed by the Aurora and the STREAM
teams, which focuses on application-level performance. Lin-
ear Road is a streaming data benchmark that can be used
to compare the performance characteristics of stream-based
data management systems (SDMS) relative to each other
and to alternative (e.g., relational database) systems. In
essence, the benchmark is designed to evaluate the perfor-
mance of a given SDMS in processing high-volume contin-
uous and historical queries without violating their accuracy
and real-time query response requirements.

What distinguishes our work from previous implementa-
tions of Linear Road are two key aspects. First, we evaluate
the SPC using the Linear Road application employing mul-
tiple distributed configurations. Second, we study and focus
on the behavior of the streaming infrastructure support for
large-scale continuous and historical queries in terms of scal-
ability, latency, and resource utilization, among others. In
this paper, we restrict ourselves to describing and evaluating
the SPC support for the Linear Road application, though
many of our design decisions and performance results are
potentially pertinent to other streaming applications that
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require distributed and large-scale continuous query process-
ing.

This paper makes two important contributions: (1) We
demonstrate a highly scalable distributed implementation of
the Linear Road application, and (2) We highlight the im-
portance of addressing performance bottlenecks and tuning
the stream processing middleware in order to adapt to the
application requirements and to the runtime environment.
To the best of our knowledge, this is the first large-scale per-
formance study analyzing system bottlenecks in a streaming
data application.

This paper is organized as follows. Section 2 describes
the related work. In particular, we briefly highlight the key
features and differences between SPC and other streaming
systems highlighted in order to set the stage for the perfor-
mance evaluation we conducted. Section 3 provides a brief
architectural overview of the SPC, describing some of its key
system design features. Section 4 presents background de-
scription of the Linear Road benchmark. Section 5 describes
the prototype implementation of the Linear Road applica-
tion using SPC. Section 6 covers the extensive experimental
evaluation of the application and the middleware to provide
better performance. And, finally, Section 7 summarizes our
findings and describes some of the ongoing work in terms of
improving the SPC middleware architecture, as a result of
our experimental study.

2. RELATED WORK
Recently a large number of projects have aimed at sup-

porting streamed data processing. DataCutter [10] is a mid-
dleware for decomposing applications into processing filters
responsible for implementing subset and reduction opera-
tions over streams. Here, the operators are well known
with predictable performance, and the connections between
application components are determined statically, i.e., be-
fore the application is deployed. StreaMIT [13, 17] creates
streams based on compile-time connection determination
and does not accommodate dynamic application composi-
tion. A different approach is employed by stream process-
ing systems such as TelegraphCQ [11, 14], Aurora [4], Bo-
realis [5], and STREAM [8] where significant progress has
been made in providing support for streamed data manipu-
lation from a database-centric perspective. In these systems,
the stream operators correspond to relational operators that
process streams of tuples individually or over windows.

SPC, on the other hand, was designed to address large-
scale (i.e., leveraging potentially thousands of computational
nodes) distributed stream mining applications. It is de-
signed with the assumption that the system is constantly
overloaded with respect to the available resources. For this
reason, SPC has to use resources intelligently in order to
minimize the loss of useful data. A key distinguishing fea-
ture of SPC is dynamic application composition which en-
ables stream connections to be made and broken dynami-
cally as new applications and new data sources join and leave
the system. Further, this dynamic composition renders the
support of apriori query operators having predictable per-
formance useless.

Benchmarks for evaluating stream processing systems are
beginning to emerge and there has been some work in eval-
uating stream processing systems using the Linear Road ap-
plication. Linear Road was first proposed as a stream data
management application benchmark by Arasu et al. [9] and

is a congestion-based tolling application for vehicles on ex-
pressways. The authors reported Linear Road performance
of 2.5 expressways over a pre-release version of Aurora’s
commercial product running on one node. The STREAM [8]
system implemented the benchmark by expressing queries
in Continuous Query Language (CQL) using a single node.
However, their study did not report any performance num-
bers. The Infosphere project [15] also employed the Lin-
ear Road application using STREAM to evaluate quality of
service issues. In a related study [16], the application was
separated into three modules – a data source, a STREAM
server, and a data sink. Although each module was hosted
on a different node, a distributed implementation of the ap-
plication was not employed and the effects of system param-
eters on the performance of the application were not studied.
Moreover, their implementation only provided support for a
small subset of the continuous queries supported by Linear
Road. In comparison, we use SPC to create a completely
distributed version of Linear Road supporting all continuous
and historical queries as well as perform a detailed study of
the effects of some of the system parameters such as buffer
sizes, system overheads, and resource allocations on the ap-
plication.

3. SPC ARCHITECTURE
In this section, we first describe the architecture of the

SPC stream processing system and later highlight various
optimizations in SPC to address performance challenges of
streaming applications in Section 3.1.

The Stream Processing Core [6] is a distributed stream
processing infrastructure that provides the architectural sub-
strate and services to enable highly efficient mining of large
amounts of streaming data.

The infrastructure enables the execution of multiple stream-
processing applications simultaneously on a large cluster
of machines. Each application is expressed in terms of a
dataflow graph consisting of processing elements (PEs) that
consume and produce streams of data through input and
output ports, respectively. Each PE processes stream data
objects that it receives, and possibly filters or annotates
them with additional information and publishes them. Each
PE is associated with a PE descriptor that specifies its func-
tion, as well as its input and output ports. The system
supports a model where stream connections are created be-
tween input and output ports based on a publish-subscribe
model. That is, PEs specify the streams that they produce
on their output ports using a stream descriptor and declare
the characteristics of the streams that they are interested
in consuming on their input ports using a flow specification
expression. The system then dynamically determines the
stream connections among the PEs at run-time by match-
ing stream descriptors to flow specifications. This allows
PEs to discover new streams that match their flow speci-
fications as and when these new streams become available,
which is essential for live, sense-and-respond applications.

SPC also allows new applications to reuse streams that are
being produced in the system by other applications. This
can result in significant resource savings and in the ability
to discover useful information from knowledge extracted by
other applications over an ever-changing set of data sources.
The publish-subscribe model and the stream reuse features
enable dynamic application composition, which is one of the
key features that distinguishes SPC from other systems.
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Figure 1: The SPC consists of various compo-
nents that together provide services to run stream-
processing applications.

Figure 1 provides an architectural overview of the SPC
system. The main components of the SPC system are:
Dataflow Graph Manager (DGM): The DGM is the
component responsible for determining streaming connec-
tions among PEs. It matches stream descriptions of output
ports with the flow specifications of input ports and per-
forms dynamic application composition, conveying routing
information to the Data Fabric.
Data Fabric (DF): The DF is the distributed data trans-
port component comprising a set of daemons, one on each
node supporting the system. It is in charge of establishing
the transport connections between PEs and moving stream
data objects (SDOs) from producer PEs to consumers. The
DF is also responsible for choosing the appropriate transport
and for making local resource adjustments to achieve appro-
priate flow-balancing among PEs. This is to ensure stable
operation in the face of bursty traffic workloads. The adap-
tive control algorithm used by the Data Fabric is described
in a different study [7].
Resource Manager (RM): The RM determines place-
ment of PEs and periodically makes global resource alloca-
tion decisions (e.g., shares of CPU and network bandwidth
assigned to each processing element) for PEs and streams
based on runtime resource usage measurements gathered
from the DF daemons and the PE Execution Containers.
PE Execution Container (PEC): The PEC is a con-
tainer for processing elements, providing a runtime context
and access to the SPC middleware. It acts as a security
barrier, preventing user-written PE code from adversely af-
fecting the middleware and other processing elements. The
PEC also monitors resource usage on behalf of the Resource
Manager.

We have developed a fully functional prototype of the SPC
that is being stress-tested under different application work-
load profiles on a large Linux cluster employing 85 nodes
interconnected by a Gigabit switched Ethernet network.

3.1 Performance Challenges
Some of the key characteristics of distributed streaming

applications are the large volume of data to be analyzed,

and the high data rates generated by multiple distributed
data sources such as audio and video. Early stages of the
application cull out a lot of noise from the torrents of source
data and later stages in the application perform “deeper”
processing on smaller amounts of data. Hence the process-
ing elements constituting the system range from those that
perform small amount of processing on large volumes of data
to those that perform a large amount of processing on rela-
tively lower volumes of data, leading to a mix of I/O-bound
as well as CPU-bound processing elements. Also, since the
volume of data is high, it is unrealistic for applications to
store the full history of a stream in memory. In that respect,
they are also memory-bound. Given these constraints, the
system has to effectively apportion resources such as CPU,
network bandwidth, and memory such that the overall sys-
tem utility is maximized.

Towards this end, SPC supports many optimizations, some
of which are evaluated in the context of Linear Road in this
paper.

• SDO filtering: Besides the stream-level flow-
specification, PEs can specify a filter expression to sub-
scribe to a subset of stream data objects in streams.
The Data Fabric then filters out unwanted objects at
the source and delivers only the matching SDOs to
PEs, thereby saving resources.

• Events: PEs can subscribe to system events, which let
them know about resource allocation changes, stream
connections to their ports as well as their SDO-filter
expressions. A PE may adapt its algorithm or process-
ing based on this information.

• Dynamic copies of PEs: Since the system uses a dy-
namic stream-connection model using flow specifica-
tions, the application composer or the resource man-
ager can deploy multiple copies of a bottleneck PE and
split the data among the copies based on the values of
attributes in the filter expression.

We refer the interested reader to [6] for additional details on
the SPC architecture.

4. LINEAR ROAD BENCHMARK
Linear Road simulates the traffic characteristics of a sim-

ple urban expressway system using variable tolling where
tolls are calculated based on dynamic traffic conditions such
as traffic congestion and accident proximity. The application
processes an input data stream of position reports specifying
the position of a vehicle on an expressway. The application is
also responsible for answering historical queries (e.g., travel-
time estimation, account balances, etc.) issued by a vehicle
with some fixed probability every time it emits a position
report. Linear Road measures the performance of an SDMS
in terms of the number of expressways that the system can
support while meeting both response time and correctness
requirements of queries.

We first give an overview of the Linear Road benchmark
(Section 4.1), and later describe the associated continuous
and historical queries along with their response time and
accuracy requirements (Section 4.2). More details on Linear
Road can be found in the Linear Road benchmark paper [9]
and the associated web site [2].
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4.1 Linear Road Overview
In the Linear Road benchmark, there are L multi-lane

expressways each 100 miles long, that run parallel to each
other 10 miles apart. Every expressway has four lanes each
in east and west directions: 3 travel lanes (# 1-3) and one
lane for both entry (lane #0) and exit (lane#4) ramps. Each
expressway is divided into 100 mile-long segments in each
direction (east and west), and each segment has 100 entrance
ramps and 100 exit ramps. The entrance and exit ramps for
every segment are each a third of a mile long, and allow
vehicles to accelerate or decelerate. For simplicity, there are
no highways that run north- or southbound. Figure 2 shows
the geometry of a segment of the Linear Road expressway
system.

(0, 0)

Lane 0 (Entrance)

Lane 0 (Entrance)

Lane 4 (Exit)

Lane 4 (Exit)

Westbound

1 mile

Eastbound

Lane 1 (Travel)
Lane 2 (Travel)
Lane 3 (Travel)
Lane 1 (Travel)
Lane 2 (Travel)
Lane 3 (Travel)

W

N

S

E

Segment 0 Segment iSegment 1 Segment 99

Segment i

Expressway 1

Expressway L−1

Expressway 0

(527999, 0)

Figure 2: Geometry of a segment of a Linear Road
Expressway.

The input data to the Linear Road benchmark is gener-
ated by the MIT Traffic Simulator (MITSIM) [1] and stored
in a data file. The traffic simulator generates a set of ve-
hicles, each of which undertakes at least one journey that
begins at an entry ramp in a segment and finishes at an
exit ramp in another segment on the same expressway. For
each trip, the selected source location of a vehicle is uni-
formly distributed over all the chosen ramps on the chosen
expressway. A separate module, the data driver, performs
the task of reading the file generated by the traffic simula-
tor, and feeding the data to an SDMS simulating its arrival
in real-time.

We next provide an overview of the traffic simulator in
Section 4.1.1 and describe the composition of each record
generated by the simulator in Section 4.1.2.

4.1.1 Traffic Simulation
The traffic simulator outputs a position report every 30

seconds for every vehicle v traveling on a given expressway
in the system that identifies v’s coordinates and speed. Ev-
ery position report has a timestamp, which is the number
of seconds elapsed since the start of the simulation. The
simulator limits a vehicle’s maximum speed to 100 MPH to
ensure that each vehicle emits at least one position report
from every segment it travels in. Likewise, every vehicle is
guaranteed to average 40 MPH or less when entering (or
exiting) an expressway and, therefore, it will emit at least

one position report from an entrance (or exit) ramp for each
vehicle trip.

Further, the simulator generates one accident in a random
location on each expressway for every 20 minutes of simu-
lation time. The input data also includes historical query
requests issued by a vehicle with 1% probability every time it
sends a position report. About 50% of the historical queries
comprise account balances, 10% for total daily tolls on a
given expressway, and the remaining 40% for travel time
predictions.

4.1.2 Input Stream Data Format
The simulator output, comprising of the vehicles’ position

reports and historical queries is stored in the form of records
in CSV format in a flat data file per expressway. Each record
consists of an ordered set of 15 attributes: Type, Time, VID,
Spd, XWay, Lane, Dir, Seg, Pos, QID, Sinit, Send, DOW,
TOD, and Day. Type determines the type of the query (0:
position report, 2: account balance, 3: daily expenditure, 4:
travel time), Time (0 . . . 10799) denotes the simulation time
in seconds, VID (0 . . .MAXINT) is an integer vehicle iden-
tifier, Spd (0 . . . 100) denotes a vehicle’s speed in MPH, and
XWay (0 . . . L-1), Lane (0 . . . 4), Dir (0,1), Seg (0.99), Pos (0
. . . 527999) describe a vehicle’s global coordinates in terms
of the expressway, lane, direction, segment, and position re-
spectively. QID is an integer query identifier (Type=2, 3,
4), and Sinit, Send, DOW, and TOD denote the start and
end segments, the day of the week (1 . . . 7), and the time of
the day in minutes (1 . . . 1440), respectively, for travel time
queries. Finally, Day (1 . . . 69) denotes the day of travel of
the vehicle’s trip (1 is yesterday, 69 is 10 weeks ago) for daily
expenditure queries.

4.2 Query Requirements
The Linear Road benchmark requires an SDMS to pro-

cess a fixed set of continuous and historical queries with
hard real-time query response-latency and accuracy require-
ments. While the continuous queries in Linear Road demand
real-time processing of streaming data, the historical queries
require keeping track of potentially a large volume of past
(10 weeks) and present data for answering queries.

We next describe the continuous queries in Section 4.2.1
and the historical queries in Section 4.2.2.

4.2.1 Continuous Queries
There are two types of continuous queries for computing

toll notifications and accident notifications, respectively. We
briefly discuss each of them below.

Toll Notification: The Linear Road benchmark requires
an SDMS to calculate a toll every time a vehicle reports
a position from a new segment in order to notify the toll
amount back to that vehicle’s driver. The toll at any given
time is computed as a function of the number of vehicles, the
average speed of vehicles on the segment, and the proximity
of accidents. The toll amount for a given segment is notified
to the vehicle on entering the segment but gets charged to
the vehicle’s account when it crosses over to the next seg-
ment. The complete history of toll assessments made to a
vehicle’s account needs to be tracked in order to answer his-
torical queries. The response time for toll notification must
be within 5 seconds between the timestamp of the position
report and the time the toll is notified to the vehicle.
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Accident Notification: An accident occurs if two vehicles
report the same position on an expressway in four consec-
utive position reports. During the accident, the traffic in
the affected segment moves at a reduced speed determined
by the traffic spacing model. The duration of the accident
ranges from 10 to 20 minutes, and it is deemed to be cleared
after either of the involved vehicles emits a position report
different from the accident location. Once an accident is
detected, every vehicle that enters a segment in the vicinity
(within five segments upstream) of the accident must be sent
an accident notification within 5 seconds of its detection.

4.2.2 Historical Queries
The benchmark describes three historical queries: account

balance, daily expenditure, and travel time estimation. The
account balance query for a vehicle v at time t requires the
sum of all tolls assessed to v’s account as of t. This query
must be answered within 5 seconds from the time of query
emission and the returned balance must be accurate at some
time in the last 60 seconds prior to t. The daily expenditure
query requires the sum of all tolls charged to a vehicle’s
account for a given expressway on a given day within 10
seconds of issuance of the query. Finally, the travel time
estimation query demands a prediction of time to travel be-
tween two given segments on an expressway on the basis of
traffic statistics over the previous 10 weeks.

5. PROTOTYPE IMPLEMENTATION
In this section, we describe the design and implementation

of the Linear Road benchmark on the SPC stream process-
ing system. We first present the key design principles for
achieving maximum query performance for Linear Road in
Section 5.1. Many of these principles are in fact general
guidelines which would also be applicable to the design and
implementation of other streaming data applications. In
Section 5.2, we describe the implementation of the Linear
Road query network over SPC which employed these prin-
ciples. Finally, in Section 5.3, we discuss the key differences
between Aurora’s centralized Linear Road implementation
on a single node and the distributed Linear Road implemen-
tation over SPC.

5.1 Design Principles
We applied the following four design principles for imple-

menting the Linear Road benchmark:

Modularity: Linear Road requires processing both con-
tinuous and historical queries which pose the challenge of
complex data interdependencies between different queries.
To bring the complexity under control, we apply modu-
larization around processing steps to provide control and
to share access to common data. In general for stream-
ing data applications, modularity is particularly warranted
for three primary reasons: (a) partitioning the application
into a set of simpler processing elements helps identify and
solve performance bottlenecks as we illustrate in Section 6,
(b) decoupling the potentially large number of relations and
conceptual processing loops in complex applications into
an inter-connected set of independent processing elements
allows manageability and ease of resource allocation, and
(c) enabling a pipelined model of information flow in a dis-
tributed environment for scalability.

Data Aggregation: As the data flows between process-
ing elements, the end-to-end system performance depends
on the total bandwidth consumed in transferring data be-
tween them. To address the challenges of high-volume and
rapidly-updating streaming data, we apply the principle of
aggregating information from multiple stream updates wher-
ever possible before transmitting it down the pipeline. This
results in reduction of network bandwidth for data trans-
mission as well as off-loading a part of the computational
burden of downstream processing elements. Note that data
aggregation is intended as a summarizing mechanism doing
information reduction rather than just concatenating multi-
ple stream data objects into a single one.

Network and Data Locality: In conjunction with the
amount of data exchanged between processing elements, the
query response time also depends on the efficiency of infor-
mation exchange, i.e., the latency incurred in transmitting
data. Therefore, the stream processing system must exploit
(a) network locality to consume data close to where it is
produced, and (b) temporal data locality to re-use data com-
putation results as long as they are valid. In Linear Road’s
implementation over SPC, incorporating network and data
proximity results in low query response latency as we will
show in our experiments.

Flexible Programming Environment: The queries in
Linear Road require rich processing functionality such as
user-defined functions and custom query operators, not sup-
ported by a pre-defined set of relational operators alone pro-
vided by most existing systems. In our implementation, we
rely on SPC’s design where a flexible programming environ-
ment is available, enabling application developers to write
their own query operators and not be constrained by the
limitations of the underlying SDMS.

We next describe the Linear Road implementation on SPC
in detail.

5.2 Linear Road in SPC
We implemented the Linear Road benchmark on SPC

based on the design guidelines presented in Section 5.1. As
we described in Section 3, SPC uses a data graph model of
inter-connected processing elements for constructing queries
over streaming data. The processing element function as
well as its input-output information flows are specified by
the application developer. As in the Aurora implementation
of Linear Road, we did not implement travel time estimation
queries and input for this type of query is ignored.

Figure 3 shows the query network infrastructure compris-
ing 15 processing elements, decomposed functionally. The
data file generated by the traffic simulator is delivered to the
query network by the Generator PE. The Annotator PE acts
both as a forwarding agent for each of the four query types,
and as a replicating agent to feed data to different query
sub-networks. The Sink PE provides a data sink for travel
time estimation queries. The daily expenditure historical
query has been implemented using the HistTolls PE that
reads the input query request, performs a table lookup, and
outputs its results directly. The account balance historical
query is handled by the Tolls PE, which also provides sup-
port for toll notifications. The continuous queries process
their input data, vehicle position reports, using three query
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Figure 3: The Linear Road processing elements.

sub-networks: segment-traffic statistics, accident detection
and recording, and toll calculation and notification.

As previously stated, all the three query sub-networks ex-
hibit the principles of modularity, data aggregation, and net-
work and data locality. Each of the query sub-networks is
a separate module providing a different functionality. Each
sub-network is in turn implemented using a set of process-
ing elements. The processing elements within a query sub-
network are connected in series to perform data aggregation
and exploit data locality wherever applicable. Further, PEs
(e.g., the AccDetect PE described later in Section 5.2.2)
leverage SPC’s flexible programming environment to imple-
ment custom query functions.

We describe each of the three query sub-networks and
their associated PE modules in detail next.

5.2.1 Segment-Traffic Statistics
The segment-traffic statistics query sub-network aggre-

gates vehicle position reports for maintaining the traffic
statistics for every segment of every expressway with dif-
ferent time granularities. This functionality is implemented
using three PE modules: (a) the VehSpeed PE calculates
the running average speed of a vehicle according to all po-
sition reports it emits during a one minute interval and
emits the updated average values downstream, (b) the Seg-
Record PE receives running averages of vehicle speed from
the VehSpeed PE, maintaining the average speed and the
number of vehicles for every segment of every expressway
with 1 minute granularity, and (c) the SegStats PE com-
putes the rolling average of the SegRecord PE output over
the last 5 minutes and writes the statistics to a table, which
is used in toll calculation.

5.2.2 Accident Detection and Recording
The accident detection query sub-network processes po-

sition reports for detecting and recording when vehicles are
stopped, and checks whether the stopped vehicles are in-
volved in an accident. This query sub-network comprises
of the following processing elements: (a) the VehPos PE,
which records and sends an update whenever a vehicle emits
the same position in two consecutive position reports indi-
cating potential accident occurrence, (b) the AccDetect PE,
which uses a custom aggregate function to detect accidents
by examining the last four position readings for each vehicle

update received from the VehPos PE, and (c) the Accidents
PE, which maintains a table for insertion (accident detected),
deletion (accident over), and query (accident exists?) of ac-
cident events. For accident over notifications, the VehPos
PE sends a notification whenever a vehicle involved in an
accident emits an update with a new position different from
the accident location. In our implementation, we also add a
simple optimization of a feedback loop from the AccDetect
PE to the VehPos PE, informing about vehicles in current
accident locations to cull near-future updates of potential
accident notifications for the same location.

5.2.3 Toll Calculation and Notification
The toll calculation query sub-network is responsible for

calculating and emitting tolls for each vehicle as well as
for charging tolls when appropriate. Note that this query
sub-network is also the critical path since the benchmark
performance is measured by the maximum load supported
without violating the real-time query response requirements.
The two PEs implementing toll functionality are: (a) the
VehRecord PE processing each vehicle report to identify ve-
hicles that have crossed into a new segment, and (b) the
Tolls PE issuing a query to both the SegStats PE and the
Accidents PE for every update sent by the VehRecord PE.
If the query response from the Accidents PE indicates that
the vehicle has entered a segment within 5 segments up-
stream of a recent accident then no toll is charged and the
vehicle is notified of the accident location. Otherwise, if the
query response from the SegStats PE indicates traffic con-
gestion1 on the segment in which the vehicle is traveling, a
toll amount for the current segment is notified to the vehicle
and recorded. At the same time, the toll reported for the
segment being exited is assessed to the vehicle’s account.
If the vehicle exits at the exit ramp of a segment, no toll
is charged. The continuous query results (toll notifications
and accident results) as well as the historical query responses
(account balance) are emitted to an output stream.

Note that in our implementation, the tables are stored
as persistent data structures in memory. For permanent
storage, they could be stored in a relational database to
support off-line queries.

5.3 Discussion
Our implementation of the Linear Road application is

fully distributed in contrast to the single-node Aurora imple-
mentation. We would like to highlight the following aspects
of the implementation:

• In a distributed environment, the streaming data pack-
ets can get dropped, reordered, and duplicated. This
departs from Aurora’s model of intra-node communi-
cation receiving all data packets in order. In the con-
text of Linear Road, the unreliable nature of the net-
work can result in missing position reports and queries
that were either dropped or duplicated in the network,
or arrived with timestamp earlier than the current
time.

1Linear Road charges a toll to a vehicle v traveling on a
segment s during time t if all of the following three condi-
tions hold: (1) s has no accidents within 5 segments down-
stream, (2) the average vehicle speed is less than 40, and (3)
the number of vehicles is greater than 50 in the last minute
preceding t.
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• Aurora’s box-at-a-time scheduler is limited by the syn-
chronization primitives to control the order of process-
ing in their query network [9]. In an asynchronous
network, however, no constrains on the PE scheduler
can be enforced; the order in which streaming data is
processed is only governed by the data graph model in
our implementation.

• Aurora uses a query-network model where multiple
processing elements read and write to shared tables.
In SPC implementation, the PE modules emit stream-
data updates to perform read and write operations to
information hosted at different PEs through a well-
defined query interface. Specifically in Linear Road,
the Tolls PE sends a query each to the Accidents PE
and the SegStats PE, and performs toll calculation
based on received responses.

• Aurora’s streaming model provides annotated streams
i.e., multiple stream types by annotating each data
packet with attributes corresponding to that stream.
In the SPC implementation, we provide support for
annotated streams as well as for sending a raw packet
type with stream attributes set in the payload. We
provide an empirical comparison of these two approaches
in Section 6.

• Aurora uses a workflow-like boxes-and-arrows model
where application writer hard-wires the connection be-
tween different boxes. In SPC, each processing element
publishes its output ports descriptions to the network
with stream types so that other PEs can subscribe to
the appropriate output port. Similarly, it specifies a
flow specification expression, which describes the the
particular stream characteristics it expects as input.
Given these output port descriptions and flow speci-
fications, the middleware takes care of automatically
establishing the stream connections between producers
and consumers.

• Finally, in a centralized system like Aurora, perfor-
mance can be enhanced by allocating more resources
to bottleneck PEs but at the risk of other PEs becom-
ing resource-constrained. In contrast, a distributed
stream processing environment such as SPC facilitates
leveraging available network resources for maximum
performance gains.

6. EXPERIMENTAL EVALUATION
In this section, we present the experimental results from

running the SPC implementation of the Linear Road bench-
mark. Although Linear Road proposed L-rating2 as the sole
measure of scalability of a stream processing system [9], we
perform a detailed evaluation study taking into considera-
tion various factors that significantly impact overall system
performance, for example: the number of expressways, the
physical allocation of processing elements to cluster nodes,
the buffer capacities, and the packet format for transporting
streamed data. Further, we examine and present approaches
to alleviate the performance bottlenecks we observed in the
system.

2The maximum number of expressways, L, for which a
system can respond to the specified set of continuous and
historical queries while meeting their response time and ac-
curacy requirements.

6.1 Methodology
We have implemented a fully functional prototype of the

distributed Linear Road benchmark over SPC. Each of the
PEs described in Section 5.2 is implemented as a stand-alone
C++ module, which is compiled and linked with the SPC
runtime library. The experimental testbed is an 85-node
Linux cluster each with a dual-core hyper-threaded 3 GHz
Xeon processor with 2 GB RAM running Linux kernel 2.6.5-
SMP connected using a Gigabit switched Ethernet network.

The MITSIM traffic simulator is employed to generate L
flat files each containing 3 hours of streaming input data
from a single expressway in the benchmark. The data file
contains tuples marked with timestamps reflecting the times
of their generation as described in Section 4.1.2. A historical
traffic generator produces a separate data file consisting of
10 weeks worth of historical data corresponding to the traf-
fic simulator output. This historical data is read off-line by
the HistTolls PE. The Generator PE delivers the streaming
data input in real-time to the Linear Road query network as
described in Section 5.2. The system response is recorded
in an output data file along with the timestamp at which it
was generated. The response time measurements were made
at the application-level and include the queuing delay, the
transmission latency, and the SPC processing overheads. At
the end of the 3-hour data playback, the validation tool from
the benchmark is used to check if the system output meets
the correctness and query response time requirements. Dur-
ing the course of our study, we encountered some bugs in the
traffic simulator and the validator which we would be sub-
mitting along with their fixes to the Linear Road project [2].

6.2 Input Data Distribution
A 3-hour, single expressway worth of input data consists of

about 12 million position reports, about 67000 account bal-
ance, and 14000 daily expenditure query requests. As the
simulation time progresses, the input data exhibits a mono-
tonically increasing distribution with time, ranging from 15
records per second to 1700 records per second. The aim is
to stress-test the SDMS by increasing input data rate with
time to determine the load threshold until which SDMS can
sustain meeting query requirements. Figure 4 shows the in-
put data distribution for one expressway generated by the
traffic simulator.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  2000  4000  6000  8000  10000  12000

N
um

be
r 

of
 r

ec
or

ds
 p

er
 s

ec
on

d

Time (seconds)

Input Data Distribution

Figure 4: The input data distribution.
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The corresponding stream data input received by the Tolls
PE over the 3-hour run, is around 2.2 million tuples includ-
ing the query responses received from the SegStats PE and
the Accidents PE. In terms of the input load from the Gen-
erator PE, the toll calculation and notification query sub-
network, comprising of the VehRecord PE and the Tolls PE
(Figure 3), processes all the position report tuples as well,
with a peak load of about 1700 SDOs per second per ex-
pressway.

We next report the L-rating for the benchmark running
on our system.

6.3 Scale Factor
The SPC system achieves an L-rating of 2.5 for the Lin-

ear Road benchmark running on a single machine. Aurora
also reported an L-factor of 2.5 on their system when run
on a single node [9]. The Aurora source distribution avail-
able from their web site [3], however, does not provide the
implementation of the Linear Road benchmark and we had
to implement the application processing elements ourselves.
Therefore, we do not report Linear Road performance of
Aurora on our experimental testbed for a head-to-head com-
parison.

Here, we make one important distinction from Aurora in
the evaluation of the query response time: instead of choos-
ing an arbitrary fixed response time threshold, e.g., 5 sec-
onds for toll notifications, we focus on the end-to-end query
response latency as a function of the load to study the scal-
ability characteristics of SPC. We still, however, present the
L-rating of SPC for each case wherever it is applicable.

In all the graphs presented in this section, we plot the
end-to-end query response latency (y1-axis) with increasing
load (y2-axis) during the 3 hour period (x-axis). The load is
measured in terms of the total number of tuples received at
the Tolls PE and each point in the graph denotes the average
query response time sampled every 100,000 tuples received.
For all our experiments, we perform the measurements at
the Tolls PE, since this PE assimilates results from all three
query sub-networks to determine the toll and accident noti-
fications, which are the responses to queries placed on the
system. The Tolls PE also turns out to be a contention point
on the critical path as we show in Section 6.4.
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Figure 5: Latency-load measurement for 1 express-
way running all the PEs on a single node.
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Figure 6: Latency-load measurement for 1 express-
way running the Generator PE on one node and
infrastructure PEs on another node.

6.4 Effect of the Number of Expressways
We first describe the performance of Linear Road over

SPC with varying number of expressways. We initially ran
the benchmark as a stand-alone application on a single node
hosting all the PEs, as in Aurora. Figure 5 depicts the query
response latency as a function of load for one expressway.
We observe average and worst-case response times of 2.18
and 2.23 seconds respectively. These are well within the
Linear Road latency bound of 5 seconds, indicating that
SPC scales to one expressway.

Since the Generator PE does a lot of file I/O reading the
raw simulation data and expends CPU cycles converting the
raw data into an SDO representation, we decided to isolate
it by running it on its own, exclusive node. All other in-
frastructure PEs are assigned to a different node. Figure 6
shows the corresponding plot. As expected, the benchmark
performance improves as the average and maximum aver-
age response time drops to 1.67 seconds and 1.79 seconds,
respectively.

Figure 7 depicts the latency and load graph for two ex-
pressways. We run two instances of the Generator PEs, each
assigned to a different node, and all the infrastructure PEs
on a third machine. The experiment shows that the query
response time increases linearly until a load of 2.5 million
tuples corresponding to roughly 6000 seconds (1.67 hours)
of elapsed time in the input data. After that, the response
time flattens out demonstrating that SPC scales to two ex-
pressways.

We next increased the number of expressways to 2.5 by se-
lecting the position reports for the west-bound direction for
one expressway. This configuration shows a response time
of roughly 6 seconds for 2.5 expressways. To understand
the system bottlenecks in achieving higher scalability for
this scenario, we performed detailed system analysis, which
revealed that: (a) the Tolls PE, responsible for generating
query responses, was overloaded and became a contention
point, and (b) the induced load always kept the network
buffer (which as a default has 1024 slots) full at the node
hosting the infrastructure PEs. Therefore, the tuples were
queued at the Generator PEs resulting in each tuple suffer-
ing a large latency. Increasing the buffer size to 10000 (Fig-
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Figure 7: Latency-load measurement for 2 express-
ways running 2 Generator PEs on two different
nodes and infrastructure PEs on another node.
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Figure 8: Latency-load measurement for 2.5 ex-
pressways running 3 Generator PEs on three differ-
ent nodes and infrastructure PEs on another node.

ure 8), however, masks both the network and the remote
queuing latency, and burstiness until a higher load. Further
since more buffered data is locally available for processing in
this configuration, the system is able to handle the load for
2.5 expressways with average and worst-case response time
of 4.71 seconds and 4.87 seconds, respectively.

SPC, however, does not meet the benchmark requirements
for 3 expressways running infrastructure PEs on a single
node as shown in Figure 9. We hit a throughput bottleneck
somewhere between 2 and 2.5 expressways since we observe
the jump in the average response latency due to the queuing
delay for 2.5 expressways but not for 2 expressways. This
amounts to a processing load of roughly 4300 SDOs per sec-
ond at the Tolls PE. From these experiments (Figures 8,
9), we observe a jump in the latency experienced by the
tuples at different points depending on the buffer size. In
particular, when the buffer size gets larger, the correspond-
ing jump in the query response latency occurs at a higher
load threshold. This is due to the increased queuing delay
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Figure 9: Latency-load measurement for 3 express-
ways running 3 Generator PEs on three different
nodes and infrastructure PEs on another node.

experienced by the packets as the buffers start building up
with increasing offered load. We analyze the effect of the
buffer capacity on the benchmark performance in detail in
Section 6.7.

6.5 Analyzing Bottleneck PEs
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Figure 10: Latency-load measurement for 3 express-
ways running 3 Generator PEs and the Tolls PE
on four different nodes and remaining infrastructure
PEs on another node.

In the previous configuration, we identified the Tolls PE as
one of the system bottlenecks. By manually allocating more
resources to the Tolls PE by running it on a separate node,
SPC is able to meet the query requirements for 3 express-
ways with average query response time of 4.44 seconds as
seen in Figure 10. Further, 97% of the query response times
are below 5 seconds threshold, 98.2% are under 6 seconds,
and 99.3% are under 7 seconds.

During our experiments, we observed that when the CPU
utilization reaches 70% for the infrastructure PEs, the SPC’s
Data Fabric daemon CPU utilization reaches 100%. This is
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due to the fact that the per-packet overhead in our sys-
tem is high. Although Linear Road tuples are rather small,
the offered load in terms of tuples-per-second is high and
this manifests as a large per-packet CPU cost. The CPU
cost includes overheads such as memory allocation, mar-
shaling/demarshaling of each packet, TCP system-call and
transmission overheads among others. Providing low latency
in inter-PE communication is a key challenge and one of
our main focus areas at present. We are exploring tech-
niques such as batching of packets and using IP multicast
to achieve better performance.

Another insight we got is that higher scalability can be
achieved by assigning infrastructure PEs to nodes carefully
based on their processing requirements. Unfortunately, that
cannot be easily achieved by hand-placing PEs on nodes for
all possible application configurations. The resource man-
ager for SPC is currently under development that will per-
form automatic dynamic resource allocation depending on
the current load distribution and query response require-
ments. In the next section, we analyze the effect of PE to
node assignment policy.

6.6 PE Placement Policy
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Figure 11: Latency-load measurement for 5 express-
ways running each PE on a different node.

We previously described one simple policy of allocating
all the infrastructure PEs on a single node in Section 6.4.
We now examine the effect of employing the other extreme
of PE-to-node allocation where we distribute one infrastruc-
ture PE per node. Figure 11 shows that SPC successfully
scales up to 5 expressways with a worst-case query response
time of 4.85 seconds. Correspondingly, 99.3% of the query
response times are below 5 seconds threshold, 99.6% are
under 6 seconds, and 99.8% are under 7 seconds. We also
observed that SPC’s query response latency increases to 6.9
seconds for 6 expressways under this allocation policy.

In a resource-limited environment, however, the one-node-
per-PE allocation policy might not be feasible for all appli-
cation scenarios. Therefore, we further emphasize the need
for a resource manager to do optimal allocation of (possibly
limited) resources while still meeting the application require-
ments.

6.7 Tuning Buffer Capacity

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  2000  4000  6000  8000  10000
 0

 1

 2

 3

 4

 5

 6

 7

A
ve

ra
ge

 R
es

po
ns

e 
La

te
nc

y 
(s

ec
on

ds
)

N
um

be
r 

of
 T

up
le

s 
R

ec
ei

ve
d 

(in
 M

ill
io

ns
)

Time (seconds)

Load
Response Time(buf=10)

Response Time(buf=100)
Response Time(buf=1000)

Response Time(buf=10000)

Figure 12: Effect of the network buffer size on query
response time for 3 expressways running each PE on
a different node.

As discussed in Section 6.4, the network buffer capacity
has a significant impact on the query performance in Linear
Road. Figure 12 shows the effect of the network buffer for
four different sizes (10, 100, 1000, 10000) on query response
time for 3 expressways with each PE running on a different
node. The experiment illustrates that as the buffer size in-
creases from 10 to 10000, the average query response latency
decreases from roughly 4.8 seconds to 2 seconds.

Therefore, a large buffer size can effectively mask the net-
work latency and the burstiness in input streaming traffic3.
Note, however, that the query response latency in the case
of buffer of size 100 is initially less than that for buffer of
size 10000 up to about 4000 seconds into the benchmark
run. This is because the receiver-side queuing delay domi-
nates network latency when the volume of streaming traffic
is small during the initial time period. But as the time pro-
gresses, the offered load from multiple generators exceeds
the capacity of the Tolls PE thereby causing the buffers to
fill up and the sender-side queuing latency to dominate.

Although the above analysis was done in the context of
the Linear Road application, we show in an extended tech-
nical report [12] the mathematical analysis of how the net-
work buffer capacities and the relative execution speeds of
producer and consumer processes, affect the end-to-end re-
sponse latency in a general streaming data application.

6.8 (De)Marshaling Costs
SPC employs a mechanism for manipulating stream data

objects attributes, which relies on a global type system, and
provides a convenient and general purpose mechanism for
PE writers to annotate objects with typed, structured at-
tributes in addition to an opaque payload. This allows for
streams to be shared across applications. The Data Fab-
ric uses this structured representation to validate if the at-
tributes conform to what the PE declared for its ports and
to perform the SDO-filter matching. The Data Fabric also

3The Generator PE tries to send all tuples with the same
timestamp every second at the maximum possible transmis-
sion rate to meet real-time requirements.
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Figure 13: Effect of the raw stream data format on
query response time varying the number of express-
ways running all infrastructure PEs on the same
node.

provides transparent marshaling and de-marshaling of these
structured attributes to and from an internal representation
as stream data objects are transferred from one processing
element to the next. In Section 6.5, we hypothesized that
one of the factors in the high CPU cost was this marshal-
ing and demarshaling cost associated with each packet and
tested that in this experiment.

We wanted to isolate this (de)marshaling cost from the
SDO transmission cost. We therefore experimented with
an alternative approach where SDOs carried the tuple as an
opaque payload. The Data Fabric transmits the opaque pay-
load and we left the interpretation (marshaling/demarshaling)
of the payload to the PEs themselves. This approach puts
an additional burden on PE writers and prevents reuse of
streams across applications. Nevertheless, as seen in Fig-
ure 13, we observe that sending raw SDOs where PEs are in
charge of managing the data directly has a lower overhead
compared to the default approach, where the Data Fabric is
responsible for those services. For one expressway, the raw
stream data format has an average query response time of
less than 1 second compared to 1.67 seconds for annotated
streams (Figure 6). The corresponding mean query response
time for 3 expressways is 5.52 seconds for raw stream data
format compared to roughly 6 seconds for annotated streams
(Figure 9). We are currently working on optimizing the SDO
representation to reduce these costs.

6.9 Lessons Learned
As described earlier, a large-scale distributed stream pro-

cessing system such as the SPC has to host processing ele-
ments of widely varying characteristics – I/O bound, CPU-
bound, and memory-bound. To address these challenges,
and based on lessons learned from the experiments, we are
adding new features to SPC that will expose the different
knobs and allow for the appropriate resource allocation de-
cisions to be made for maximizing the application perfor-
mance. Some of the key parameters that affect the applica-
tion performance came out clearly from scaling the Linear
Road benchmark—end-to-end latency which includes queu-
ing delay in the system as well as the PE-to-PE transmission

latency, data-loss due to PE-processing rate mismatches, at-
tribute processing overhead, and buffer sizes in the infras-
tructure to address burstiness in streams. We are currently
working on various schemes to address each of the issues,
some of which are indicated below.

• Explicit rate feedback: Stream processing systems
need to keep data constantly moving through the sys-
tem since data sources keep pushing “live” data. Due
to the varying processing times on packets in different
stages of the processing pipeline, rate mismatches and
hence congestion may occur. Although the resource
manager addresses long-term rate mismatches, the sys-
tem has to handle local, short-term rate mismatches.
This is achieved by sending explicit rate update mes-
sages upstream such that the Data Fabric component
and eventually the producer PE can perform the ap-
propriate load shedding operations. See [7] for details
on the control algorithm used.

• Co-location of PEs: PEs can be built as dynamically
loadable modules which allows multiple PEs to be co-
located in the same execution container in threads,
thereby providing resource savings.

• Multiple transport options: When PEs are loaded
in the same process space, they can transport data us-
ing pointer passing; when in different process spaces,
they can transport data using shared memory and
when in different boxes, use sockets. For all experi-
ments in this paper, the last scheme was adopted.

• Data distribution using flow specifications: The
SPC allows PEs to have flow specifications which can
describe the characteristics of the packets that a PE
wishes to receive, using a pub-sub model. By using
the flow specifications appropriately, applications can
easily split the data that belongs to a stream based on
the values of attributes, thereby providing scalability.

In the context of implementing a scalable Linear Road
application, the Tolls PE can be replicated to multiple
nodes by splitting input data streams based on either
vehicles’ VIDs or expressways.

• Tunable buffer sizes: We realized that buffer sizes
play an important role in determining application per-
formance and that it is useful to expose this parameter
to the PE. Hence, PEs can request to set the size of
their input buffer. The system allows or disallows it
based on the allowed resource budget for the PEs.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented the performance evaluation

of the SPC stream processing system using an implemen-
tation of the Linear Road benchmark. We described the
design and implementation of the Linear Road benchmark
using the programming model provided by the SPC infras-
tructure, and reported the results from performing various
experiments on a distributed prototype running on a Linux
cluster. Most of the performance results on stream process-
ing systems presented till date have been either on a single
node or on very small configurations. This paper deviates
from the others in presenting an analysis of performance
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bottlenecks and characteristics of a large-scale distributed
stream processing system.

Using the Linear Road application, we have demonstrated
some of the overheads in SPC and have also identified the
features in the architecture that benefit applications the
most. System factors most affecting the application per-
formance are the inter-PE data transfer latency for which
we are building various zero-copy data transfer schemes;
attribute processing overhead in small packets for which
again, we are exploring schemes which can adapt to the
expected load characteristics of streams; resource allocation
and PE placement decisions – although the current proto-
type has a rudimentary resource-allocation scheme of deter-
mining placement based on application-specified hints, we
are working on a more sophisticated resource manager for
dynamic resource allocation decisions. Some of the features
that aided in the application design and performance were
the ease with which the Linear Road infrastructure could be
scaled using the dynamic flow specification feature, the abil-
ity to change the buffer size at the PE’s port helped address
the bursty nature of the streams.

Finally, through extensive experimental evaluation, we ex-
amined how SPC can be used and tuned to enable a very
efficient implementation of the Linear Road application in a
distributed environment.
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