
Enforceable Security Policies1

Fred B. Schneider

Department of Computer Science

Cornell University

Ithaca, New York 14853

January 15, 1998
Revised July 24, 1999

1Supported in part by ARPA/RADC grant F30602-96-1-0317, AFOSR grant
F49620-94-1-0198, Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Material Command, USAF, under agree-
ment number F30602-99-1-0533, National Science Foundation Grant 9703470, and
a grant from Intel Corporation. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of these organizations
or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright anno-
tation thereon.

Abstract

A precise characterization is given for the class of security policies enforce-
able with mechanisms that work by monitoring system execution, and au-
tomata are introduced for specifying exactly that class of security policies.
Techniques to enforce security policies specified by such automata are also
discussed.

1 Introduction

A security policy defines execution that, for one reason or another, has been
deemed unacceptable. For example, a security policy might concern

• access control, and restrict what operations principals can perform on
objects,

• information flow, and restrict what principals can infer about objects
from observing system behavior, or

• availability, and restrict principals from denying others the use of a
resource.

To date, general-purpose security policies, like those above, have at-
tracted the most attention. But application-dependent and special-purpose
security policies are increasingly important [5, 8, 13, 15, 25, 27, 34]. A
system to support mobile code, like Java [11], might prevent information
leakage by enforcing a security policy that bars messages from being sent
after files have been read. To support electronic commerce, a security pol-
icy might prohibit executions in which a customer pays for a service but
the seller does not provide that service. And finally, electronic storage and
retrieval of intellectual property is governed by rights-management schemes
that restrict not only the use of stored materials but also the use of any
derivatives [31].

The value of application-dependent and special-purpose security policies
is perhaps best explained in terms of the Principle of Least Privilege [29],
which holds that each principal be accorded the minimum access needed
to accomplish its task. Clearly, richer notions of “minimum access” allow
the Principle of Least Privilege to discriminate better between those actions
that should and those that should not be allowed. Application-dependent
security policies can depend on an application’s state along with the seman-
tics of that application’s abstractions, so richer prescriptions for “minimum
access” now become possible. In contrast, operating system abstractions—
the traditional vocabulary for security policies—constitute a coarse basis for
prescribing “minimum access,” often forcing security policies to be approx-
imations for what is desired.

The practicality of any security policy depends on whether that policy is
enforceable and at what cost. This paper addresses those questions for the
class of enforcement mechanisms that work by monitoring execution steps
of a target and terminating execution that is about to violate the security

1

policy being enforced. We call this class EM, for Execution Monitoring.
EM includes security kernels, reference monitors, firewalls, and most other
operating system and hardware-based enforcement mechanisms that have
appeared in the literature. Our targets may be objects, modules, processes,
subsystems, or entire systems; the execution steps monitored may range from
fine-grained actions (such as memory accesses) to higher-level operations
(such as method calls) to operations that change the security-configuration
and thus restrict subsequent execution.

Mechanisms that use more information than becomes available only from
observing the steps of a target’s execution are, by definition, excluded from
EM. Information provided to an EM mechanism is thus insufficient for pre-
dicting future steps the target might take, alternative possible executions,
or all possible target executions. Therefore, compilers and theorem-provers,
which analyze a static representation of a target to deduce information about
all of its possible executions, are not EM mechanisms. The availability
of information about future execution, about alternative possible execu-
tions, or about all possible target executions gives power to an enforcement
mechanism—just how much power is an open question.

Also outside EM are mechanisms that modify a target before execut-
ing it. The modified target would have to be “equivalent” to the original,
except for aborting executions that would violate the security policy of in-
terest. A definition for “equivalent” is thus required to analyze this class of
mechanisms.

A formal characterization of what can and cannot be accomplished us-
ing mechanisms in EM has both practical and theoretical utility. Clearly,
such a characterization can inform system builders’ selections of enforcement
mechanisms by circumscribing the intrinsic limits of reference monitors and
derivative mechanisms. From a theoretical perspective, the characteriza-
tion constitutes a first step towards a taxonomy of security policies that is
based on a mathematical semantics of programs. Two other classes in that
taxonomy might come from relaxing EM’s defining restrictions: (i) a class
of enforcement mechanisms that have access to some (perhaps incomplete)
representation of the target, and (ii) a class of enforcement mechanisms that
modify the target before execution.

We proceed as follows. In §2, a precise characterization is given for secu-
rity policies that can be enforced using mechanisms in EM. An automata-
based formalism for specifying those security policies is the subject of §3.
Mechanisms in EM for enforcing security policies specified by automata
are described in §4. Next, §5 discusses some pragmatic issues related to
specifying and enforcing security policies as well as the application of our

2

enforcement mechanisms to safety-critical systems. The appendix contains
a summary of the notation used in the paper.

2 Characterizing EM Enforcement Mechanisms

We represent target executions by finite and infinite sequences, where Ψ
denotes a universe of all possible finite and infinite sequences. The manner
in which executions are represented is irrelevant here. Finite and infinite
sequences of atomic actions, of higher-level system steps, of program states,
or of state/action pairs are all plausible alternatives. A target S defines a
subset ΣS of Ψ corresponding to the executions of S.

A characterization of EM-enforceable security policies is interesting only
if the definition being used for “security policy” is broad enough so that
it does not exclude things usually considered security policies.1 Also, the
definition must be independent of how EM is defined, for otherwise the char-
acterization of EM-enforceable security policies would be a tautology, hence
uninteresting. We therefore define a security policy to be a set of executions,
specifying security policies by predicates on sets of executions. This defini-
tion is both broad2 (giving at least as much power for defining computations
disallowed by security policies as for specifying the computations possible by
targets) and corresponds to the intuition that security policies rule out tar-
get executions that are deemed unacceptable. A target S satisfies security
policy P if and only if P(ΣS) equals true.

Given a security policy P and sets Σ and Π of executions, we do not
require that if Σ satisfies P and Π ⊂ Σ holds, then Π satisfies P. Imposing
such a requirement on security policies would disqualify interesting candi-
dates. For instance, the requirement would preclude information flow (as
defined informally in §1) from being considered a security policy—universe
Ψ of all executions satisfies information flow, but a subset Π containing
only those executions in which the value of a variable x in each execution
is correlated with the value of y (say) clearly violates that information flow
policy.

Safety Properties and EM Enforceability

By definition, enforcement mechanisms in EM work by monitoring execution
of the target. Thus, any security policy P that can be enforced using a

1However, there is no harm in being liberal about what is considered a security policy.
2The definition clearly subsumes the noninterference-based definition of security policy

in [12].

3

mechanism from EM must be specified by a predicate of the form

P(Π) : (∀σ ∈ Π: P̂(σ)) (1)

where P̂ is a predicate on (individual) executions. P̂ formalizes the criteria
used by the enforcement mechanism for deciding to terminate an execution
that would otherwise violate the policy being enforced. In [1] and the lit-
erature on linear-time concurrent program verification, a set of executions
is called a property if set membership is determined by each element alone
and not by other members of the set. Using that terminology, we conclude
from (1) that a security policy must be a property in order for that policy
to have an enforcement mechanism in EM.

Not every security policy is a property. Some security policies cannot be
defined using criteria that individual executions must each satisfy in isola-
tion. For example, the information flow policy discussed above characterizes
sets that are not properties (as proved in [22]3). Whether information flows
from variable x to y in a given execution depends, in part, on what values y

takes in other possible executions (and whether those values are correlated
with the value of x). A predicate to specify such sets of executions cannot be
constructed only using predicates defined on single executions in isolation.

Not every property is EM-enforceable. Enforcement mechanisms in EM
cannot base decisions on possible future execution, since that information is,
by definition, not available to such a mechanism, and this further restricts
what security policies can be enforced by EM mechanisms. Consider security
policy P of (1), and suppose σ′ is the prefix of some finite or infinite execution
σ where P̂(σ) = true and P̂(σ′) = false hold. Because execution of a target
might terminate before σ′ is extended into σ, an enforcement mechanism for
P must prohibit σ′ (even though supersequence σ satisfies P̂).

We can formalize this requirement as follows. For σ a finite or infinite
execution having i or more steps, and τ ′ a finite execution, let

σ[..i] denote the prefix of σ involving its first i steps

τ ′ σ denote execution τ ′ followed by execution σ

and define Π− to be the set of all finite prefixes of elements in set Π of finite
and/or infinite sequences. Then, the above requirement for P—that P is
prefix closed—is:

(∀τ ′ ∈ Ψ− : ¬P̂(τ ′) ⇒ (∀σ ∈ Ψ: ¬P̂(τ ′σ))) (2)

3The author of [22] acknowledged James Gray III as pointing out this limitation for
dealing with security in frameworks based on our property abstraction.

4

Finally, note that any execution rejected by an enforcement mechanism
must be rejected after a finite period. This is formalized by:

(∀σ ∈ Ψ : ¬P̂(σ) ⇒ (∃i : ¬P̂(σ[..i]))) (3)

Security policies satisfying (1), (2), and (3) are safety properties [17],
properties stipulating that no “bad thing” happens during any execution.
Formally, a property Γ is defined in [18] to be a safety property if and only
if, for any finite or infinite execution σ,

σ 6∈ Γ ⇒ (∃i : (∀τ ∈ Ψ: σ[..i] τ 6∈ Γ)) (4)

holds. This means that Γ is a safety property if and only if Γ can be
characterized using a set of finite executions that are prefixes of all executions
excluded from Γ. Clearly, a security policy P satisfying (1), (2), and (3) has
such a set of finite prefixes—the set of prefixes τ ′ ∈ Ψ− such that ¬P̂(τ ′)
holds—so P is satisfied by sets that are safety properties according to (4).

The above analysis of enforcement mechanisms in EM has established:

Non EM-Enforceable Security Policies: If the set of executions for a
security policy P is not a safety property, then an enforcement mech-
anism from EM does not exist for P.

Obviously, the contrapositive holds as well: EM enforcement mechanisms en-
force security policies that are safety properties. But, as discussed later in §4,
the converse—that all safety properties have EM enforcement mechanisms—
does not hold.

One consequence of our Non EM-Enforceable Security Policies result is
that ruling-out additional executions never causes an EM-enforceable policy
to be violated, since ruling-out executions never invalidates a safety property.
Thus, an EM enforcement mechanism for any security policy P ′ satisfying
P ′ ⇒ P also enforces security policy P. However, a stronger policy P ′ might
proscribe executions that do not violate P, so using P ′ is not without po-
tentially significant adverse consequences. The limit case, where P ′ specifies
the empty set, illustrates this problem.

Second, our Non EM-Enforceable Security Policies result implies that
EM mechanisms compose in a natural way. When multiple EM mechanisms
are used in tandem, the policy enforced by the aggregate is the conjunction
of the policies that are enforced by each mechanism in isolation. This is
attractive, because it enables complex policies to be decomposed into con-
juncts, with a separate mechanism used to enforce each of the component
policies.

5

Revisiting the three application-independent security policies described
in §1, we find:

• Access control defines safety properties. The set of proscribed partial
executions contains those partial executions ending with an unaccept-
able operation being attempted.

• Information flow does not define sets that are properties (as argued
above), so it does not define sets that are safety properties. Not being
safety properties, there are no EM enforcement mechanisms for exactly
this policy.4

• Availability, if taken to mean that no principal is forever denied use
of some given resource, is not a safety property—any partial execu-
tion can be extended in a way that allows a principal to access the
resource, so the defining set of proscribed partial executions that ev-
ery safety property must have is absent. In [9], availability is defined
to rule out all denials in excess of MWT seconds (for some predefined
Maximum Waiting Time parameter MWT). This is a safety property;
the defining set of partial executions contains prefixes ending in inter-
vals that exceed MWT seconds during which a principal is denied use
of a resource.

3 Security Automata

Enforcement mechanisms in EM work by terminating target execution that
is described by a finite prefix σ′ such that ¬P̂(σ′) holds, for a predicate P̂
defined by the policy being enforced. In addition, we established in §2 that
the set of executions satisfying P̂ must be a safety property. Those being the
only constraints on P̂ , we conclude that recognizers for sets of executions
that are safety properties can serve as the basis for enforcement mechanisms
in EM.

A class of Büchi automata [6] that accept safety properties was intro-
duced (although not named) in [2]. We shall here refer to these recognizers
as security automata; they are similar to ordinary non-deterministic finite-
state automata [14]. Formally, a security automaton is defined by:

4Mechanisms from EM purporting to prevent information flow do so by enforcing a
security policy that implies, but is not equivalent to, the absence of information flow.
And, there do exist security policies that both imply restrictions on information flow and
define sets that are safety properties.

6

qnfr qfr
FileRead

not FileRead not Send

Figure 1: No Send after FileRead

– a countable set Q of automaton states,

– a countable set Q0 ⊆ Q of initial automaton states,

– a countable set I of input symbols, and

– a transition function5, δ: (Q × I) → 2Q .

Set I of input symbols is dictated by the security policy being enforced and
the manner in which target executions are being represented; the symbols
in I might correspond to system states, atomic actions, higher-level actions
of the system, or state/action pairs.

To process a sequence s1s2 . . . of input symbols, the current state Q′ of
the security automaton starts equal to Q0 and the sequence is read one input
symbol at a time. As each input symbol si is read, the security automaton
changes Q′ to: ⋃

q∈Q′

δ(q, si).

If Q′ is ever the empty set, the input is rejected; otherwise the input is
accepted. Notice that this acceptance criterion means that a security au-
tomaton can accept sequences that have infinite length as well as those
having finite length.

Figure 1 depicts a security automaton for a security policy that prohibits
execution of Send operations after a FileRead has been executed. In this
diagram, the automaton states are represented by the two nodes labeled qnfr

(for “no file read”) and qfr (for “file read”). Initial states of the automaton
are represented in the diagram by nodes with unlabeled incoming edges, so
automaton state qnfr is the only initial automaton state. Transition function
δ is specified in terms of edges labeled by transition predicates, which are

5Notation 2Q denotes the power set for set Q.

7

state vars : state : {0, 1} initial 0

transitions : not FileRead ∧ state = 0 −→ skip

FileRead ∧ state = 0 −→ state := 1

not Send ∧ state = 1 −→ skip

Figure 2: Alternative specification for policy: No Send after FileRead

Boolean-valued effectively computable total functions with domain I. Let
pij denote the predicate that labels the edge from node qi to node qj. Then,
the security automaton, upon reading an input symbol s, Q′ is set to

{qj | qi ∈ Q′ ∧ s |= pij}.

In Figure 1, transition predicate not FileRead is assumed to be satisfied
by input symbols (system execution steps) that are not file read operations,
and transition predicate not Send is assumed to be satisfied by input sym-
bols that are not message-send operations. Since no transition is defined
from qfr for input symbols corresponding to message-send execution steps,
the security automaton in Figure 1 rejects inputs in which a Send follows a
FileRead.

Diagrams like Figure 1 are impractical to draw and hard to understand if
set Q of automaton states is large or transition function δ is complex. We can
avoid these difficulties by encoding Q′ for an automaton in multiple variables
and by using guarded commands [4] to describe the transition function for
the security automaton. Guarded command

B −→ S (5)

specifies that the state transition defined by program fragment S occurs
whenever predicate B is satisfied by the current input symbol and the current
state of the automaton. In (5), B is called the guard, and it is a predicate
that can refer only to the current input symbol and to the variables encoding
the current state of the automaton; S is called the command, and it is a
computation that updates (only) the variables encoding the current state of
the automaton.

To illustrate this alternative notation for security automata, Figure 2
gives a specification for the same security policy as given in Figure 1. The

8

state vars : A : array[PRINS ,OBJS] of set of RIGHTS

transitions : Access(p, obj, oper) ∧ oper ∈ A[p, obj] −→ skip

AddRight(p, addP, addR, obj) ∧ cntrl ∈ A[p, obj]
−→ A[addP, obj] := A[addP, obj] ∪ {addR}

RmvRight(p, rmvP, rmvR, obj) ∧ cntrl ∈ A[p, obj]
−→ A[rmvP, obj] := A[rmvP, obj] − {rmvR}

Figure 3: Access Control

state vars section of this specification introduces the variables that encode
the current state of the security automaton. The transitions section gives
a list of guarded commands that define the transition function. In Figure 2,
state—a two-valued variable with initial value 0—encodes the current state
of the security automaton, and each of the three guarded commands corre-
sponds to a single edge in the diagram of Figure 1.

As a second example, Figure 3 specifies a security automaton for a sim-
ple form of access control [19]. Here, an access control matrix A encodes
the current state of the security automaton—A[p, o] is the set of rights that
principal p has to object o. A is defined in terms of a universe of princi-
pals PRINS , a universe of objects OBJS , and a universe of access rights
RIGHTS . For simplicity, no initialization is given for A.

The transitions in the security automaton of Figure 3 are defined using
predicates on input symbols that correspond to a next step of execution:

Access(p, obj , oper) : Principal p invoked an access operation oper naming
object obj.

AddRight(p, addP , addR, obj) : Principal p invoked an operation to add
right addR for principal addP to object obj.

RmvRight(p, rmvP , rmvR, obj) : Principal p invoked an operation to re-
move right rmvR for principal rmvP for object obj.

The first guarded command asserts that access operations are permitted
provided a principal attempting the operation has the appropriate access
right for the named object. The second and third guarded commands de-
scribe a simplified policy for granting and revoking rights to principals. In

9

state vars : state : {0, 1} initial 0

transitions : not Pay(C) ∧ state = 0 −→ skip

Pay(C) ∧ state = 0 −→ state := 1

Serve(C) ∧ state = 1 −→ state := 0

Figure 4: Security automaton for fair transaction

particular, the second (third) guarded command asserts that only principals
having the cntrl right for an object obj can grant (remove) rights to other
principals for accessing obj. More-realistic policies for changing the access
control matrix are easily accommodated.

Two things are worth noting about this access-control example. First,
leverage results from employing a suitable representation (an access control
matrix) for the current state of the automaton. Imagine how awkward it
would be to try and describe changes to principal’s access rights in terms
of the flat set of uninterpreted automaton states. Second, the security au-
tomaton does not distinguish security-configuration changes (i.e., changing
A when access rights are added and deleted) from ordinary accesses. We
would argue that there is no value in making a distinction between these
different kinds of operations. This view is not universally held [10].

As a final illustration, we turn to electronic commerce. We might, for
example, desire that a service-provider be prevented from engaging in ac-
tions other than delivering service for which a customer has paid. This
requirement is a security policy; it can be formalized in terms of the fol-
lowing predicates on input symbols, if input symbols represent operation
executions:

pay(C): customer C requests and pays for service

serve(C): customer C is rendered service

The security policy of interest proscribes executions in which the service-
provider executes an operation that does not satisfy serve(C) after having
engaged in an operation that satisfies pay(C). A security automaton for this
policy is defined in Figure 4.

Notice, the security automaton of Figure 4 does not stipulate that pay-
ment guarantees service—it only limits what the service-provider can do

10

once a customer has made payment. In particular, the security policy that
is specified allows a service-provider to stop executing (i.e., stop producing
input symbols) rather than rendering a paid-for service. We cannot spec-
ify the stronger security policy (that service be guaranteed after payment)
because that is not a safety property—there is no defining set of proscribed
partial executions.

4 Using Security Automata for Enforcement

Any security automaton can serve as the basis for an enforcement mechanism
in EM. The target is executed in tandem with a simulation of the security
automaton.6 In particular, initialization or creation of the target causes
an instance of the security automaton simulation to be created, with the
security automaton in its initial state. And, each step the target is about
to take generates an input symbol, which is sent to that simulation:

(i) If the automaton can make a transition on that input symbol, then
the target is allowed to perform that step and the automaton state is
changed according to its transition function.

(ii) If the automaton cannot make a transition on that input symbol, then
the target is terminated (for having attempted to violate the security
policy).

Implicit in this approach are some assumptions.

Bounded Memory. The memory that can be devoted to simulating a
security automaton will, of necessity, be finite—real computers have finite
memories. Recall from §3 that our security automata can have an infinite
(countable) number of automaton states.

Infinite sets of automaton states are necessary for recognizing certain
safety properties, because whether a given prefix should be rejected might
depend on all of the input symbols in that prefix. The ever-larger prefixes
produced as execution proceeds thus require ever-larger sets of states to
encode needed information about the past. For example, a safety property
stipulating that, at each step of execution, the value of some target variable
x equals the sum of its values in preceding states requires (to store the sum
of the past values of x) a state variable that grows without bound.

6A similar approach—developed independently—for integrating software components
whose behaviors need to be reconciled is outlined in [21].

11

Security policies of concern in real systems do not seem to require large
amounts of storage and, in fact, are today enforced using mechanisms that
use only modest amounts of storage; a security automaton to specify such a
policy would also require only a modest-sized set of automaton states. We
see no reason to expect application-specific or special-purpose security poli-
cies to be different. So, restricting the state vars for a security automaton
to a finite amount of storage is not, in practice, a limitation.

Target Control. Implicit in (ii) is the assumption that the target can be
terminated by the enforcement mechanism. Specifically, we assume that the
enforcement mechanism has sufficient control over the target to stop further
automaton input symbols from being produced. This control requirement
is subtle and makes certain security policies—even though they characterize
sets that are safety properties—unenforceable using mechanisms from EM.

For example, recall from §2 the definition of availability in [9]:

Real-Time Availability: One principal cannot be denied use of a resource
for more than MWT seconds.

Sets satisfying Real-Time Availability are safety properties—the “bad thing”
is an interval of execution spanning more than MWT seconds during which
some principal is denied the resource. The input symbols of a security
automaton for Real-Time Availability will therefore encode time, and a new
input symbol is produced whenever time increases.

While individual clocks might be stopped, the passage of time cannot be
stopped. So the target cannot be stopped from producing input symbols.
Real-Time Availability simply cannot be enforced by running an automaton
simulation in tandem with a target, because targets cannot provide the nec-
essary controls to the enforcement mechanism. And since the other mecha-
nisms in EM are no more powerful, we conclude that Real-Time Availability
cannot be enforced using any mechanism in EM. Change the specification
from “MWT seconds” to “MWT execution steps” and the target can be
prevented from violating the policy by stopping execution, resulting in an
EM-enforceable security policy.

Enforcement Mechanism Integrity. A target that corrupts a security
automaton simulation can subvert any enforcement mechanism based on
that simulation: Input to the enforcement mechanism must correspond to
target execution; state transitions must follow the automaton’s transition
function. Ensuring that input to the enforcement mechanism is both cor-
rect and complete is a question of target instrumentation and monitoring.

12

The “complete mediation” requirement associated with reference monitors is
one way to discharge this assumption. Ensuring that the target does not in-
terfere with automaton transitions is a matter of isolation—the enforcement
mechanism must be isolated from the target. Isolation of our enforcement
mechanism is accomplished if, for example, the state vars and transitions

for the security automaton are not writable by the target.

Pragmatics

Two mechanisms are involved in the above security-automaton based imple-
mentation of an enforcement mechanism.

Automaton Input Read: A mechanism to determine that an input sym-
bol has been produced by the target and then to forward that symbol
to the security automaton simulation.

Automaton Transition: A mechanism to determine whether the security
automaton can make a transition on a given input and then to perform
that transition.

How these are implemented determines the cost of the enforcement mech-
anism. For example, when the automaton’s input symbols are the set of
target states and its transition predicates are arbitrary state predicates, a
new input symbol is produced each time any component of the target’s state
changes. Since the program counter is a state component and it changes each
time a machine-language instruction is executed or an interrupt occurs, the
enforcement mechanism must be involved in executing each target instruc-
tion, and that could be quite costly.

For security policies where the target’s production of automaton input
symbols coincides with occurrences of hardware traps, an automata-based
enforcement mechanism can be supported quite cheaply by incorporating it
into the trap-handler. One example is implementing an enforcement mech-
anism for access control policies on operating system objects, such as files.
Here, the target is a file and the production of input symbols coincides with
invocations of system operations (i.e., file access operations). The produc-
tion of input symbols now coincides with occurrences of system-call traps.

A second example where hardware traps can be exploited arises in im-
plementing memory protection. Memory protection implements access con-
trol with read, write, and execute operations and an access control matrix
that tells which processes can access each region of memory. The security
automaton of Figure 3 specifies this security policy. Notice that this secu-
rity automaton would expect an input symbol for each memory reference,

13

though. But most of these input symbols cause no change to the secu-
rity automaton’s state. Input symbols that do not cause automaton state
transitions need not be forwarded to the automaton, and that justifies the
following optimization of Automaton Input Read:

Automaton Input Read Optimization: Input symbols are not forward-
ed to the security automaton if the state of the automaton just after
the transition would be the same as it was before the transition.

Given this optimization, the production of automaton input symbols for
memory protection can be made to coincide with occurrences of traps. The
target’s memory-protection hardware—base/bounds registers or page and
segment tables—is initialized so that a trap occurs when an input symbol
should be forwarded to the memory protection automaton. Memory refer-
ences that do not cause traps never cause a state transition or undefined
transition by the automaton. Note, however, if this optimization is used,
then a target can subvert the enforcement mechanism by corrupting the filter
that selects whether to forward an input symbol to the security automaton.

Finally, inexpensive implementation of our automata-based enforcement
mechanisms is also possible when programs are executed by a software-
implemented virtual machine. The virtual machine instruction-processing
cycle is augmented so that it produces input symbols and makes automaton
transitions, according to either an internal or an externally specified security
automaton. For example, the Java virtual machine [20] could easily be aug-
mented to implement the Automaton Input Read and Automaton Transition
mechanisms for input symbols that correspond to method invocations.

Beyond EM Enforcement Mechanisms

Response to Violations. Termination of a target that is about to violate
a security policy might seem draconian. Yet, by definition, this is how an
EM mechanism responds to an attempted violation. Why not simply notify
the target that an erroneous execution step has been attempted? The target
could then substitute another step and its execution might then continue.

In terms of our security automata framework, notifying a target is equiva-
lent to having the security automaton extend that target’s execution (rather
than truncating that execution). And some—but not all—security policies
do allow input prefixes to be extended in this manner. A security policy that
does not enjoy this attribute is the variant of Real-Time Availability given
in §2 where MWT bounds the number of execution steps (not seconds) that
elapse before an action is taken. Various other safety properties also do not

14

allow execution prefixes to be extended, although their practical significance
as security policies is an open question.

EM was defined to truncate execution for generality. Expanding EM
to include enforcement mechanisms that handle violations by notifying the
target or by truncating its execution would not change the set of security
policies that are EM enforceable. Modifying EM to require enforcement
mechanisms that handle violations by necessarily notifying the target would
shrink the set of security policies that are EM enforceable, and with no
apparent gain.

Program Modification. The overhead of enforcement can be reduced
by merging the enforcement mechanism into the target. One such scheme
is software-based fault isolation (SFI), also known as “sandboxing” [33, 30].
SFI implements memory protection, as specified by an automaton like that
of Figure 3, but does so without hardware assistance.7 Instead, a program
is edited before it is executed, and only such edited programs are executed
by the target. (Usually, it is the object code that is edited.) The edits insert
instructions to check and/or modify the values of operands, so that illegal
memory references are never attempted.

SFI is not in EM because SFI involves modifying the target, and such
modifications are not permitted of enforcement mechanisms in EM. But
viewed in our framework, the inserted instructions for SFI can be seen to
implement Automaton Input Read by copying code for Automaton Transi-
tion in-line before each target instruction that produces an input symbol.
Generalizing, nothing prevents the SFI approach from being used with ar-
bitrary security automata, thereby enforcing any EM-enforceable security
policy. Trust must be placed in the tools used to modify the target, how-
ever.

Our SASI (Security Automata SFI Implementation) prototypes for In-
tel’s x86 object code and SUN’s JVM (Java Virtual Machine) explored the
use of an SFI-like approach for EM-enforceable policies [7]. Each of our pro-
totypes merges the simulation of a security automaton into the object code
for the program that is the target. New variables—accessible only to the
code added for SASI—represent the current state of a security automaton,
and new code—that cannot be circumvented—simulates automaton state
transitions. The new code also causes the target system to halt whenever

7Specifically, the security policy enforced by SFI would involve only the first guarded
command of the three in Figure 3, and transition predicate Access(p, obj, oper) would
check that the memory address being read, written, or branched to is a legal one for the
program.

15

the automaton rejects its input (because the current automaton state does
not allow a transition for the next target instruction). Analysis of a tar-
get allows simplification of code for simulating a security automaton. Each
inserted copy of the automaton simulation is a candidate for simplification
based on the context in which that code appears. By using partial evalua-
tion [16] on the guards as well as by using the automaton structure, irrelevant
tests and updates to the security automaton state can be removed.

Program Analysis. There is no need for any run-time enforcement mech-
anism if the target can be analyzed and proved not to violate the security
policy of interest. This approach has been employed for a security pol-
icy like what SFI was originally intended to address in proof carrying code

(PCC) [24]. With PCC, a proof is supplied along with a program, and this
proof comes in a form that can be checked mechanically before running that
program. The security policy will not be violated if, before the program is
executed, the accompanying proof is checked and found to be correct. The
original formulation of PCC required that proofs be constructed by hand.
This restriction can be relaxed. For certain security policies, a compiler can
automatically produce PCC from programs written in high-level, type-safe
programming languages[23, 26].

To extend PCC for security policies that are specified by arbitrary se-
curity automata, a method is needed to extract proof obligations for estab-
lishing that a program satisfies the property given by such an automaton.
Such a method does exist—it is described in [3].

5 Discussion

The utility of a formalism partly depends on the ease with which objects
of the formalism can be read and written. Users of the formalism must
be able to translate informal requirements into objects of the formalism.
With security automata, establishing the correspondence between transition
predicates and informal requirements on system behavior is crucial and can
require a detailed understanding of the target. The automaton of Figure 1,
for example, only captures the informal requirement that messages are not
sent after a file is read if it is impossible to send a message unless transition
predicate Send is true and it is impossible to read a file unless transition
predicate FileRead is true. There might be many ways to send messages—
some obvious and others buried deep within the bowels of the target. All
must be identified and included in the definition of Send; a similar obligation

16

accompanies transition predicate FileRead.
The general problem of establishing the correspondence between informal

requirements and some purported formalization of those requirements is not
new to software engineers. The usual solution is to analyze the formalization,
being alert to inconsistencies between the results of the analysis and the
informal requirements. We might use a formal logic to derive consequences
from the formalization; we might use partial evaluation to analyze what the
formalization implies about one or another scenario, a form of testing; or,
we might (manually or automatically) transform the formalization into a
prototype and observe its behavior in various scenarios.

Success with proving, testing, or prototyping as a way to gain confi-
dence in a formalization depends upon two things. The first is to decide
what aspects of a formalization to check, and this is largely independent of
the formalism. But the second, having the means to do those checks, not
only depends on the formalism but largely determines the usability of that
formalism. To do proving, we require a logic whose language includes the
formalism; to do testing, we require a means of evaluating a formalization
in one or another scenario; and to do prototyping, we must have some way
to transform a formalization into a computational form.

As it happens, a rich set of analytical tools does exist for security au-
tomata, because security automata are a class of Büchi automata [6] which
are widely used in computer-aided program verification tools. Existing for-
mal methods based either on model checking or on theorem proving can be
employed to analyze a security policy that has been specified as a security
automaton. And, testing or prototyping a security policy that is specified
by a security automaton is just a matter of running the automaton.

Guidelines for Structuring Security Automata

Real system security policies are best given as collections of simpler policies,
a single large monolithic policy being difficult to comprehend. The system’s
security policy is then the result of composing the simpler policies in the col-
lection by taking their conjunction. To employ such a separation of concerns
when security policies are specified by security automata, we must be able
to compose security automata in an analogous fashion. Given a collection of
security automata, we must be able to construct a single conjunction secu-

rity automaton for the conjunction of the security policies specified by the
automata in the collection. That construction is not difficult: An execution
is rejected by the conjunction security automaton if and only if it is rejected
by any automaton in the collection.

17

Beyond comprehensibility, there are other advantages to specifying sys-
tem security policies as collections of security automata. First, having a
collection allows different enforcement mechanisms to be used for the differ-
ent automata (hence the different security policies) in the collection. Second,
security policies specified by distinct automata can be enforced by distinct
system components, something that is attractive when all of a given security
automaton’s input symbols correspond to events at a single system compo-
nent. Benefits that accrue from having the source of all of an automaton’s
input symbols be a single component include:

• Enforcement of a component’s security policy involves trusting only
that component.

• The overhead of an enforcement mechanism is lower because commu-
nication between components can be reduced.

For example, the security policy for a distributed system might be specified
by giving a separate security automaton for each system host. Then, each
host would itself implement Automaton Input Read and Automaton Tran-
sitions mechanisms for only the security automata concerning that host.

Application to Safety-Critical Systems

The idea that security kernels might have application in safety-critical sys-
tems is eloquently justified in [28] and continues to interest researchers [32].
Safety-critical systems are, for the most part, concerned with enforcing prop-
erties that are safety properties (in the sense of [18]), so it is natural to expect
an enforcement mechanism for safety properties to have application in this
class of systems. And, we see no impediments to using security automata or
our security-automata based enforcement mechanisms for enforcing safety
properties in safety-critical systems.

The justification given in [28] for using security kernels in safety-critical
systems involves a characterization of what types of properties can be en-
forced by a security kernel. As do we in this paper, [28] concludes that safety
properties but not liveness properties8are enforceable. However, the argu-
ments given in [28] are informal and are coupled to the semantics of kernel-
supported operations. The essential attributes of enforceability, which we
isolate and formalize by equations (1), (2), and (3), are neither identified
nor shown to imply that only safety properties can be enforced.

8A liveness property is a property that stipulates some “good thing” happens during
any execution. See [2] for a formal definition.

18

In addition, because [28] concerns kernelized systems, the notion of prop-
erty there is restricted to being sequences of kernel-provided functions. By
allowing security automata to have arbitrary sets of input symbols, our re-
sults can be seen as generalizing those of [28]. And the generalization is a
useful one, because it applies to enforcement mechanisms that are not part of
a kernel. Thus, we can now extend the central thesis of [28], that kernelized
systems have application beyond implementing security policies, to justify
the use of enforcement mechanisms from EM when building safety-critical
systems.

Acknowledgments

I am grateful to Robbert van Renesse, Greg Morrisett, Úlfar Erlingsson,
Yaron Minsky, and Lidong Zhou for helpful feedback on the use and imple-
mentation of security automata and for comments on previous drafts of this
paper. Helpful comments on earlier drafts of this paper were also provided
by Earl Boebert, Dave Evans, Li Gong, Robert Grimm, Keith Marzullo,
Andrew Myers, John Rushby, and Chris Small. John McLean served as a
valuable sounding board for these ideas as I developed them. Feedback from
Martin Abadi helped to sharpen the formalism. Reviewer C wrote a lengthy
review and suggested citations [9] and [10]. And, the University of Tromso
was a hospitable setting and a compelling excuse for performing some of the
work reported herein.

References

[1] Alpern, B. and F.B. Schneider. Defining liveness. Information Process-

ing Letters 21, 4 (Oct. 1985), 181–185.

[2] Alpern, B. and F.B. Schneider. Recognizing safety and liveness. Dis-

tributed Computing 2 (1987), 117-126.

[3] Alpern, B. and F.B. Schneider. Verifying temporal properties without
using temporal logic. ACM Transactions on Programming Languages

and Systems 11, 1 (January 1989), 147–167.

[4] Dijkstra, E.W. Guarded commands, nondeterminacy, and formal
derivation of programs. Communications of the ACM 18, 8 (Aug. 1975),
453–457.

19

[5] Edjlali, G., A. Acharya, and V. Chaudhary. History-based access con-
trol for mobile code. Proceedings 5th Conference on Computer & Com-

munications Security (San Francisco, Calif., November 1998), ACM
SIGSAC, 38–48.

[6] Eilenberg, S. Automata, Languages, and Machines. Vol. A, Academic
Press, 1974, New York.

[7] Erlingsson, Ú. and F.B. Schneider. SASI Enforcement of Security Poli-
cies: A Retrospective. To appear, Proceedings New Security Paradigms

Workshop 1999.

[8] Evans, D. and A. Twyman. Policy-directed code safety. Proceedings

1999 IEEE Computer Society Symposium on Research in Security and

Privacy (Oakland, Calif., May 1999), IEEE Computer Society, Calif.,
32–45.

[9] Gligor, V. A note on denial-of-service in operating systems. IEEE

Transactions on Software Engineering SE-10, 3 (May 1984), 320–324.

[10] Gligor, V.D., S.I. Gavrila, and D. Ferraiolo. On the formal definition
of separation-of-duty policies and their composition. Proceedings 1998

IEEE Computer Society Symposium on Research in Security and Pri-

vacy (Oakland, Calif., May 1998), IEEE Computer Society, Calif., 172–
183.

[11] Gong, L. Java security: Present and near future. IEEE Micro 17, 3
(May/June 1997), 14–19.

[12] Goguen, J.A. and J. Meseguer. Security policies and security models.
Proceedings 1992 IEEE Computer Society Symposium on Research in

Security and Privacy (Oakland, Calif., May 1982), IEEE Computer
Society, Calif., 11–20.

[13] Grimm, R. and B.N. Bershad. Providing policy-neutral and transparent
access control in extensible systems. In Secure Internet Programming:

Security Issues for Mobile and Distributed Objects, Lecture Notes in
Computer Science, Vol 1603. J. Vitek, C.D. Jensen, editors. Springer-
Verlag, 1999, New York, 317–338.

[14] Hopcroft, J. and J. Ullman. Formal Languages and Their Relation to

Automata. Addison Wesley Publishing Company, Reading, Mass., 1969.

20

[15] Jajodia, S., P. Samarati, and V.S. Subrahmanian. A logical language
for expressing authorizations. Proceedings 1997 IEEE Computer Society

Symposium on Research in Security and Privacy (Oakland, Calif., May
1997), IEEE Computer Society, Calif., 31–42.

[16] Jones, N.D., C.K. Gomard, and P. Sestoft. Partial Evaluation and Au-

tomatic Program Generation. Prentice Hall, New Jersey, 1993.

[17] Lamport, L. Proving the correctness of multiprocess programs. IEEE

Transactions on Software Engineering SE-3, 2 (March 1977), 125–143.

[18] Lamport, L. Logical Foundation. In Distributed Systems-Methods and

Tools for Specification, Lecture Notes in Computer Science, Vol 190.
M. Paul and H.J. Siegert, editors. Springer-Verlag, 1985, New York,
119–30.

[19] Lampson, B. Protection. Proceedings 5th Symposium on Information

Sciences and Systems (Princeton, New Jersey, March 1971), 437–443.
Reprinted in Operating System Review 8, 1 (Jan. 1974), 18–24.

[20] Lindholm, T. and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Menlo Park, California, 1997.

[21] Marchukov, M. and K. Sullivan. Reconciling behavioral mismatch
through component restriction. Technical Report CS 99-22, Depart-
ment of Computer Science, University of Virginia, July 1999.

[22] McLean, J. A general theory of composition for trace sets closed under
selective interleaving functions. Proceedings 1994 IEEE Computer So-

ciety Symposium on Research in Security and Privacy (Oakland, Calif.,
May 1994), IEEE Computer Society, Calif., 79–93.

[23] Morrisett, G., D. Walker, K. Crary, and N. Glew. From system F to
typed assembly language. Proceedings 25th Annual Symposium on Prin-

ciples of Programming Languages (San Diego, Calif., Jan. 1998), ACM,
New York, 85–97.

[24] Necula, G. Proof-carrying code. Proceedings 24th Annual Symposium

on Principles of Programming Languages (Paris, France, Jan. 1997),
ACM, New York, 106–119.

[25] Null, L.M. and J. Wong. The DIAMOND security policy for object-
oriented databases. Proceedings of the 1992 ACM Computer Science

21

20th Annual Conference on Communications (Kansas City, Missouri,
March 1992), ACM, New York, 49–56.

[26] Necula, G.C. and P. Lee. The design and implementation of a certifying
compiler. Proceedings of the ACM SIGPLAN ’98 Conference on Pro-

gramming Language Design and Implementation (Montreal, Canada,
June 1998), ACM, New York, 333–344.

[27] Pandey, R. and B. Hashii. Providing fine grained access control for
mobile programs through binary editing. Technical Report TR98 08,
University of California, Davis, August 1998.

[28] Rushby, J. Kernels for safety? In Safe and Secure Computing Systems,
T. Anderson, editor. Blackwell Scientific Publications, 1989, 210–220.

[29] Saltzer J.H. and M.D. Schroeder. The Protection of Information in
Computer Systems. Proceedings of the IEEE 63, 9 (Sept. 1975), 1278–
1308.

[30] Small, C. MiSFIT: A tool for constructing safe extensible C++ systems.
Proceedings of the Third USENIX Conference on Object-Oriented Tech-

nologies (Portland, Oregon, June 1997), USENIX.

[31] Stefik, M. Letting Loose the Light: Igniting Commerce in Electronic
Publication. In Internet Dreams, M. Stefik, editor, MIT Press, 1996.

[32] Wika, K. G. and J. C. Knight. On the enforcement of software safety
policies. Proceedings 10th Annual IEEE Conference on Computer As-

surance (Gaithersburg, Maryland, June 1995), IEEE Computer Society,
Calif.

[33] Wahbe, R., S. Lucco, T.E. Anderson, and S. L. Graham. Efficient
Software-Based Fault Isolation. Proceeding 14th ACM Symposium on

Operating Systems Principles (Asheville, North Carolina, Dec. 1993),
ACM, New York, 202–216.

[34] Woo, T.Y.C. and S.S. Lam. Authorization in distributed systems: A
formal approach. Proceedings 1992 IEEE Computer Society Symposium

on Research in Security and Privacy (Oakland, Calif., May 1992), IEEE
Computer Society, Calif., 33–50.

22

Appendix: Summary of Notation

Ψ: The set of all finite and infinite sequences.

S: A target.

ΣS : The set of executions possible by target S.

P: A predicate specifying a security policy.

Σ: A set of executions.

Π: A set of executions.

P̂ : A predicate on executions used in defining security policy P.

σ: a finite or infinite execution.

σ′: a finite execution.

τ : a finite or infinite execution.

τ ′: a finite execution.

σ[..i]: the prefix of σ involving its first i steps.

τ ′ σ: denote finite execution τ ′ followed by execution σ.

Π−: the set of all finite prefixes of elements in set Π.

Γ: A set of executions that is a safety property.

Q: The set of automaton states.

Q0: The set of initial automaton states.

I: The set of automaton input symbols.

δ: The automaton next-state transition function.

Q′: The current state of a security automaton.

23

