
Continuously Adaptive Continuous Queries over Streams*

Samuel Madden, Mehul Shah, Joseph M. Hellerstein
UC Berkeley

{madden, mashah, jmh}@cs.berkeley.edu

Vijayshankar Raman t
IBM Almaden Research Center

ravijay@us.ibm.com

A B S T R A C T
We present a continuously adaptive, continuous query (CACQ) im-
plementation based on the eddy query processing framework. We
show that our design provides significant performance benefits over
existing approaches to evaluating continuous queries, not only be-
cause of its adaptivity, but also because of the aggressive cross-
query sharing of work and space that it enables. By breaking the
abstraction of shared relational algebra expressions, our Telegraph
CACQ implementation is able to share physical operators - both
selections and join state - at a very fine grain. We augment these
features with a grouped-filter index to simultaneously evaluate mul-
tiple selection predicates. We include measurements of the per-
formance of our core system, along with a comparison to existing
continuous query approaches.

1. I N T R O D U C T I O N
Traditional query processors utilize a request-response paradigm

where a user poses a logical query against a database and a query
engine processes that query to generate a finite answer set. Re-
cently, there has been interest in the continuous query paradigm, in
which users register logical specifications of interest over streaming
data sources, and a continuous query engine filters and synthesizes
the data sources to deliver streaming, unbounded results to users
(e.g., [13, 3]). An aspect of continuous query processing that has
been overlooked in the literature to date is the need for adaptivity to
change: unbounded queries will, by definition, run long enough to
experience changes in system and data properties as well as system
workload during their run. A continuous query engine should adapt
gracefully to these changes, in order to ensure efficient processing
over time.

With this motivation in mind, we used the Telegraph adaptive
dataflow engine [8] as a platform for a continuous query engine;
in this paper we discuss our continuous query implementation. We
show how the eddy [1], a continuously adaptive query processing
operator, can be applied to continuous queries. Our architecture,
which we dub Continuously Adaptive Continuous Queries (CA CQ),

*This work has been supported in part by the National Sci-
ence Foundation under ITR/IIS grant 0086057 and ITR/SI grant
0122599, by DARPA under contract N66001-99-2-8913, and by
IBM, Microsoft, Siemens, and the UC MICRO program.

]'Work done while author was at UC Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

offers significant performance and robustness gains relative to ex-
isting continuous query systems. Interestingly, our scheme pro-
vides benefits even in scenarios where no change is evident, due
to its ability to share computation and storage across queries more
aggressively than earlier approaches that used static query plans.

Our interest in continuous queries arose in the context of our
work on handling streams of data from sensor networks [14]. Re-
searchers from the TinyOS and SmartDust projects at UC Berke-
ley or the Oxygen project at MIT [9, 11, 7] predict that our en-
vironments will soon be teeming with tens of thousands of small,
low-power, wireless sensors. Each of these devices will produce
a stream of data, and those streams will need to be monitored and
combined to detect interesting changes in the environment.

To clarify the techniques presented in this paper, we consider
a scenario from sensor networks. One application of sensor net-
works is building monitoring, where a variety of sensors such as
light, temperature, sound, vibration, structural strain, and magnetic
field are distributed throughout a building to allow occupants and
supervisors of that building to monitor environmental properties or
human activity. For instance, structural engineers might wish to
use vibration sensors to detect earthquakes and strain sensors to
assess structural integrity. Employees might wish to use light or
motion sensors to tell if their boss is in her office. Building man-
agers could use temperature and motion readings to automatically
adjust heating and lighting. Autonomous devices such as lighting
systems, door locks, sprinkler systems and window shades could
register queries to drive their behavior. We assume that for each
distinct type of sensor there is one logical sensor-reading "table"
or data source that accumulates the readings from all the sensors
of that type. Each entry in a readings table contains a sensor id,
a timestamp, and a sensor value. In a large office building, there
might be several thousand such sensors feeding dozens of logical
tables, with thousands of continuous queries.

This scenario illustrates the requirements of our continuous query
system: there are numerous long running queries posed over a num-
ber of unbounded streams of sensor readings. As sensor readings
arrive, queries currently in the system must be applied to them, and
updates to queries must be disseminated to the users who registered
the queries. Users can pose or cancel queries at any time, so the op-
erations that must be applied to any given tuple vary depending on
the current set of queries in the system.

Our CACQ design incorporates four significant innovations that
make it better suited to continuous query processing over streams
than other continuous query systems. First, we use the eddy oper-
ator to provide continuous adaptivity to the changing query work-
load, data delivery rates, and overall system performance. Second,
we explicitly encode the work which has been performed on a tuple,
its lineage, within the tuple, allowing operators from many queries
to be applied to a single tuple. Third, we use an efficient pred-

49

icate index for applying many different selections to a single tu-
pie. Finally, we split joins into unary operators called SteMs (State
Modules) that allow pipelined join computation and sharing of state
between joins in different queries. The next section motivates each
of these techniques with specific examples.

2. CHALLENGES AND CONTRIBUTIONS
The challenge in designing a continuous query system is to min-

imize the amount of storage and computation that is required to
satisfy many simultaneous queries running in the system. Given
thousands of queries over dozens of logical sources, queries will
overlap significantly in the data sources they require. It is highly
likely that queries over the same source will contain selection pred-
icates over overlapping ranges of attributes, or request that the same
pairs of sources be joined. To efficiently process the outstanding
queries, the continuous query processor must leverage this overlap
as much as possible. Query processing is further complicated by
the long running nature of continuous queries: query cost estimates
that were sound when a query was first posed may be dead wrong
by the time the query is removed from the system. In this section
we discuss the four main contributions of CACQ for addressing
these challenges.

2.1 Adapting to Long Running Queries
To illustrate the problems that can arise when a static query opti-

mizer is used to build query plans for long running queries, consider
an example from our building monitoring scenario: many queries
may request building locations where the lights are on, since il-
luminated rooms correspond to areas that are occupied by people.
Thus, many queries will include a selection predicate looking for
light levels above some threshold. During normal working hours,
this predicate is not very selective: most areas of the building are lit.
Thus, a static query optimizer would normally place the predicate
towards the top of the query plan. However, at night, few locations
are lit (or occupied), so this becomes a very selective predicate that
should be pushed to the bottom of the plan. A static optimizer can-
not easily change its decision; it is possible that the optimizer could
be periodically re-run, but deciding when to do so would be com-
plicated. Moreover, it is difficult in a traditional query engine - in-
cluding one designed for continuous queries - to modify the order
of operations in a query plan while the query is in flight. Eddies cir-
cumvent this problem through continuous adaptivity: the route that
a tuple takes through operators in a query is dynamically chosen so
that tuples which arrive during working hours can have operators
applied in a different order than tuples that arrive at night. In order
to enable this flexible routing, a system that uses eddies by neces-
sity incorporates query processing algorithms that are amenable to
in-flight reordering of operations [1]. The eddy determines the or-
der in which to apply operators by observing their recent cost and
selectivity and routing tuples accordingly. The basic mechanism
for continuous adaptivity is discussed in Section 3.1 below.

2.2 Explicit Tuple Lineage
As a result of the reordenng endemic to eddies, the path that

each tuple takes through the operators - its lineage - is explicitly
encoded in the tuple. Different tuples accumulate different lineages
over time, but in the end an eddy produces a correct query result.
Note that a query processing operator connected to an eddy - for
example, a pipelined hash join [28] - may process tuples with dif-
ferent lineages, depending on whether or not they have been pre-
viously routed through selections, other joins, etc. This contrasts
with systems based on static query plans, in which the state of in-
termediate tuples is implicit in the query plan. Query operators in
a static plan operate on tuples of a single lineage. Because Tele-

graph is designed to work correctly with eddies, its query operators
correctly handle tuples within a query that have multiple different
lineages. In CACQ we extend this ability to multiple overlapping
queries, maximizing the sharing of work and state across queries.

As an example, consider a number of queries over our build-
ing network, each of which is looking to temporally join tempera-
ture and light sensor readings above some threshold, with the light
threshold varying from query to query. Each query consists of two
operators: a selection over light readings and a windowed join [22]
within some time window between the two sets of readings. All
queries have the same join predicate, but each query selects a dif-
ferent set of light tuples (some of which satisfy multiple queries).
Our CQ goals dictate that we should try to share work whenever
possible; since all queries contain a join with an identical predi-
cate (equality join on time between light and temperature tuples),
an obvious trick would be to perform only a single join. A detailed
discussion of our techniques for maintaining a tuple's lineage is
provided in Section 3.2 below.

2.3 Grouped Filter: Predicate Index
Our third technique for continuous query processing is a predi-

cate indexing operator called a grouped filter that reduces computa-
tion when selection predicates have comrnonalities. We maintain a
grouped-filter index for each attribute of each source that appears in
a query, and use that index to efficiently compute overlapping por-
tions of range queries. Details of the grouped filter are discussed
in Section 3.2.6; for now, it should be thought of as an opaque
object that takes in multiple predicates and a tuple, and efficiently
returns the set of predicates that accept the tuple. Consider our
building monitoring scenario again: different users may have dif-
ferent preferences for temperature in their offices, and the central
heating system may use the sensor network to determine tempera-
ture in those offices. The heating system could decide to direct heat
to a particular part of the building by posing a number of continuous
queries looking for temperatures under the user-specified threshold
in each office. Each query is thus a pair of selections on location
and temperature. It is very likely that temperature predicates will
overlap: the comfort range for most people is fairly similar. Thus,
with an index over temperature predicates, we can avoid applying
each predicate independently: we ask the grouped-filter to find all
predicates requesting a temperature above the value of the tuple's
temperature field. The tuple is then filtered by building location
and output to the queries that match, which the heating system uses
to adjust the building temperature in the appropriate location.

2.4 SteMs: Multiway Pipelined Joins
Users may issue queries that join data from distinct but over-

lapping subsets of the sources. For example, continuing with our
building monitoring scenario, imagine that one user wants the blinds
in a region of the the building to close if it is both warm and sunny
at the same time, while another user wants the windows to open if it
is both warm and quiet at the same time. Assume that readings from
the temperature, light, and sound sensors are all tagged with a l o -
c a t i o n and time and arrive in time order. As new data arrives,
our continuous query system must compute a join on the l o c a -
t i o n and t i m e attributes over these sources and stream results to
clients so they can react quickly to changing conditions. Moreover,
a continuous query system must simultaneously handle numerous
such queries that have varying overlap in the set of sources they
combine.

To fulfill these requirements for computing joins over stream-
ing (and non-streaming) sources, our CACQ system employs two
techniques. First, we modify our notion of join in a standard way
[22]: tuples can only join if they co-occur in a time window. This

50

modification bounds the state we need to maintain to compute joins.
Second, we use a space-efficient generalization of doubly-pipelined
joins [28] within our eddy framework. For each incoming source,
we build an index on-the-fly and encapsulate the index in a unary
operator called a SteM, introduced in [18]. SteMs are exposed to
the eddy as first class operators, and the eddy encapsulates the logic
for computing joins over the incoming sources using SteMs. This
technique permits us to perform a multiway pipelined join. That is,
it allows us to incrementally compute a join over any subset of the
sources and stream the results to the user. Moreover, this technique
allows us to share the state used for computing joins across numer-
ous queries. We describe the details of this scheme in Section 3.

In the following section, we discuss the implementation of our
CACQ system, focusing on the four techniques presented above.

3. IMPLEMENTATION
We implemented our CACQ system in the context of the Tele-

graph query processing engine that has been developed over the
past two years by the UC Berkeley Database group [8]. It sup-
ports read-only SQL-style queries (without nested queries) over a
variety of data sources: files, network and sensor streams, and web
pages. Streams are treated as infinite relational data sources, and
web pages are mapped into relational tables via simple, regular-
expression based-wrappers [12]. Instead of a conventional query
plan, Telegraph uses the eddy operator to dynamically route tuples
arriving from data sources into operators that operate on those tu-
pies. Telegraph provides operators to perform basic dataflow oper-
ations like select and join.

Given Telegraph as our development platform, we now discuss
our CACQ implementation. We will describe techniques to fully
implement select-project-join (SPJ) queries without nesting or ag-
gregation. In this work, we only describe queries over streaming
data. It is assumed that queries apply to data present in the system
from the moment the query is registered and any future data which
may appear until the query is removed from the system. Queries
over historical or non-streaming data are not a part of this imple-
mentation, although we will turn to them briefly in the Section 6 on
related work.

Throughout this work, we map stream elements such as sensor
readings onto relations, as proposed in [17]. This allows queries
posed over streaming data to refer to relations and relational at-
tributes. This mapping is done in the obvious way: each field of
a stream-element corresponds to an attribute of the relation repre-
senting that stream. We assume that each stream element has the
same fields and a time stamp indicating when it was produced.

Given these caveats, we now present the design of our system.
For clarity of exposition, we consider designs in increasing order of
complexity. We begin with a rudimentary CACQ system in which
a single query without joins runs over a single source with multiple
attributes. We then show how multiple queries without joins can be
processed simultaneously, sharing tuples and selection operators.
Finally, we show how joins can be added to the system and, how
they share state via SteMs.

3.1 Single Query without Joins
With only a single query, the CACQ system is very similar to

Telegraph with a standard eddy operator, as in [1]. The query is de-
composed into a set of operators that constitute the processing that
must be applied to every tuple flowing into the system. Since we are
not considering joins at the moment, the only operators that can ex-
ist are scan operators, which fetch tuples, and selection operators,
which filter those tuples based on a user-specified Boolean predi-
cate. For now, we assume that queries contain only conjunctions
(ANDs) of predicates; we discuss disjunctive predicates (ORs) in

Section 3.2. 7.
At the core of the system is a single eddy that routes tuples to op-

erators for processing. Each operator has an input queue of tuples
waiting to be processed by it. Operators dequeue tuples, process
them, and return them to the eddy for further routing. The eddy
maintains a pool of tuples that are waiting to be placed on the in-
put queue of some operator. When the pool is empty, the eddy can
schedule a scan operator to cause more tuples to be fetched or pro-
duced. Notice that the eddy can vary the route a tuple takes through
operators in the system on a per-tuple basis. Also note that tuples
are never copied: once allocated, they are passed by reference be-
tween operators. For a detailed discussion of Telegraph, see [23].

3.1.1 Routing in the Single Query Case
As in [1], to facilitate routing, the eddy maintains two bit vectors

with each tuple. Each bit vector contains a number of bits equal to
the number of operators in the system. These vectors are used to
track the operators which have or may still be applied to a tuple.
The first, the r e a d y bits, indicate which operators can be applied
to a tuple. In the single table case, any tuple can be routed to any
operator, so the r e a d y bits are initially all set. The second bit
vector contains the d o n e bits that indicate the operators to which
a tuple has already been routed. Initially all of the d o n e bits are
cleared. Once all ofa tuple's d o n e bits have been set, it can be out-
put. For the simple selection case, the done bits are the complement
of the ready bits: once a tuple has been processed by a particular
operator, that operator's r e a d y bit is cleared and its d o n e bit is
set. In Section 3.3, we will see cases where the two bitmaps will
not be complements of each other.

Our only query processing operator so far, the selection opera-
tor, uses these bits as follows: when a tuple arrives, it applies its
predicate to the tuple. If the tuple does not satisfy the selection
predicate, the operator discards the tuple by deallocating it and not
returning it to the eddy. If the tuple satisfies the predicate, the op-
erator's d o n e bit is set and its r e a d y bit is cleared; the tuple is
then returned to the eddy for further processing. The total storage
overhead of these vectors, in bits per tuple, is twice the number of
operators in the query.

The final element of this simple single query CACQ system is
a way to determine the order in which tuples are routed through
operators. This is a policy decision: any ordering will eventually
result in a tuple being fully processed, but some orderings, such as
those which place highly selective selections earlier in routing, will
be more efficient than others. The eddy employs a routing policy
to choose the tuple to route and the next operator to process it. The
routing policy implements the per-tuple adaptivity of eddies. In
the query case, assuming all selections cost the same to apply, the
policy should route to more selective operators first. We discuss
routing polices in our CACQ system in Section 4.

Given this simple single query CACQ approach, we now de-
scribe how to extend this solution to work with multiple queries,
each of which queries a single source.

3.2 Multiple Queries without Joins
The goal of the multiple-query solution in the absence of joins

is to use a single eddy to route tuples among all of the continuous
queries currently in the system. In our solution, tuples are never
copied: two different queries with two different predicates over the
same relation should operate over exactly the same tuples. This
is important for two reasons: tuples occupy storage that must be
conserved, and copying takes valuable processor cycles. A key part
of the multiple query solution without joins is the grouped filter
that allows us to share work between multiple selections over the
attribute of a relation. We present the design of this data structure

51

Qcts,,s~] " i II ~,I
. ' Eddy ilt Q,=from S se ec * where s,(s a) ,s4(s.b)

Q =from S select * where sl(s.e) ,ss(s.b)
O=from S select* where sa(s.a) ,s,(s.b) Ql=[sl's5] I " - ' ~ 1 " I /

Data Source Filter over
S[a,b] S.a

Figure 1: The Basic Continuous Query Architecture
in Section 3.2.6 below.

Figure 1 shows the basic architecture. Users submit queries Q1,
Q2, and Qz, consisting of selection predicates $1 through $6 over
two fields, a and b of source S. All queries are submitted to a
single eddy, with just one filter operator (and its associated grouped
filter) for field a, and one for field b. The eddy tracks when tuples
are ready to be output to each query, and sends the tuples back to
the appropriate end-users as required. We will refer to this single
eddy, and the operators associated with all queries running into it
as aflow. The rest of this Section uses this example to show how
queries are added and tuples routed through flows without joins.

There are two modifications that must be made to the single
query system to allow it to handle multiple queries: new queries
must be combined with old queries, sharing operators wherever
possible, and tuples must be properly routed through the merged
set of queries and output to the appropriate end users.

3.2.1 Adding a Query
Combining old and new queries is not complicated. A new query

which scans the same relation as an existing query will share exist-
ing scan operator. Similarly, a new query with a selection over
some attribute a for which a grouped filter already exists will sim-
ply add its predicate over a tothe filter.

As an example, consider the case where a second query is added
to an eddy that already has a single query over a single source.
We'll begin with Q1 from Figure 1. By itself, this query consists of
three operators: a scan on S and two selections, one over S.a and
one over S.b. Now, Q2 arrives, which also contains a scan on S, a
selection over S.a and a selection over S.b. We begin by matching
the scans: both are over the same relation, so we do not need to
instantiate a new scan for Q2. Similarly, we can add the predicates
from the selections in Q2 to the grouped filters created over S.a and
S.b when instantiating Q1. (Remember, we are not considering the
case where Q2 is interested in historical tuples; if this were the
case, we would have to create a different scan operator.)

3.2.2 Routing in the Multiple Query Case
We now turn to routing tuples through a flow. We use the same

approach as in the single query case: the eddy repeatedly uses
its routing policy to choose a tuple to route and an operator to
which the tuple should be routed. A complexity arises when rout-
ing through a predicate index. When $1 accepts a tuple and $2
rejects it, we need to record this information somewhere, since it
means that the tuple must not be output to Q2, but might be output
to Q1 (ifS4 does not reject it.)

Our solution is to encode information about queries that accept
or reject a tuple in the tuple itself, just as we already store the
r e a d y and d o n e bits with the tuple. We allocate a bitmap, q u e r l -
e s C o m p l e t e d , with one bit per query, and store it in the tuple.
When a query's bit is set, it indicates that this tuple has already
been output or rejected by the query, so the tuple does not need to
be output to that query. Thus, Q2 will have its bit turned on in this
bitmask when $2 rejects a tuple, and Q1 will have its bit turned on

when a tuple is output to it.
The q u e r i e s C o m p l e t e d bitmap, along with the r e a d y and

d o n e bits, completely encode the notion of a tuple's lineage dis-
cussed above. Lineage does not simply capture a tuple's path through
a single query: it concisely expresses a tuple's path through all
queries in the system. By looking at any tuple at any point in the
flow, it is possible to determine where that tuple has been (via its
d o n e bits), where it must go next (via its r e a d y bits) and, most
importantly, where it may still be output (via its queriesCom-
p l e t e d bits.) In our CACQ approach, we are never dependent
on the structure of the query plan for implicit information about
a tuple's lineage. This means that any operator common to any
two queries can be treated as a single operator that handles tuples
for both queries. Similarly, any tuple common to two queries can
be used without copying. The fact that the tuple may be output
to only one of the queries is explicitly encoded in the q u e r i -
e s C o m p l e t e d bits. In existing continuous query systems (like
NiagaraCQ [3]) that use a static query plan, a pair of operators that
could otherwise be merged must be kept separate if the query op-
timizer cannot guarantee that the set of tuples flowing into one op-
erator is identical to the set of tuples flowing into the other. Again,
this leads to extra copies of each tuple which would not be allocated
in the CACQ approach.

As an implementation detail, we have chosen to preallocate the
q u e r i e s C o m p l e t e d bits of each tuple as a fixed size bitmap
rather than attempting to dynamically resize the bitmap in every
tuple as new queries arrive. Dynamic resizing could be very expen-
sive if there are many tuples flowing in the system when a query
arrives. Note that this limits the maximum number of queries that
may be in the system at any one time. In our approach, the q u e r i -
e s C o m p l e t e d bit for queries that do not exist at the time the tuple
is created are set to one. This means that the tuple will not be output
to the queries that arrive while it is in the system. Similarly, when
a query is removed from the system, we set all of the q u e r i -
e s C o m p l e t e d bits for the query in in-flight tuples to one. This
allows us to reuse the q u e r i e s C o m p l e t e d bit associated with
the deregistered query in a new query - in flight tuples will never
be output to new queries, in accordance with the specification that
queries in CACQ are only over data that arrives after the query.

3.2.3 Outputting Tuples
We have now shown how to track the queries to which a tuple

may or may not need to be output to, but a mechanism to determine
when a tuple should be output is still needed. We will accomplish
this by associating a compact query signature, the c o m p l e t i o n -
M a s k , with each query. The completion bitmask is the same size
as the d o n e bitmap, and has a bit turned on for each operator that
must process the tuple before it can be output. To determine if a
tuple t should be output to a query q that has not already output or
rejected t, we AND q's c o m p l e t i o n M a s k with t ' s d o n e bits;
if the value is equal to the c o m p l e t i o n M a s k , the tuple can be
output to q. We maintain a separate data structure, o u t Q u e u e s ,
which associate a query ID to an output queue that will deliver tu-
ples to the user who posed each query.

The above system will properly merge together queries and route
tuples through them. There is however, an optimization that signif-
icantly improves the space efficiency of this approach. Consider
what happens when a new query, Q4, with a single selection over
some source R is added to the queries shown in Figure 1. This
query shares no operators with the other queries in the system and
an R tuple will never be routed through one of the selection op-
erators on S, but space must be reserved in every R tuple for the
d o n e and r e a d y bits of the selections on S and in every R tuple's
q u e r i e s C o m p l e t e d bits for Q i , Q 2 , and Q3. In a system with
many queries over many sources, this could lead to a significant

52

Input Queries

1. from S select S.a where S.a > x, S.b = e 1]
2. from S select S.c where S.c > y [
3. from R select R.d where 1Ld > z J

Source State for S

Operators Queries

c o m p l e t i o n M a s k s

1:110
2:001]

Source State for R

Operators Queries

completionMasks
[l:l]

Figure 2: Continuous Query Data Structures
waste of space in every tuple.

The solution is to partition our state by source. State that was
previously system-wide, namely information about queries and op-
erators, now becomes specific to a particular data source. Each
tuple is tagged with a sourceld which tells the eddy which scan
operator created a tuple and is used to determine how that tuple's
done, r e a d y , and q u e r i e s C o m p l e t e d bits are interpreted.
Two auxiliary data structures are created for each s o u r c e I d : an
o p e r a t o r s table that lists the operators that apply to the source
and a q u e r i e s table that lists the queries over the source. The ith
entry in the o p e r a t o r s list corresponds to the ith bit in the done
and r e a d y bitmasks for tuples with this s o u r c e I d . Similarly,
entries in q u e r i e s correspond to bits in a tuple's q u e r i e s C o m -
p l e t e d bitmap. We must also insure that the c o m p l e t i o n -
Masks built above are associated with the appropriate source's
o p e r a t o r s list. Figure 2 shows these data structures for three
sample queries.

Figure 3 shows the extra fields stored in the tuple header for
routing in CACQ eddies. The fields that are inherited from the
single-query tuple are shown first, with the additional fields for the
multi-query case shown next.

3.2.4 Performance Effects o f Additional Storage
We begin this Section by estimating the amount of storage re-

quired to maintain the per-tuple, per-source, and per-query state in
our CACQ system.

Table 1 summarizes the storage overhead of these additional data
structures (not including the r e a d y and done bits from the basic
Eddies implementation.) In this table, [Ssetectio~s[refers to the
number of distinct selection operators reachable per source; this
is the total number of predicate indices (equal to the number of at-
tributes), divided by the total number of queried sources. [Sq=e~ies [
refers to the average number of queries that involve tuples from this
source; in the absence of joins this is equal to the average number of
queries divided by the number of sources. Table 2 gives representa-
tive values from our building monitoring scenario for these param-
eters, assuming the (very aggressive) goal of 100,000 simultaneous
queries. These are used to provide numeric values in Table 1. No-
tice that the additional cost of continuous queries is just 6.83MB,

reo0y I0ooe I I0lc°*e e0Q°°r es I
1 b t x O 1 b i t x O integer 1 b t x O D [ds

Part Of original eddies work New for CACQ

0 = # operators in eOdy
Q = # queries in el~:ly

Figure 3: Continuous Query Tuple Format

the majority of which is the output queues for queries. The state
per active tuple is 2.5KB, which seems troublesome until one con-
siders the case in which 100,000 queries are run independently. In
this case, 100,000 copies of each tuple will be made, which for 200
byte tuples is 20MB of state required for all copies of each tuple.

In the next Section, we present experimental evidence showing
how query performance relates to tuple size in CACQ.

3.2.5 Storage Overhead
In order for the system to be able to scale to an arbitrary number

of queries, we must be able to extend the size of tuples without
seriously impacting performance. It is expected that larger tuples
will lead to slower performance, simply because more bits have to
be allocated and copied every time a tuple is operated upon.

All of our experimental results are generated from the actual
Telegraph query engine running in real time. As a continuous data
source, we use a generated stream S of random tuples, each with six
fields: an sequence number uniquely identifying the tuple and five
integer valued fields, S.a through S.e with random values uniformly
sampled from the range [0,100).

The server was an unloaded Pentium III 933 MHz with 256
megabytes of RAM. Telegraph was running under the Sun HotSpot
JDK 1.3.1, on Debian Linux with a 2.4.2 Kernel. Client connec-
tions came from a separate machine, running HotSpot JDK 1.3. To
avoid variations in network latency, tuples were counted and dis-
carded just before being sent back to the client machine.

In these studies, we ran 5 simultaneous queries over the source
S described above. We varied the tuple state size from 15 bits/tuple
(the minimum required for 5 queries) to 3000 bits/tuple (the default
value used for other experiments) and measured the tuple through-
put rate. We purposely kept the number of queries small to measure
the impact of additional tuple state independently from the cost of
additional queries and operators, whose performance we will dis-
cuss in Section 3.2.8. The results are shown in Figure 4. Notice
that tuple throughput drops off by more than a factor of five be-
tween 15 and 3000 bits per tuple, but that the slope of the curve is
decreasing, such that adding many more bits will not significantly
decrease query performance. In fact, the tail of the graph is pro-
portional to ~ . This represents the memory bandwidth of our
system: there is a fixed number of bytes per second we can allocate
and format for tuples. Longer tuples require more bytes, and so
fewer of them can be allocated and formatted in one second.

These results demonstrate although tuple size does dramatically
effect performance, it does not cripple our query processor. It is im-
portant to bear in mind that this amount of source state is enough to
run one thousand simultaneous queries - an amount of parallelism
that would severely stress any other database system.

3.2.6 Predicate lndex: The Grouped Filter
As previously mentioned, our CACQ system includes a predicate

index that allows us to group selection predicates, combining all
selections over a single field into a grouped-filter operator, which

Table 2: Parameters, CACQ Monitoring Scenario.
Parameter
queries
soq.l, ree8
attributes I
predicates I
S selections I
Sq ueries [

sizeofl i n t)
sizeofi OutputQueue)
sizeofi Predicate)
sizeo6 Operator)

Value
100,000
5 (light, temperature, sound, accel., mag.)
15 (3 attributes per source)
150,000 (avg. 1.5 filters / query)
3
20,000
4 bytes
64 bytes
100 bytes
100 bytes

53

Table h Continuous Query Storage. Extra data structures required for continuous queries a Flow, with estimates for 100,000 Queries
Structure Size Expression

Per Source State (SS) queries sizeof(int) X Squeries 1
operators sizeof(Operator) × (ISoet~o~sl + l(scan))
complet ionMask ISqueries I X IS ,eleetlonn I

8

Per Tuple State (TS) tupleQueryMask ISq~ies I
8

Per Que~ State (QS) outQueues sizeof(OutputQueue)
Total Flow State Isourees I x SS +]queries I × Qs + [activetuples I x TS

Estimated Size (bytes)
80,000
400
7,500

2,500
64
6.83 MB + lactivetuples[x 2.5kB I

Tuple Throughput vs. Tuple State
2000

1 8 0 0
,.~ 1600

1400
1200

= 1000
800
600
40o
20o 0 1500 3000 4500 8000 7500 9000

Tuple State (bits)
Figure 4: Eddy Performance Vs. Tuple Size

can apply many range predicates over an ordered domain to a single
tuple more efficiently than applying each predicate independently.

When a selection operator is encountered in a new query, its
source field is checked to see if it matches an already instantiated
grouped filter. If so, its predicate is merged into that filter. Other-
wise, a new grouped filter is created with just a single predicate.

A grouped filter consists of four data structures: a greater-than
balanced binary tree, a less-than tree, an equality hash-table, and
an inequality hash-table. When a new predicate arrives, it is in-
serted into the appropriate data structure (i.e. > predicates are put
into the greater-than tree) at the location specified by its constant
value; greater-than-or-equal-to and less-than-or-equal-to predicates
are inserted into both a tree and the equality hash-table. Note that
we do not have to store the entire predicate data structure: we keep
the predicate's constant value and the query-id of the query it ap-
plies to (in particular, we do not need to store the database table or
field the predicate applies to.)

When a tuple arrives at the filter, each of these data structures
is probed with the value of the tuple. For the greater-than tree, all
predicates that are to the left of the value of the tuple are matches;
likewise, for the less-than-tree, all predicates to the right of the
value of the tuple are matches (see Figure 5.) For the equality hash,
a match only occurs if the value of the tuple is in the table. Con-
versely, in the inequality case, all tuples are matches except those
that appear in the table.

As matches are retrieved, a bit-mask of queries is marked with
those queries whose predicates the tuple passes. Once all of the
matches have been found, the mask is scanned, and the tuple's
q u e r i e s C o m p l e t e d bitmap is modified to indicate that the tu-
pie should not be output to those queries which the tuple did not
pass - in this way, these queries are prevented from seeing non-
matching tuples.

Figure 5 illustrates these data structures for a set of predicates
over a single field. A probe tuple is shown on the right, and the gray
boxes indicate the matching predicates within the data structures.

In addition to significantly reducing the number of predicates
that must be evaluated when many predicates exist over a single
field, grouped predicates are interesting for another reason: they
represent a significant reduction in the number of operators through
which an eddy must route a typical tuple. This provides a number
of benefits: First, it serves to reduce the average tuple size, since
tuples need fewer operator-bits in their headers. Second, it reduces
the size of the operator-state stored with each source. Finally, it
eliminates a large number of routing steps in the flow of the tu-

Submittmd Predica~s Grouped Filter For S.a

s~o%02sX? r

s.a~7,

S a<5 < f f ~ ' ~

S . a = 6

= Matches Tuple ~----

Figure 5: Grouped Filter Example: The grouped filter is
searched for matching predicates when a tuple arrives. The
grayed regions correspond to matching predicates for the tuple
in the upper right.

ple: even though each step is not particularly expensive, routing
a tuple through thousands of filters will incur a non-trivial routing
overhead.

3.2.7 Quer i e s with Dis junc t ion
Up to this point, we have only considered queries with AND

predicates. To handle ORs, we follow standard practice [20] and
reduce boolean expression into conjunctive normal form, for ex-
ample:

(S~ V S~) i (&) A (,94 V Ss)
The eddy is still free to choose the order in which tuples are routed
through the selection operators or grouped filters. Because many
queries may share each predicate in the disjunction, we cannot short
circuit the evaluation of such expressions by aborting the evaluation
of other disjuncts when one disjunct fails, or skipping the evalua-
tion of other predicates in a conjunct when one predicate succeeds.
Instead, we choose to associate an additional bit per disjunct with
each tuple, and when any predicate from that disjunct evaluates to
true, we set the bit. Then, we modify the logic that determines i fa
tuple should be output to a query to check that the bit is set for ev-
ery disjunct. We omit a detailed description of the implementation
and overhead of this solution due to a lack of space.

Thus, our CACQ system fully supports expressions containing
ANDs and ORs of selection predicates. We now turn to a per-
formance assessment of this complete multi-query, single source
system.

3.2.8 Performance of CACQ without Joins
One of the stated goals for our system was to allow it to scale

to a large number of simultaneous queries over a number of data
sources. We believe our system has made significant progress to-
wards that goal. To demonstrate this, we ran two experiments:
In the first, we measured the effect of increasing the number of
queries; In the second, we varied the number of data sources over
which those queries were posed.

Queries in both scenarios were randomly generated. Randomly

54

22OO

2OOO

1800

1400

1200

Tu!ole "~ouo l~ t Vs. Number of Quems

~ t i r ~ o u * q u a y Edc,~
C o m ~ n t l ~ a Eddies

30(X)

25OO

2OOO

0

(20 quer ies , I Pre~,,.at e Each)

5 10 15 20 25 30 35 40 45 50 2 4 6 $ 10 12 14 16 18 20
Number ol Querles Number of Sou~ l

(b) (a)
Figure 6: Eddy Performance Vs. Number of Queries (a) and
Number of Sources (b).

generated queries had a 50% chance of having a predicate over any
field; if a predicate existed for a given field, the predicate was ran-
domly and uniformly selected from the set < , > , <, >. Equality
and inequality predicates were omitted because randomly gener-
ated equality queries will rarely overlap. The comparison value
was a random uniform selection from the range [0, 100).

To measure the performance of our CACQ implementation against
the number of queries, we issued many queries against a single data
source and measured the number of tuples output from the sys-
tem. We compared the performance of continuous queries against
the basic implementation in Telegraph, in which each query runs
with its own eddy and operators. Figure 6(a) shows the results
from these experiments. Notice that for the continuous query case,
throughput increases sharply to about 20 queries, at which point
the system is fially utilized; the system cannot handle more queries
without decreasing the per-query delivery rate. It continues to scale
at this throughput rate to fifty queries and beyond. The existing
eddy implementation reaches maximum throughput at five queries,
with a total tuple throughput of about half of our continuous query
system. To measure the ability of our system to scale to a large
number of sources, we experimented with running twenty queries
over a variable number of sources identical to the S source de-
scribed above. Each query had a single predicate randomly selected
as above, all over field a, with the source for each query randomly
chosen from the available sources. Multiple queries were issued
over the same source. Figure 6(b) plots the number oftuples output
versus the number of sources. As expected, additional sources de-
crease the tuple throughput somewhat. This is due to two factors:
first, there are now many more scan operators that must be sched-
uled by the eddy. Second, because filters of independent streams
cannot be combined, many more filter-operators are created and a
larger number of predicates evaluated as more sources are added.

3.3 Multiple Queries with Joins
Thus far, we have only presented queries containing selection op-

erators. In this section, we present our mechanism for computing
joins over streaming sources. As mentioned before, we have two re-
quirements for join processing in our CACQ system. First, we must
insure that the join operations are pipelined to support continuous
streaming results so that users may receive updates quickly. Sec-
ond, we must scale with the number of queries, where each query
can specify a join and predicates over any subset of the sources.
To accomplish these goals, we use a generalization, within our
eddy framework, of doubly-pipelined hash-joins called SteMs [18]

55

(a) A Tree of
Doubly-Pipelined Hash Joins

(b) Eddy and SteMs

Figure 7: Conventional Query Plans vs. CACQ

which allows multiway-pipelined join computation for any subset
of the incoming sources. This scheme reduces the state needed
for join computation by sharing the in-flight index structures built
among the various joins specified.

3.3.1 SteMs: Multiway-Pipelined Joins
One goal of our CACQ system is to allow users to quickly re-

act to changing conditions in their input data. Thus, we ensure our
computation is pipelined, so we can quickly produce new results
from the data collected so far when a new tuple arrives from any
source. Results must be produced incrementally for all queries, not
just some of the specified queries. We fulfill these requirements
by using a space-efficient generalization of doubly-pipelined hash
joins called SteMs. SteMs were first developed in [18] in the con-
text of adaptive query processing.

First, we review doubly-pipelined joins, their properties, and
why cascades of such joins can be inefficient. A doubly-pipelined
hash join is a binary join which maintains an in-flight hash index
on each of its input relations, call them R and S. When a new tuple
arrives from one of the input relations, say R, it is first inserted into
the index for R, and then used to probe the index of S for matches.
Note that both the insertion and probe phases for one tuple must
complete before the next tuple can be processed. In order to build
pipelined joins over more than two sources, we can compose such
joins into a tree of joins, exactly as one would in a static query plan.
An example is shown in Figure 7(a), where joining readings from
light, temperature, and noise sensors are joined.

There are several disadvantages of computing joins in this man-
ner. First, intermediate results must be materialized in the hash
indices of"intemal" joins in each plan. Even with left-deep plans
which join n sources, n - 2 additional in-flight indices are needed
for intermediate results. For example, in Figure 7(a), intermediate
tuples of light and temperature readings are stored in the left hash
index in the topmost join. We call these intermediate indices.

Second, this scheme does not scale well with the number of user
queries. For example, imagine we have n sources and one query
for each possible 3-way join over the sources on the time attribute.
Then there are at least (g) queries requiring the use of an inter-
mediate index. In this example, a given source, s, needs to probe
at least ((raN1)) intermediate indices, which contain joined tuples
from the other n - 1 sources, to satisfy the queries that range over s.
These indices can also be shared among the other sources to satisfy
the rest of the queries. Thus, we need to maintain at least ((,~1))
intermediate indices to support pipelined joins for all the queries.
This can be a significant amount of state. Consider an example with
15 distinct types of sensors. We would need to maintain (124) = 91
intermediate indices to support our hypothetical queries. Further,
imagine each tuple is 128 bytes, for each join every tuple matches

exactly one other tuple, the sensors produce a tuple every second,
and the indices retain the last hour of readings. Then each index
on a single stream would be 0.46 MB, and each intermediate index
would be 0.9MB. Just to support (½5) = 455 distinct queries, the
total size for all in-flight indices would be 101MB.

Third, pipelined joins arranged in a query plan do not permit
fine-grain adaptivity of the form offered by the eddy. Every time
the join order changes, we must recompute some intermediate in-
dices. In our CACQ system, we avoid these problems by promot-
ing transient indices on individual sources to first class operators,
called SteMs, and place them into an eddy. The cascade of doubly-
pipelined joins in our example in Figure 7(a) would be converted
to the a plan in Figure 7(b) in the eddy framework.

SteMs in the CACQ system are simply operators that encapsulate
a single index built on a stream using a particular attribute as the
key. These indices can be hash indices to support equality joins,
which arise in our building monitoring scenario. Or they can be B-
trees or other types of indices, depending on the query workload.
SteMs can be passed tuples that are inserted (or built) into the index,
or tuples that are used to search (or probe) the index. A SteM will
return all tuples passed to it by the eddy back to the eddy. The
r e a d y and d o n e bits are marked to indicate the operators that
still need to process the tuple. In addition, an intermediate tuple
that is the concatenation of the tuple used to probe the index and
the match, is output for each match (also marked appropriately).

A multiway join is computed by starting with a new tuple pushed
into the eddy from some source, a singleton tuple, and routing it
through SteMs to produce the joined result(s). For example, imag-
ine a query that ranges over all three sources in Figure 7(b). When
a new light tuple arrives, one possible route is that it first is inserted
into the light SteM. Then it is sent to probe the temperature SteM
and joined with a temperature reading. Then the intermediate tuple
is sent to the noise SteM, joined with noise readings, and resulting
tuple is then output. For a query that ranges over only the light
and temperature sources, the eddy can output the intermediate tu-
ple produced after the probe into the temperature SteM. Note that
a tuple used to probe SteMs can be either a singleton or an inter-
mediate tuple. Thus the SteM can apply any predicate containing
its indexed source and attribute. The eddy routes these tuples by
obeying some constraints for correctness, and following a routing
policy for efficiency.

Because we have interposed an eddy between the indices, we
have lost the atomic "build then probe" property of pipelined joins,
leading to two constraints on the eddy and SteMs to ensure correct-
ness. The first constraint is that a singleton tuple must be inserted
into all its associated SteMs before it is routed to any of the other
SteMs with which it needs to be joined. When it is inserted, it is
tagged with a globally unique sequence number. Thus, SteMs only
index singleton tuples. The second constraint is that an intermedi-
ate tuple returned from a SteM is valid only if the sequence number
of the tuple used to probe the SteM is greater than (i.e. it arrived
later) the sequence number of the indexed tuple. All valid inter-
mediate tuples retain the larger of the two sequence numbers, and
invalid tuples are discarded by the SteM. These constraints main-
tain the "build then probe" property between any two tuples that
are joined, and are sufficient to prevent duplicate tuples from aris-
ing. Within these constraints, the eddy is free to choose the order in
which to route a tuple to generate results. These routing decisions
are discussed next.

Thus, there are several advantages to using SteMs with an eddy
for join processing. First, only a single SteM is built for each
source, and these SteMs are shared across all the joins among all
the queries posed. Contrast the scalability of this scheme with the
scalability of pipelined joins in a tree. Using our previous exam-

ple with 15 sensors, SteMs would only need to maintain 6.9 MB
of data to support any subset of the possible 32K (215) joins, com-
pared with 101 MB to support only 455 queries. Second, we can
compute joins in a pipelined fashion for all possible joins over the
sources. Third, the join order is decided on a per-tuple basis, pro-
viding fine-grain adaptivity.

3.3.2 Routing with Joins
Routing tuples in an eddy in our CACQ system involves two

computations. The first is to determine the set of operators to which
a tuple can be sent next or the set of queries to which it can be
output. The second is to choose from the candidate operators the
one that will process the tuple next. For the first computation, we
need to maintain additional data-structures and augment our current
ones to handle generating and routing intermediate tuples. For the
second decision, the routing policy for SteMs is the same as the one
used in the no-join case described above.

First, we need to augment the state associated with each source.
We add a separate SteMs list containing SteM operators with which
the source needs to be joined. The query list remains the same; it
includes the queries that range over only that source. Thus, the
masks in the completionMask list are padded with 0s for each
SteM in the SteMs list. Similarly, we augment the r e a d y and
d o n e bits in the tuple state to include bits for the new SteMs. These
changes provide a scheme for routing singleton tuples into SteMs;
we now describe data-structures that handle intermediate tuples.

Intermediate tuples can contain data from some subset of sources
flowing into the eddy. Given k input sources, there are at most 2 k
possible types of intermediate tuples. Analogous to the state we
maintain for existing sources, we create a virtual source, with a
unique sourceld, when an intermediate tuple of a particular type
is first materialized. Thus, each source or virtual source is associ-
ated with some distinct subset of the sources in the system. With
each virtual source, we associate an operators list, SteMs list, query
list, and c o m p l e t i o n M a s k list. All queries that range over all
the sources of a virtual source are in the queries list corresponding
to that virtual source. The operators list is the union of all selection
operators that need to be applied for each query in the queries list.
The SteMs list contains all the SteMs modules with which an in-
termediate tuple needs to be joined to satisfy queries which range
over additional sources. The e o m p l e t i o n M a s k list contains a
bit mask for each query. Likewise, each c o r n p l e t i o n M a s k indi-
cates which operators in the operators list need to process a tuple
before it can be output.

When an intermediate tuple is formed, its queriesCompleted
bitmap is cleared and is tagged with the s o u r e e I d of its new vir-
tual source. The r e a d y bits are set to reflect the operators in the
operators and SteMs list that still need to process the tuple. Also,
the d o n e bits are set to indicate which operators and SteMs have
already processed the tuple. As usual, the eddy compares the com-
pletionMask to the done bits to determine to the queries an
intermediate tuple can be output to. Similarly, the eddy uses the
r e a d y bits to determine the SteMs and selection operators a tuple
can be sent to. We omit the details for efficiently performing these
bit vector initialization and manipulations due to lack of space.

When a new query arrives into the system, it is first added to
the queries list of the virtual source corresponding to the sources
over which the query ranges. If a virtual source does not exist,
it is created. We determine the selection operators and the SteMs
that the query will need. The selection operators are folded into the
system as described in Section 3.2. SteMs are treated no differently
than selection operators. If new a SteM is added, then that SteM is
added to the SteMs list for all existing sources and virtual sources
which contain the source associated with the SteM.

56

3.3.3 Purging SteMs
Because our CACQ system is designed to operate over streams,

a mechanism is needed to limit the state that accumulates in joins
as streams flow endlessly into them. This mechanism, proposed
in [22], is to limit the number of tuples in a particular SteM by
imposing a window on the stream. Windows specify a particular
number oftuples or period of time to which the join applies; tuples
outside the window are not included in the join. Thus, they are
a key component of our join solution, although, from a research
perspective, they have been thoroughly discussed.

We allow windows to be specified as a component of a join pred-
icate. In the current implementation, windows are simply a fixed
number of tuples; extending the system to allow windows over a
fixed time period would be fairly simple. Our windows are sliding:
the window always incorporates the most recent data in the stream.
As new tuples flow in, old tuples are forced out of the window.

Since SteMs may contain multiple predicates, we cannot simply
discard tuples from the index that do not fall within the window
of a particular predicate. We keep the maximum number of tuples
specified among all the windows associated with the predicates.
For a given predicate, we reject matches that are outside of that
predicates window but still within the index. In this way, we do not
have to create multiple SteMs to support different window sizes.

In the next section, we discuss building a routing policy to effi-
ciently route tuples between operators in a continuous eddy.

4. ROUTING POLICIES
The routing policy is responsible for choosing the tuple to pro-

cess next and the operator to process it. The original eddy im-
plementation used two ideas for routing: the first, called back-
pressure, limits the size of the input queues of operators, capping
the rate at which the eddy can route tuples to slow operators. This
causes more tuples to be routed to fast operators early in query
execution, which is intuitively a good idea, since those fast opera-
tors will filter out some tuples before they reach the slower oper-
ators. The second approach augments back-pressure with a ticket
scheme, whereby the eddy gives a ticket to an operator whenever
it consumes a tuple and takes a ticket away whenever it sends a
tuple back to the eddy. In this way, higher selectivity operators
accumulate more tickets. When choosing an operator to which a
new tuple should be routed, the ticket-routing policy conducts a
lottery between the operators, with the chances of a particular op-
erator winning proportional the number of tickets it owns. Thus,
higher selectivity operators will receive more tuples early in their
path through the eddy.

We have implemented a variant of the ticket scheme. In our vari-
ant, a grouped-filter or SteM is given a number of tickets equal
to the number of predicates it applies, and penalized a number
of tickets equal to the number of predicates it applies when it re-
turns a tuple back to the eddy. A SteM that outputs more tuples
than it receives could thus accumulate negative tickets; we lower
bound the number of tickets any modules receives at one. Multi-
ple SteMs with only one ticket will be scheduled via back-pressure,
since higher cardinality joins (which should be scheduled towards
the top of the plan) will require longer to completely process each
input tuple. Thus, highly selective grouped filters will receive more
tickets, and tuples will be routed to these filters earlier in process-
ing. In this way, we favor low-selectivity via tickets and quick work
via backpressure. We weight the value of that work by the number
of predicates applied by each operator.

We now present a performance evaluation of our modified ticket-
based routing scheme as it functions with a number of selection-
only queries. We will discuss the performance of our routing policy
with respect to joins as a part of the experiments in Section below.

Table 3: Queries for Rout ing Scheme C o m p a r i s o n .
l. from ~ s e l e c t i n d e x w h e r e ~ 90
2. from select index where ~ 90 and b • 70
3. from ~ select index where a > 90 and b • 70 and c • 50
4. from select index where a 90 and b > 70 and and c • 5O and ~ 30
5. from S select index where a 90 and and b • 70 and c • 5O and ~ 30

and e • I0

4.1 Ticket Based Routing Studies
The modified ticket-based routing scheme presented above is de-

signed to order filter-operators such that the most selective grouped
filter that applies to the most predicates is applied first.

We compare this scheme to three altematives. In the random
scheme, tuples are routed to a random operator that they have not
previously visited. In the optimal scheme, tuples are routed to the
minimum set of filters required to process the tuple. This is a hy-
pothetical scheme that provides an upper bound on the quality of a
routing scheme. For any given tuple, it applies the smallest number
of possible filters.

The optimal approach orders selections from most to least se-
lective, and always applies them in that order. Determining this
optimal ordering is not always possible, since the underlying dis-
tribution of an attribute may be unknown or not closely match any
statistics gathered for that attribute. However, for the workload
shown in Table 3, clearly the optimal ordering places first applies
the selection over 51.a, then the selection over S.b, then S.c, S.d,
and S.c. All of the tuples will pass through the S.a selection. Only
ten-percent of the tuples will pass S;.a, thirty percent of those will
pass S.b, and so on. This leads to the following expression for the
expected number of filters each tuple will enter in this approach:

1+ ; All tuples apply S.a filter
(1 - 0.9)+ ; Tuples that apply S.b filter
(1 - 0.9) × (1 - 0.7)+ ; S.c filter
(1 - 0.9) x (1 - 0.7) x (1 - 0.5)+ ; S.d filter
(1 - 0.9) x (1 - 0.7) × (1 - 0.5) x (1 - 0.3) ; S.e filter
= 1.15

We do not expect any routing scheme to perform this well, but it
serves as a useful lower bound on the number of filters that must be
applied.

The final alternative is a hypothetical worst-case approach, in
which every filter is applied to every query: 5 filters, in the work-
load shown below. No routing scheme should perform this badly.

We ran experiments to show how the ticket based scheme com-
pares to these other approaches for the fixed queries shown in Table
3. We chose to use a fixed set of queries rather than random queries
because queries with predicates over a uniformly selected random
range will tend to experience little overlap and all select about the
same number of tuples, causing the random and ticket schemes to
perform similarly. Since the goal of this experiment is to show that
the ticket-based scheme can effectively determine selectivities of
grouped filters when that affects performance, we felt this was an
appropriate decision.

We ran the system for one minute and compared the total number
of tuples scanned to the tuples entering each filter operator. Figure
8 shows the results: our ticket-based routing scheme routes the av-
erage tuple to just 1.3 filters, while the randomized scheme routes
every tuple to about 3.2 filters.

4.2 Adapting to Changing Workloads
In addition to routing tuples efficiently, one of the properties of

our continuous query system is that it can rapidly adapt to chang-
ing workloads. To demonstrate this, we ran experiments with three
query workloads, as shown in Table 4. Queries are over the same
source S as in the previous experiments. In these experiments, the
first query was introduced at time 0, and each successive query
was introduced five seconds later. In the first workload, queries are
independent, and so, just as with a conventional eddy, the most se-

57

lective predicates should be executed first since those are the most
likely to filter out tuples. In this case, query five is the most selec-
tive. The second workload shows the capability of the ticket-based
scheme to pfioritize filters that apply to different numbers of pred-
icates: all filters have the same selectivity, but five times as many
predicates are applied to S.a as S.e. The final workload is much
more complex: queries share work and have filters with a range of
selectivities. The correct ordering of these queries is not immedi-
ately apparent.

Figure 9 shows the percentage of tickets routed to each filter
over time for the three workloads. Percentage of tickets received
is a measure of the routing policy's perceived value of an opera-
tor. Highly selective operators are of higher value because they
reduce the number of tuples in the system, as are operators which
apply predicates for many queries, because they perform more net
work. Before a filter is introduced it receives zero tickets; notice
how quickly the system adapts to newly introduced filters: in most
cases, four seconds affter a filter is added the percentage of tuples it
receives has reached steady-state.

Workload 1 and 2 settle to the expected state, with the most se-
lective, most frequently applied filters receiving the bulk of the tick-
ets. Workload 3 has results similar to workload 2, except that the
S.a, S.b, and S.c filters all receive about the same name number
of tickets once all queries have been introduced. This is consis-
tent, because S.b and S.c are more selective, but apply to fewer
queries so are weighted less heavily. Also note that S.d and S.e
receive slightly more tickets than in Workload 2; this is due to the
increased selectivity of their predicates.

5. PERFORMANCE STUDY
To demonstrate the effectiveness of our CACQ system, we com-

pare it with the approach used by the recently published NiagaraCQ
system [3, 2]. NiagaraCQ uses a static query optimizer to build
fixed query plans for continuous queries. NiagaraCQ's plans are
grouped, which means that operators are shared between queries
when possible. The optimizer allows two queries to share an op-
erator if it can demonstrate that the set of tuples flowing into that
operator in both queries is always the same. This "identical tuple
sets" requirement must hold because tuples have no explicitly en-
coded lineage, as in our CACQ approach, so the queries to which a
tuple may be output can only be inferred from the tuple's location
in the query plan. In practice, this means that very little overlap
will be possible between queries of any complexity: although it
may be possible to share an initial selection, any operators which
follow that selection must be replicated across all queries (even if
they have exactly the same predicates), because the tuples flowing
into those operators are not identical.

Rather than creating a predicate index for selection operators,
NiagaraCQ combines selections over an attribute into a join be-
tween the attribute and the constants from the selection predicates.
Because an efficient join algorithm can be used if a B-Tree index
is built on the predicates, this approach is similar in efficiency to

Routing Scheme vs. Filters Per Tuple

~3

~2

I !
0 t Random Tickets Optimal Worst Case

Routing Policy

Figure 8: Comparison of Various Routing Schemes

our predicate index. However, when predicates overlap, multiple
copies of every tuple are produced as output of the NiagaraCQ join,
which imposes a non-trivial performance overhead.

To compare the two systems, we run experiments like those pro-
posed in [2]. In these experiments, we execute queries of the form:

SELECT * FROM stocks AS s, articles AS a WHERE

s.price > x AND s.symbol = a.symbol

Stocks is a list of stock quotes, and articles is a set of news
articles about the companies in those quotes. Articles ranged from
about 200 bytes to 1 kilobyte. Stock prices were randomly selected
using a uniform distribution over the domain (0,100]. We run a
number of queries of this form, varying only the value of x. No-
tice that this workload is very favorable towards the NiagaraCQ
approach, because there is complete overlap between queries. A
more mixed assortment of queries would make it much harder for
the NiagaraCQ optimizer to perform its grouping.

The NiagaraCQ optimizer generates two possible plans for these
queries, which consist of a selection operator and a join. In the first,
called PushDown (Figure 10(a)) the selection operator is placed be-
low the join in the query plan. All selections can be placed in the
same group, because they are all over the unfiltered stocks rela-
tion. However, the join operators cannot be placed into the same
group because the sets of tuples from each query's selection are
disjoint - a separate join must be run for each query (although the
hash table over a r t i c l e s is shared between queries.) The split
operator shown in the plan is a special operator that divides the out-
put of a grouped operator based on the query specified by the f i 1 e
attribute of the constants table.

The other altemative, called PullUp, shown in Figure 10(b) places
the join at the bottom of the query plan. Since the tuples flowing in
from both relations are unfiltered in all queries, every join operator
can be placed in a single group. Since all queries use exactly the
same join predicate, the output of the grouped join into every se-
lection predicate is identical. Thus, those selection predicates can
all be placed into a single group. As the results in Figure 11 show,
this PullUp approach is (not surprisingly) more efficient because
there are not many copies of the join operator. Notice, however,
that it suffers from a disturbing problem - the selection predicates
must be applied after the join, which is contrary to well established
query optimization wisdom [20].

We compared these two alternatives to the same query in our
CACQ system. In our system, this query consists of three opera-
tors: a grouped filter on s t o c k s , p r i c e , and a pair of SteMs on
stocks, symbol and articles, symbol. We used the modi-
fied ticket-based routing scheme discussed above to schedule tuples
between the SteMs and the grouped filter.

We manually constructed NiagaraCQ query plans in Telegraph
with the structure shown in Figure 10. When emulating NiagaraCQ,
we removed the per-tuple data structures and the code that manages
them, since these are specific to our CACQ approach. Notice that
we also did not include materialization operators in the NiagaraCQ
plans, as was done in that work, since we were able to keep all tu-

Table 4: Query Workloads for Adaptivity Scenario.
l. select index from ~ where ~ 30
2, select index from where ~ 50
3. select index from ~ where ~ 10
4. select index from where ~ 40
5. select index from S where e 90
Workload Z

L select index from S where a • I0
2. select index from S where a • and b 10 • 10

43. select index f h i dbb >> d d d
select index from S where a 10 and 10 and and c > 10 and • 10

51 select index from S where a 10 and and b > 10 and c • I0 and • 10
and e • 10

Workload 3

select index from where a I0 and • 30
3. select index from S where a I0 and • and 30 c • So
~,select index from S where a I0 and b > 30 and and c 50 and d 70

select index from S where a ~ and ~ d : • I0 and h • 30 and c 50 and 70
and e • 90

58

% of Tlckels Per FIItll¢ vll "lqme

~t"' "I ~'% " 0~':S.,":~=-"-- Q~/ecy 2: S.b • 50 - -~ - -
08 Quew 3: S.c> 10~

• QlJel7 4: S.d > 40 ~ - -
Ouer~ S: S.e • 9O - -~- -

O,2 [~ee

5----~---Yo----(~--- 20 2~ ~o ~s
Time (s)

(a) Workload 1

% of Ticketl Per Fifler vs Time

I " " " FUler 1: S,a > lOx $
FiJlsr 2: S.b • 10 x 4 ----~---

0 8 Filter 3: $.c > 10 x 3~
• Fll~r 4: Sd > 10 x 2 - -o- -

06.] ~ FUt~)f 5: S.e> 10x 1 -.-~-.-

O.4

0----5----10-- 1 5 - 20 25 30 35 40
nme (5)

(b) Workload 2

% of "i'lcke~ PeK FEler v l Time

1 ' ' • . " Filtorl:S.II> I 0 x 5
FMI~" 2: $.b • 30 x 4 --~-.-

0 8 FUter Z: $.c • 50 x 3 .--.~
• FUter 4: S.d • 70 • 2 - -o --

i~ . I ~ ~ ~ 06 FUlerS:S.e>9Oxl--~--

0 - ~ : : ± : : : : : : : = = : : : : : =
0 5 10 15 20 25 30 35 40

Time (|)

(c) Workload 3

Figure 9: Percentage of Tickets Routed to Filters Over Time. Notice that the most selective predicates (S.e > 90) in (a) and (S.a > 10)
in (b) rapidly adapt to receive the most tickets, which are correlated with their routing priority in the eddy.

pies and join tables in main memory. As was done in [2], we ran
experiments that delivered a fixed size update to stock prices and
news articles (2250 stocks and articles, with one article per stock).
Query selection predicates were randomly chosen from the uniform
distribution, although we insured that the union of all predicates
selected 100% of the tuples. We placed no limit on the sum of se-
lectivities (as was done in the NiagaraCQ work), because doing so
does not significantly affect the performance of their best approach
or our system.

We varied the number of distinct queries (distinct selection pred-
icates) from 1 to 200 and compared the performance, shown in
Figure 1 l(a). Notice that the CACQ approach is faster than the
PullUp approach for small numbers of queries, but that it later be-
comes slightly slower. The original performance benefit is because
CACQ can apply selections on smaller tuples before it computes
the join; the PullUp approach joins all tuples first. For large num-
bers of queries, the CACQ approach is somewhat slower due to the
additional time spent maintaining the tuple state (which was not in-
cluded in the NiagaraCQ experiments). The PushDown approach
(as was the case in [2]) is slower in all cases.

Note that the shape of the lines for the two NiagaraCQ experi-
ments shown in Figure 11 (a) closely matches the shape of the lines
shown in Figure 4.3 of [2], suggesting that our emulation of the
NiagaraCQ approach is sound. These experiments show that our
CACQ approach is capable of matching the best of the NiagaraCQ
approaches without the benefit of a cost-based query optimizer. Our
routing policy determines that the grouped selection on prices is
more selective than the join, and thus routes tuple through the se-
lection first.

In the next set of experiments, we modify the above scenario
to apply a UDF over batches of stock quotes which flow into the
system. We fix the number of simultaneous queries at I00, but
we vary the number of articles per stock quote, to simulate multi-
ple news stories and sources reporting about a particular company.
In this modified approach, each user specifies a UDF that selects
stock quotes of interest (instead of a single > predicate). Quotes
are shipped in batches reflecting several hours worth of activity, to
allow UDFs to utilize more than just the most recent stock price in
deciding to return a particular quote. This is the sort of environment

°2

Atticlcs ~ "

Pli llucs

:-:....: ~*t:..Lt::~:t:..:~:J

(a) PushDown Plan (b) PullUp Plan
Figure 10: Two Alternative Query Plans in NiagaraCQ

5 9

N ~ b e t of O~d# ~. Time TO Comrdmls
14OOOO CACO

NhlgKa PuldiQ, own /
Nia~lta PullUpm.... /"

12OOOO / /

/
/

8 f

/

/

o
20 40 60 80 100120140~eO1802~O

Numtqat of QuerkNl

(a) Normal Selections

100

I0

i

CACQ vs. NiagaraCQ (UDF Experiment)
(Lo~thnl[c S~]c)

i[
1 10 100

Article, per Quote

(b) UDF Selections

Figure 11: NiagaraCQ vs. CACQ with Two Types of Selections

serious investors might use: each user% UDF would search for the
parameters he thought were particularly important in determining
when to buy or sell a stock; when those parameters are satisfied,
quotes and recent news articles about those quotes are returned.
Notice that in this case, we cannot use a grouped filter to evaluate
UDFs and NiagaraCQ cannot group UDFs via a BTree. The results
of these experiments are shown in Figure 1 l(b). We compared only
against the PullUp approach, as the PushDown approach remains
much slower than CACQ, for the same reasons as in the previous
experiment. We varied the cardinality of the a r t i c l e s relation
so that there were 1, 10, or 100 articles per quote. We simulated the
cost of a UDF by spin-looping for a randomly, uniformly selected
time over the interval of 10 - 500/zS.

In this case, the CACQ approach is much more efficient because
CACQ applies UDFs to stock quotes before they are joined with ar-
ticles, while NiagaraCQ must apply UDFs after the join if it wishes
perform only a single join. As the cardinality of articles in-
creases the expensive UDFs must be applied many more times in
the NiagaraCQ approach than in CACQ. In general, this is a limita-
tion of the NiagaraCQ approach which cannot be overcome unless
lineages are explicitly encoded. NiagaraCQ cannot push selections
from two queries below a shared join without performing the join
multiple times; if the fanout of the join is much greater than one,
this will severely impair NiagaraCQ's performance. Furthermore,
as we saw in the single-article case, NiagaraCQ pays a penalty for
performing selections on larger, joined tuples.

6. R E L A T E D W O R K
The integration of Eddies and continuous queries in our CACQ

system is necessarily related to both areas of research. We sum-
mafize this work, and also discuss related systems in the adaptive
query processing, sensor, and temporal database communities.

Eddies were originally proposed in [1]. The basic query operator

and the back-pressure and ticket-based routing schemes were de-
veloped. Notions of adaptivity and pipelining are well established
in the research community. Parallel-pipelinedjoins were proposed
in [28]. Adaptive systems such as X Join, Query Scrambling, and
Tukwila [26, 27, 10] demonstrated the importance of pipelined op-
erators to adaptivity.

Existing work on continuous queries provides techniques for si-
multaneously processing many queries over a variety of data sources.
These systems propose the basic continuous query framework that
we adopt and also offer some extensions for combining related op-
erators within query plans to increase efficiency. Generally speak-
ing, the techniques employed for doing this combination are con-
siderably more complex and less effective at adapting to rapidly
changing query environments than CACQ.

Efficient trigger systems, such as the TriggerMan system[6] are
similar to continuous queries in that they perform incremental com-
putation as tuples arrive. In general, the approaches used by these
systems is to use a discrimination network, such as RETE [5] or
TREAT [15], to efficiently determine the set of triggers to fire when
a new tuple arrives. These approaches typically materialize inter-
mediate results to reduce the work required for each update.

Continuous queries were proposed and defined in [25] for filter-
ing of documents via a limited, SQL-like language. In the OpenCQ
system [13], continuous queries are likened to trigger systems where
queries consists of four element tuples: a SQL-style query, a trigger-
condition, a start-condition, and an end-condition. The NiagaraCQ
project [3] is the most recently described CQ system. Its goal is
to efficiently evaluate continuous queries over changing data, typi-
cally web-sites that are periodically updated, such as news or stock
quote servers. Examples of the NiagaraCQ grouping approach and
a discussion of its limitations are given in Section 5 above.

The problem of sharing working between queries is not new.
Multi-query optimization, as discussed in [21] seeks to exhaus-
tively find an optimal query plan, including common subexpres-
sion, between a small number of queries. Recent work, such as
[19, 16] provides heuristics for reducing the search space, but is
still fundamentally based on the notion of building a query-plan,
which we avoid in this work.

Fundamental notions of stream processing are presented in [22],
including extensions to SQL for windows and discussions of non-
blocking and timestamped operators. [4] proposes windows as a
means of managing joins over very large sets of data. [24] discusses
operators for processing streams in the context of network routing;
it includes an interesting discussion of appropriate query languages
for streaming data.

[17] discusses models of data streaming from sensors. [14] pro-
poses using continuous queries for processing over streams of sen-
sor data and offers motivating performance examples, but falls short
of providing a specific framework for query evaluation and does not
incorporate adaptivity.

7. CONCLUSIONS
In this paper we present the first continuous query implemen-

tation based on a continuously adaptive query processing scheme.
We show that our eddy-based design provides significant perfor-
mance benefits, not only because of its adaptivity, but also because
of the aggressive cross-query sharing of work and space that it en-
ables. By breaking the abstraction of shared relational algebra ex-
pressions, our Telegraph CACQ implementation is able to share
physical operators - both selections and join state - at a very fine
grain. We augment these features with a grouped-filter index to
simultaneously evaluate multiple selection predicates.

8. REFERENCES
[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query

processing. In ACMSIGMOD, Dallas, TX, May 2000.
[2] J. Chen, D. DeWitt, and J. Naughton. Design and evaluation of

alternative selection placement strategies in optimizing continuous
queries. In ICDE, San Jose, CA, February 2002.

[3] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable
continuous query system for internet databases. In ACM SIGMOD,
2000.

[4] D. DeWitt, J. Naughton, and D. Schneider. An evaluation of
non-equijoin algorithms. In VLDB, Barcelona, Spain, 1991.

[5] C. Forgy. Rete: A fast algorithm for the many patterns/many objects
match problem. Artificial Intelligence, 19(1):17-37, 1982.

[6] E. Hanson, N. A. Fayoumi, C. Carnes, M. Kandil, H. Liu, M. Lu,
J. Park, and A. Vernon. TriggerMan: An Asynchronous Trigger
Processor as an Extension to an Object-Relational DBMS. Technical
Report 97-024, University of Florida, December 1997.

[7] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols
for information dissemination in wireless sensor networks. In
MOBICOM, Seattle, WA, August 1999.

[8] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande,
K. Hildrum, S. Madden, V. Raman, and M. Shah. Adaptive query
processing: Technology in evolution. 1EEE Data Engineering
Bulletin, 23(2):7-18, 2000.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pister. System
architecture directions for networked sensors. In ASPLOS, November
2000.

[10] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, andD. S. Weld. An
adaptive query execution system for data integration. In Proceedings
of the ACM SIGMOD, 1999.

[11] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile networking for
smart dust. In MOBICOM, Seattle, WA, August 1999.

[12] N. Lanham. The telegraph screen scraper, 2000.
http://db.cs.berkeley.edu/nickl/tess.

[13] L. Liu, C. Pu, and W. Tang. Continual queries for internet-scale
event-driven information delivery. IEEE Knowledge and Data
Engineering, 1999. Special Issue on Web Technology.

[14] S. Madden and M. Franklin. Fjording the stream: An architecture for
queries over streaming sensor data. San Jose, CA, February 2002.
ICDE.

[15] D. P. Miranker. Treat: A better match algorithm for ai production
system matching. In Proceedings of AAAI, pages 42---47, 1987.

[16] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized
view selection and maintenance using multi-query optimization. In
ACM SIGMOD, 2001.

[17] P.Bonnet, J.Gehrke, and P.Seshadri. Towards sensor database
systems. In 2nd International Conference on Mobile Data
Management, Hong Kong, January 2001.

[18] V. Raman. Interactive Query Processing. PhD thesis, UC Berkeley,
2001.

[19] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and
extensible algorithms for multi query optimization. In ACM
SIGMOD, pages 249-260, 2000.

[20] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price.
Access path selection in a relational database management system.
pages 23-34, Boston, MA, 1979.

[21] T. Sellis. Multiple query optimization. ACM Transactions on
Database Systems, 1986.

[22] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and
implementation of a sequence database systems. In VLDB, Mumbai,
India, September 1996.

[23] M. Shah, S. Madden, M. Franklin, and J. M. Hellerstein. Java support
for data intensive systems. SIGMOD Record, December 2001.

[24] M. Sullivan and A. Heybey. Tribeca: A system for managing large
databases of network traffic. In Proceedings of the USENIXAnnual
Technical Conference, New Orleans, LA, June 1998.

[25] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queies
over append-only databases. In ACM SIGMOD, pages 321-330,
1992.

[26] T. Urhan and M. Franklin. X Join: A reactively-scheduled pipelined
join operator. 1EEE Data Engineering Bulletin, pages 27-33, 2000
2000.

[27] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based query
scrambling for initial delays. In ACMSIGMOD, 1998.

[28] A. Wilschut and P. Apers. Dataflow query execution in a parallel
main-memory environment. In PDIS, pages 68-77, December 1991.

6 0

