
1278 PROCEEDINGS OF THE IEEE, VOL. 63, NO. 9, SEPTEMBER 1975

related to hazard from h e r s and other light sources,” Amer. J.
Ophthulmol., vol. 66, p. 15,1968.

[57] A. Vassiliadis, H. C. Zweng, N. A. Peppers, R. R. Peabody, and
R. C. Honey, “Thresholds of laser eye hazards,” Arch. Environ.

[Sa] P. W. Lappin, “Ocular damage thresholds for the helium-neon
Health, vol. 20, p. 161, 1970.

laser,” Arch. Environ. Health, vol. 20, p. 177, 1970.
[59] W. T. Ham et al., “Retinal bum thresholds for the He-Ne laser in

the rhesus monkey,” Arch. OphthalmoL, to be published.
[60] T. P. Davis and W. J. Mautner, “Helium-neon laser effects on the

eye,” U.S. Army Med. Res. Develop. Com., Washington, D.C.,
Annu. Rep. Contr. DADA 17-6942-9013,1969.

[61] J. J. Vos, “Digital computations of temperature in retinal bum
problems,” Inst. Perception, Soesterberg, The Netherlands, RVO-

[62] M. A. Mainster, T. J. White, J. H. Tips, and P. W. Wilson, “Reti-
TNO, Rep. IZF 1965016,1963.

nal-temperature increases produced by intense light sources,” J.
Opt. Soc. Amer., vol. 60, p. 264, 1970.

[63] A. M. Clarke, W. T. Ham, W. J. Geeraets, R. C. Williams, and
H. A. Mueller, “Laser effects on the eye,” Arch. Environ. Health,
vol. 18, p. 424, 1969.

[64] R. H. Stem and R. F. Sognnaes, “Laser beam on dental hard tis-

[as] R. H. Stem, “Dentistry and the laser,” in Laser Applications in
sues,” J. Dent. Res., vol. 43, p. 873, 1964.

Medicine and Biology, vol. 11, Dr. M. L. Wolbmht, Ed. New
York: Plenum, 1974, pp. 361-388.

[66] T. E. Gordon, Jr., and D. L. Smith, ‘‘Lasex welding of prosthe-
ses-an initial report,” J. Prosth. Dent., vol. 24, p. 472, 1970.

Invited Paper

computer-stored informstion from unauthorized use or modification.
Abrtmet-This tutorid paper explores the mechanics of protecting

It concentrates on those architectural structures-whether hardware or
aoftware-that are necessrry to support information protection. The
papa develops in three. main section& Section I describes deaired
functions, design principles, and examples of elemmtary protection and
authentication mechanismr Any reader h n i h with computers
show find the T i section to be reasonably accessiile. Section II
requirea some famlliuity with d&ptor-b8sed computer architecture.
It examines in depth the principles of modem protection architecturea
and the relation between capability systems and access control list
systems, and en& with a brief analysis of protected subsystems and
protected objects. The reader who is dismayed by either the pre-
requisites or the level of detail in the second section may wish to skip
to Section III, which reviews the state of the art and current research
projects and provides suggestions for further read@.

GLOSSARY

T HE FOLLOWING glossary provides, for reference,
brief definitions for several terms as used in this paper
in the context of protecting information in computers.

Access The ability to make use of information
stored in a computer system. Used fre-
quently as a verb, to the horror of
grammarians.

Access control list A list of principals that are authorized
to have access to some object.

Authenticate To verify the identity of a person (or
other agent external to the protection
system) making a request.

right €9 1975 by 3. H. Saltzer.
Manuscript received October 11, 1974;revised April 17, 1975. Copy-

Engineering and Computer Science, Massachusetts Institute of Tech-
The authors are with Project MAC and the Department of Electrical

nology, Cambridge, Mass. 02139.

Authorize

Capability

Certify

Complete isolation

Confinement

Descriptor

Discretionary

Domain

Encipherment

Grant
Hierarchical control

To grant a principal access to certain
information.
In a computer system, an unforgeable
ticket, which when presented can be
taken as incontestable proof that the
presenter is authorized to have access
to the object named in the ticket.
To check the accuracy, correctness, and
completeness of a security or protection
mechanism.
A protection system that separates
principals into compartments between
which no flow of information or control
is possible.
Allowing a borrowed program to have
access to data, while ensuring that the
program cannot release the information.
A protected value which is (or leads to)
the physical address of some protected
object.
(In contrast with nondiscretionary.)
Controls on access to an object that
may be changed by the creator of the
object.
The set of objects that currently may be
directly accessed by a principal.
The (usually) reversible scrambling of
data according to a secret transforma-
tion key, so as to make it safe for trans-
mission or storage in a physically unpro-
tected environment.
To authorize (s .v .) .
Referring to ability to change authoriza-
tion, a scheme in which the record of

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1279

List-oriented

Password

Permission

Prescript

Rincipal

Privacy

Protection

Self control

each authorization is controlled by an-
other authorization, resulting in a hier-
archical tree of authorizations.
Used to describe a protection system in
which each protected object has a list of
authorized principals.
A secret character string used to au-
thenticate the claimed identity of an
individual.
A particular form of allowed access,
e.g., permission to READ as contrasted
with permission to WRITE.
A rule that must be followed before
access to an object is permitted, thereby
introducing an opportunity for human
judgment about the need for access, so
that abuse of the access is discouraged.
The entity in a computer system to
which authorizations are granted; thus
the unit of accountability in a com-
puter system.
The ability of an individual (or organiza-
tion) to decide whether, when, and to
whom personal (or organizational) in-
formation is released.

Propagation When a principal, having been autho-
rized access to some object, in turn
authorizes access to another principal.

Protected object A data structure whose existence is
known, but whose internal organiza-
tion is not accessible, except by invok-
int the protected subsystem (q .v .)
that manages it.

Protected subsystem A collection of procedures and data
objects that is encapsulated in a domain
of its own so that the internal structure
of a data object is accessible only to the
procedures of the protected subsystem
and the procedures may be called only
at designated domain entry points.
1) Security (q.v.) . 2) Used more nar-
rowly to denote mechanisms and tech-
niques that control the access of execut-
ing programs to stored information.

Protection group A principal that may be used by several
different individuals.

Revoke To take away previously authorized
access from some principal.

Security With respect to information processing
systems, used to denote mechanisms
and techniques that control who may
use or modify the computer or the in-
formation stored in it.
Referring to ability to change authoriza-
tion, a scheme in which each authoriza-
tion contains within it the specification
of which principals may change it.

Ticket-oriented Used to describe a protection system in
which each principal maintains a list of
unforgeable bit patterns, called tickets,
one for each object the principal is
authorized to have access.

User Used imprecisely to refer to the individ-
ual who is accountable for some identi-
fiable set of activities in a computer
system.

I. BASIC PRINCIPLES OF INFORMATION PROTECTION

A. Considerations Surrounding the Study of Protection
1) General Observations: As computers become better

understood and more economical, every day brings new a p
plications. Many of these new applications involve both stor-
ing information and simultaneous use by several individuals.
The key concern in this paper is multiple use. For those a p
plications in which all users should not have identical author-
ity, some scheme is needed to ensure that the computer sys-
tem implements the desired authority structure.

For example, in an airline seat reservation system, a reserva-
tion agent might have authority to make reservations and to
cancel reservations for people whose names he can supply. A
flight boarding agent might have the additional authority to
print out the list of all passengers who hold reservations on the
flights for which he is responsible. The airline might wish to
withhold from the reservation agent the authority to print out
a list of reservations, so as to be sure that a request for a pas-
senger list from a law enforcement agency is reviewed by the
correct level of management.

The airline example is one of protection of corporate infor-
mation for corporate self-protection (or public interest, de-
pending on one’s view). A different kind of example is an on-
line warehouse inventory management system that generates
reports about the current status of the inventory. These re-
ports not only represent corporate information that must be
protected from release outside the company, but also may
indicate the quality of the job being done by the warehouse
manager. In order to preserve his personal privacy, it may be
appropriate t o restrict the access to such reports, even within
the company, to those who have a legitimate reason to be
judging the quality of the warehouse manager’s work.

Many other examples of systems requiring protection of
information are encountered every day: credit bureau data
banks; law enforcement information systems; timesharing
service bureaus; on-line medical information systems; and
government social service data processing systems. These
examples span a wide range of needs for organizational and
personal privacy. All have in common controlled sharing of
information among multiple users. All, therefore, require
some plan to ensure that the computer system helps imple-
ment the correct authority structure. Of course, in some
applications no special provisions in the computer system
are necessary. It may be, for instance, that an externally
administered code of ethics or a lack of knowledge about
computers adequately protects the stored information. Al-
though there are situations in which the computer need pro-
vide no aids to ensure protection of information, often it is
appropriate to have the computer enforce a desired authority
structure.

The words “privacy,” “security,” and “protection” are
frequently used in connection with information-storing sys-
tems. Not all authors use these terms in the same way. This
paper uses definitions commonly encountered in computer
science literature.

The term “privacy” denotes a socially defined ability of an
individual (or organization) to determine whether, when, and

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1280 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

to whom personal (or organizational) information is to be
released.

This paper will not be explicitly concerned with privacy,
but instead with the mechanisms used to help achieve it.’

The term “security” describes techniques that control who
may use or modify the computer or the information contained
in it. ’

Security specialists (e.g., Anderson [61) have found it useful
to place potential security violations in three categories.

1) Unauthorized information release: an unauthorized per-
son is able to read and take advantage of information stored
in the computer. This category of concern sometimes extends
to “traffic analysis,” in which the intruder observes only the
patterns of information use and from those patterns can infer
some information content. It also includes unauthorized use
of a proprietary program.

2) Unauthorized information modification: an unauthorized
person is able to make changes in stored information-a form
of sabotage. Note that this kind of violation does not require
that the intruder see the information he has changed.

3) Unauthorized denial of use: an intruder can prevent an
authorized user from referring to or modifying information,
even though the intruder may not be able to refer to or mod-
ify the information. Causing a system “crash,” disrupting a
scheduling algorithm, or firing a bullet into a computer are
examples of denial of use. This is another form of sabotage.

The term “unauthorized” in the three categories listed above
means that release, modification, or denial of use occurs con-
trary to the desire of the person who controls the information,
possibly even contrary to the constraints supposedly enforced
by the system. The biggest complication in a general-purpose
remoteaccessed computer system is that the “intruder” in
these definitions may be an otherwise legitimate user of the
computer system.

Examples of security techniques sometimes applied to com-
puter systems are the following:

1) labeling files with lists of authorized users,
2) verifying the identity of a prospective user by demanding

3) shielding the computer t o prevent interception and sub

4) enciphering information sent over telephone lines,
5) locking the room containing the computer,
6) controlling who is allowed to make changes to the com-

puter system (both its hardware and software),
7) using redundant circuits or programmed cross-checks that

maintain security in the face of hardware or software

8) certifying that the hardware and software are actually

a password,

sequent interpretation of electromagnetic radiation,

failures,

implemented as intended.

It is apparent that a wide range of considerations are pertinent
to the engineering of security of information. Historically, the

be found in [11, and an interesting study of the impact of technology
‘A thorough and scholarly discussion of the concept of privacy may

on privacy is given in [2]. In 1973, the U.S. Department of Health,
Education, and Welfare published a related study [31. A recent paper
by Turn and Ware [4] discusses the relationship of the social objective
of privacy to the security mechaniams of modern computer systems.

tems that handle clacrdfied defense information, and priwcy for systems
‘W. Ware [51 has suggested that the term security be used for sy%

handling nondefense information. This suggestion has never really
taken hold outside the defense security community, but literature
originating within that community often uses Ware’s defmitions.

literature of computer systems has more narrowly defined the
term protection to be just those security techniques that con-
trol the access of executing programs to stored inf~rmat ion .~
An example of a protection technique is labeling of computer-
stored files with lists of authorized users. Similarly, the term
authentication is used for those security techniques that verify
the identity of a person (or other external agent) making a
request of a computer system. An example of an authentica-
tion technique is demanding a password. This paper concen-
trates on protection and authentication mechanisms, with
only occasional reference to the other equally necessary se-
curity mechanisms. One should recognize that concentration
on protection and authentication mechanisms provides a nar-
row view of information security, and that a narrow view is
dangerous. The objective of a secure system is to prevent all
unauthorized use of information, a negative kind of require-
ment. It is hard to prove that this negative requirement has
been achieved, for one must demonstrate that every possible
threat has been anticipated. Thus an expansive view of the
problem is most appropriate to help ensure that no gaps a p
pear in the strategy. In contrast, a narrow concentration on
protection mechanisms, especially those logically impossible
to defeat, may lead to false confidence in the system as a
whole.4

2) Functional Levels of Information Protection: Many dif-
ferent designs have been proposed and mechanisms imple-
mented for protecting information in computer systems. One
reason for differences among protection schemes is their dif-
ferent functional properties-the kinds of access control that
can be expressed naturally and enforced. It is convenient to
divide protection schemes according to their functional p r o p
erties. A rough categorization is the following.

a) Unprotected systems: Some systems have no provision
for preventing a determined user from having access to every
piece of information stored in the system. Although these
systems are not directly of interest here, they are worth men-
tioning since, as of 1975, many of the most widely used, com-
mercially available batch data processing systems fall into this
category-for example, the Disk Operating System for the IBM
System 370 [91. Our definition of protection, which excludes
features usable only for mistake prevention, is important here
since it is common for unprotected systems to contain a va-
riety of mistake-prevention features. These may provide just
enough control that any breach of control is likely to be the
result of a deliberate act rather than an accident. Neverthe-

include mechanisms designed to limit the consequences of accidental
’Some authors have widened the scope of the term “protection” to

mistakes in programming or in applying programs. With this wider
definition, even computer systems used by a single person might in-
clude “protection” mechanisms. The effect of this broader defmition
of “protection” would be to include in our study mechanisms that may
be deliberately bypassed by the user, on the ba& that the probability
of accidental bypass can be made as smal l as desired by careful design.
Such accident-reducing mechanisms are often essential, but one would
be ill-advised to apply one to a situation in which a systematic attack
by another user is to be prevented. Therefore, we will insist on the
narrower d e f d i o n . Protection mechanisms are very useful in prevent-
ing mistakes, but mistake-preventing mechanisms that can be delibera-
tely bypassed have little value in providing protection. Another com-
mon extension of the term “protection” is to techniques that ensure
the reliability of information storage and computing service despite
accidental failure of individual components or programs. In this paper
we arbitrarily label those concerns “reliability” or “integrity,” although
it should be recognized that historically the study of protection mecha-

systems.
nisms is rooted in attempts to provide reliability in multiprogramming

‘The broad view, encompassing all the considerations mentioned
here and more, is taken in several current books [61 -[81.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1281

less, it would be a mistake to claim that such systems provide

b) All-or-nothing systems: These are systems that provide
isolation of users, sometimes moderated by total sharing of
some pieces of information. If only isolation is provided, the
user of such a system might just as well be using his own pri-
vate computer, as far as protection and sharing of information
are concerned. More commonly, such systems also have public
libraries to which every user may have access. In some cases
the public library mechanism may be extended to accept user
contributions, but still on the basis that all users have equal
access. Most of the first generation of commercial time-
sharing systems provide a protection scheme with this level of
function. Examples include the Dartmouth Time-sharing
System (DTSS) [101 and IBMs VM/370 system [11 I . There
are innumerable others.

c) Controlled sharing: Significantly more complex ma-
chinery is required to control explicitly who may access each
data item stored in the system. For example, such a system
might provide each file with a list of authorized users and al-
low an owner to distinguish several common patterns of use,
such as reading, writing, or executing the contents of the file
as a program. Although conceptually straightforward, actual
implementation is surprisingly intricate, and only a few com-
plete examples exist. These include M.I.T.’s Compatible
Time-sharing System (CTSS) [121, Digital Equipment Cor-
poration’s DECsystem/ 10 [131 , System Development Cor-
poration’s Advanced Development Prototype (ADEPT)
System [141, and Bolt, Beranek, and Newman’s TENEX
[151 .6

d) User-programmed sharing controls: A user may want
to restrict access to a file in a way not provided in the standard
facilities for controlling sharing. For example, he may wish to
permit access only on weekdays between 9:00 A M . and
4:OO P.M. Possibly, he may wish to permit access to only the
average value of the data in a file. Maybe he wishes to require
that a file be modified only if two users agree. For such cases,
and a myriad of others, a general escape is to provide for user-
defined protected objects and subsystems. A protected sub-
system is a collection of programs and data with the property
that only the programs of the subsystem have direct access to
the data (that is, the protected objects). Access to those
programs is limited to calling specified entry points. Thus the
programs of the subsystem completely control the operations
performed on the data. By constructing a protected subsys-
tem, a user can develop any programmable form of access
control to the objects he creates. Only a few of the most ad-
vanced system designs have tried to permit user-specified pro-
tected subsystems. These include Honeywell’s Multics [161,
the University of California’s CAL system [171, Bell Labora-
tories’ UNIX system [181, the Berkeley Computer Corpora-
tion BCC-500 [191, and two systems currently under con-
struction: the CAP system of Cambridge University [201, and
the HYDRA system of Camegie-Mellon University [2 1 1 . Ex-

nally designed as unprotected, and later modified to implement some
’One can develop a spirited argument as to whether systems origi-

higher level of protection goal, should be reclassified or continue to be
considered unprotected. The argument arises from skepticism that one
can successfully change the fundamental design decisions involved.
Most large-scale commercial batch processing systems fall into this
questionable area.
‘An easier-to-implement strategy of providing shared catalogs that

are accessible among groups of users who anticipate the need to share
was introduced in CTSS in 1962, and is used today in some commercial
systems.

any security.5
ploring alternative mechanisms for implementing protected
subsystems is a current research topic. A specialized use of
protected subsystems is the implementation of protection
controls based on data content. For example, in a file of
salaries, one may wish to permit access to all salaries under
$15 000. Another example is permitting access to certain
statistical aggregations of data but not to any individual data
item. This area of protection raises questions about the
possibility of discerning information by statistical tests and by
examining indexes, without ever having direct access to the
data itself. Protection based on content is the subject of a
variety of recent or current research projects [221-[251 and
will not be explored in this tutorial.

e) Putting strings on information: The foregoing three
levels have been concerned with establishing conditions for the
release of information to an executing program. The fourth
level of capability is to maintain some control over the user of
the information even after it has been released. Such control
is desired, for example, in releasing income information to a
tax advisor; constraints should prevent him from passing the
information on to a firm which prepares mailing lists. The
printed labels on classified military information declaring a
document to be “Top Secret” are another example of a con-
straint on information after its release to a person authorized
to receive it. One may not (without risking severe penalties)
release such information to others, and the label serves as a
notice of the restriction. Computer systems that implement
such strings on information are rare and the mechanisms are
incomplete. For example, the ADEPT system [141 keeps
track of the classification level of all input data used to create
a file; all output data are automatically labeled with the
highest classification encountered during execution.

There is a consideration that cuts across all levels of func-
tional capability: the dynamics of use. This term refers to
how one establishes and changes the specification of who may
access what. At any of the levels it is relatively easy to envi-
sion (and design) systems that statically express a particular
protection intent. But the need to change access authoriza-
tion dynamically and the need for such changes to be re-
quested by executing programs introduces much complexity
into protection systems. For a given functional level, most
existing protection systems differ primarily in the way they
handle protection dynamics. To gain some insight into the
complexity introduced by program-directed changes to access
authorization, consider the question “Is there any way that
O’Hara could access file X?” One should check to see not
only if O’Hara has access to file X, but also whether or not
O’Hara may change the specification of file X’s accessibility.
The next step is to see if O’Hara can change the specification
of who may change the specification of file X’s accessibility,
etc. Another problem of dynamics arises when the owner
revokes a user’s access to a file while that file is being used.
Letting the previously authorized user continue until he is
“finished” with the information may not be acceptable, if the
owner has suddenly realized that the file contains sensitive
data. On the other hand, immediate withdrawal of authoriza-
tion may severely disrupt the user. It should be apparent that
provisions for the dynamics of use are at least as important as
those for static specification of protection intent.

In many cases, it is not necessary to meet the protection
needs of the person responsible for the information stored in
the computer entirely through computer-aided enforcement.
External mechanisms such as contracts, ignorance, or barbed

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1282 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

wire fences may provide some of the required functional
capability. This discussion, however, is focused on the in-
ternal mechanisms.

3) Design Principles: Whatever the level of functionality
provided, the usefulness of a set of protection mechanisms d e
pends upon the ability of a system to prevent security viola-
tions. In practice, producing a system at any level of func-
tionality (except level one) that actually does prevent all such
unauthorized acts has proved to be extremely difficult. So-
phisticated users of most systems are aware of at least one way
to crash the system, denying other users authorized access to
stored information. Penetration exercises involving a large
number of different general-purpose systems all have shown
that users can construct programs that can obtain unautho-
rized access to information stored within. Even in systems
designed and implemented with security as an important ob-
jective, design and implementation flaws provide paths that
circumvent the intended access constraints. Design and con-
struction techniques that systematically exclude flaws are the
topic of much research activity, but no complete method a p
plicable to the construction of large general-purpose systems
exists yet. This difficulty is related to the negative quality
of the requirement t o prevent all unauthorized actions.

In the absence of such methodical techniques, experience
has provided some useful principles that can guide the design
and contribute to an implementation without security flaws.
Here are eight examples of design principles that apply par-
ticularly to protection mechanisms.’

a) Economy of mechanism: Keep the design as simple
and small as possible. This well-known principle applies to
any aspect of a system, but it deserves emphasis for protec-
tion mechanisms for this reason: design and implementation
errors that result in unwanted access paths will not be noticed
during norqal use (since normal use usually does not include
attempts to exercise improper access paths). As a result, tech-
niques such as line-by-be inspection of software and physic31
examination of hardware that implements protection mecha-
nisms are necessary. For such techniques to be successful, a
small and simple design is essential.

b) Fail-safe defaults: Base access decisions on permission
rather than exclusion. This principle, suggested by E. Glaser
in 1965,* means that the default situation is lack of access,
and the protection scheme identifies conditions under which
access is permitted. The alternative, in which mechanisms
attempt to identify conditions under which access should be
refused, presents the wrong psychological base for secure sys-
tem design. A conservative design must be based on arguments
why objects should be accessible, rather than why they should
not. In a large system some objects will be inadequately con-
sidered, so a default of lack of permission is safer. A design
or implementation mistake in a mechanism that gives explicit
permission tends to fail by refusing permission, a safe situa-

originally published in Communications of the ACM 126, p. 3981.
‘Deaign principles b), d), f), and h) are revised versions of material

8 Copyright 1974, Association for Computing Machinery, Inc., re-
printed by permission.

ever possible. Many of the seminal ideas, however, were widely spread
this paper we have attempted to identify original sources when-

by word of mouth or internal memorandum rather than by purnal
publication, and historical accuracy is sometimes difficult to obtain.
In addition, some ideas related to protection were originally conceived
in other contexts. In such cases, we have attempted to credit the per-
son who f i t noticed their applicability to protection in computer
systems, rather than the original inventor.

tion, since it will be quickly detected. On the other hand, a
design or implementation mistake in a mechanism that ex-
plicitly excludes access tends to fai l by allowing access, a
failure which may go unnoticed in normal use. This principle
applies both to the outward appearance of the protection
mechanism and to its underlying implementation.

c) Complete mediation: Every access to every object
must be checked for authority. This principle, when system-
atically applied, is the primary underpinning of the protection
system. It forces a system-wide view of access control, which
in addition to normal operation includes initialization, r e
covery, shutdown, and maintenance. It implies that a fool-
proof method of identifying the source of every request must
be devised. It also requires that proposals to gain performance
by remembering the result of an authority check be examined
skeptically. If a change in authority occurs, such remembered
results must be systematically updated.

d) Open design: The design should not be secret [27].
The mechanisms should not depend on the ignorance of po-
tential attackers, but rather on the possession of specific, more
easily protected, keys or passwords. This decoupling of pro-
tection mechanisms from protection keys permits the mecha-
nisms to be examined by many reviewers without concern that
the review may itself compromise the safeguards. In addition,
any skeptical user may be allowed to convince himself that the
system he is about to use is adequate for his p ~ r p o s e . ~ Fi-
nally, it is simply not realistic to attempt to maintain secrecy
for any system which receives wide distribution.

e) Separation of privilege: Where feasible, a protection
mechanism that requires two keys to unlock it is more robust
and flexible than one that allows access to the presenter of
only a single key. The relevance of this observation to com-
puter systems was pointed out by R. Needham in 1973. The
reason is that, once the mechanism is locked, the two keys can
be physically separated and distinct programs, organizations,
or individuals made responsible for them. From then on, no
single accident, deception, or breach of trust is sufficient to
compromise the protected information. This principle is often
used in bank safe-deposit boxes. It is also at work in the d e
fense system that fires a nuclear weapon only if two different
people both give the correct command. In a computer sys-
tem, separated keys apply to any situation in which two or
more conditions must be met before access should be per-
mitted. For example, systems providing userextendible pro-
tected data types usually depend on separation of privilege for
their implementation.

f) Least privilege: Every program and every user of the
system should operate using the least set of privileges neces-
sary to complete the job. Primarily, this principle limits the
damage that can result from an accident or error. It also r e
duces the pumber of potential interactions among privileged
programs to the minimum for correct operation, so that unin-
tentional, unwanted, or improper uses of privilege are less
likely to occur. Thus, if a question arises related to misuse of
a privilege, the number of programs that must be audited is
minimized. Put another way, if a mechanism can provide
“fiiewalls,” the principle of least privilege provides a rationale

accepted, especially by those accustomed to dealing with military se-
9We should note that the principle of open design is not universally

curity. The notion that the mechanism not depend on ignorance is
generally accepted, but some would argue that its design should remain
secret. The reason is that a secret design may have the additional ad-
vantage of significantly raising the price of penetration, especially the
risk of detection.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1283

for where to install the firewalls. The military security rule of
“need-to-know” is an example of this principle.

g) Least common mechanism: Minimize the amount of
mechanism common to more than one user and depended on
by all users [281. Every shared mechanism (especially one in-
volving shared variables) represents a potential information
path between users and must be designed with great care to be
sure it does not unintentionally compromise security. Fur-
ther, any mechanism serving all users must be certified to the
satisfaction of every user, a job presumably harder than satis-
fying only one or a few users. For example, given the choice
of implementing a new function as a supervisor procedure
shared by all users or as a library procedure that can be han-
dled as though it were the user’s own, choose the latter course.
Then, if one or a few users are not satisfied with the level of
certification of the function, they can provide a substitute or
not use it at all. Either way, they can avoid being harmed by
a mistake in it.

h) Psychological acceptability: It is essential that the
human interface be designed for ease of use, so that users
routinely and automatically apply the protection mechanisms
correctly. Also, to the extent that the user’s mental image of
his protection goals matches the mechanisms he must use,
mistakes will be minimized. If he must translate his image of
his protection needs into a radically different specification
language, he will make errors.

Analysts of traditional physical security systems have sug-
gested two further design principles which, unfortunately,
apply only imperfectly to computer systems.

a) Work factor: Compare the cost of circumventing the
mechanism with the resources of a potential attacker. The
cost of circumventing, commonly known as the “work fac-
tor,” in some cases can be easily calculated. For example,
the number of experiments needed to try all possible four-
letter alphabetic passwords is 264 = 456 976. If the potential
attacker must enter each experimental password at a terminal,
one might consider a four-letter password to be adequate. On
the other hand, if the attacker could use a large computer
capable of trying a million passwords per second, as might be
the case where industrial espionage or military security is being
considered, a four-letter password would be a minor barrier
for a potential intruder. The trouble with the work factor
principle is that many computer protection mechanisms are
not susceptible to direct work factor calculation, since defeat-
ing them by systematic attack may be logically impossible.
Defeat can be accomplished only by indirect strategies, such
as waiting for an accidental hardware failure or searching for
an error in implementation. Reliable estimates of the length
of such a wait or search are very difficult to make.

b) Compromise recording: It is sometimes suggested that
mechanisms that reliably record that a compromise of infor-
mation has occurred can be used in place of more elaborate
mechanisms that completely prevent loss. For example, if a
tactical plan is known to have been compromised, it may be
possible to construct a different one, rendering the compro-
mised version worthless. An unbreakable padlock on a flimsy
file cabinet is an example of such a mechanism. Although the
information stored inside may be easy to obtain, the cabinet
will inevitably be damaged in the process and the next legiti-
mate user will detect the loss. For another example, many
computer systems record the date and time of the most re-
cent use of each file. If this record is tamperproof and re-

ported to the owner, it may help discover unauthorized use.
In computer systems, this approach is used rarely, since it is
difficult to guarantee discovery once security is broken.
Physical damage usually is not involved, and logical damage
(and internally stored records of tampering) can be undone
by a clever attacker.”

As is apparent, these principles do not represent absolute
rules-they serve best as warnings. If some part of a design
violates a principle, the violation is a symptom of potential
trouble, and the design should be carefully reviewed to be sure
that the trouble has been accounted for or is unimportant.

4) Summary of Considerations Surrounding Protection:
Briefly, then, we may outline our discussion to this point.
The application of computers to information handling prob-
lems produces a need for a variety of security mechanisms.
We are focusing on one aspect, computer protection mecha-
nisms-the mechanisms that control access to information by
executing programs. At least four levels of functional goals
for a protection system can be identified: all-or-nothing sys-
tems, controlled sharing, user-programmed sharing controls,
and putting strings on information. But at all levels, the pro-
visions for dynamic changes to authorization for access are a
severe complication.

Since no one knows how to build a system without flaws,
the alternative is to rely on eight design principles, which tend
to reduce both the number and the seriousness of any flaws:
Economy of mechanism, fail-safe defaults, complete media-
tion, open design, separation of privilege, least privilege, least
common mechanism, and psychological acceptability.

Finally, some protection designs can be evaluated by com-
paring the resources of a potential attacker with the work
factor required to defeat the system, and compromise record-
ing may be a useful strategy.

B. Technical Underpinnings
I) The Development Plan: At this point we begin a develop-

ment of the technical basis of information protection in mod-
ern computer systems. There are two ways to approach the
subject: from the top down, emphasizing the abstract con-
cepts involved, or from the bottom up, identifying insights by
studying example systems. We shall follow the bottom-up
approach, introducing a series of models of systems as they are
(or could be) built in real life.

The reader should understand that on this point the authors’
judgment differs from that of some of their colleagues. The
top-down approach can be very satisfactory when a subject is
coherent and self-contained, but for a topic still containing
od hoc strategies and competing world views, the bottom-up
approach seems safer.

Our first model is of a multiuser system that completely iso-
lates its users from one another. We shall then see how the
logically perfect walls of that system can be lowered in a con-
trolled way to allow limited sharing of information between
users. Section I1 of this paper generalizes the mechanics of
sharing using two different models: the capability system and
the access control list system. It then extends these two
models to handle the dynamic situation in which authorizations

sign what appear to be compromisable implementation mom, along
‘“An interesting suggestion by Hollingsworth [2 9] is to secretly de-

with monitors of attempted exploitation of the apparent errors. The
monitors might then provide early warning of attempts to violate sya-
tern security. This suggestion takes us into the realm of counterintelli-
gence, which M beyond o w intended scope.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1284

can change under control of the programs running inside the
system. Further extensions to the models control the dy-
namics. The fiial model (only superficially explored) is of
protected objects and protected subsystems, which allow arbi-
trary modes of sharing that are unanticipated by the system
designer. These models are not intended so much to explain
the particular systems as they are to explain the underlying
concepts of information protection.
Our emphasis throughout the development is on direct

access to information (for example, using LOAD and STORE
instructions) rather than acquiring information indirectly (as
when calling a data base management system to request the
average value of a set of numbers supposedly not directly
accessible). Control of such access is the function of the pro-
tected subsystems developed near the end of the paper. Herein
lies perhaps the chief defect of the bottom-up approach, since
conceptually there seems to be no reason to distinguish direct
and indirect access, yet the detailed mechanics are typically
quite different. The beginnings of a top-down approach based
on a message model that avoids distinguishing between direct
and indirect information access may be found in a paper by
Lampson 1301.

2) The Essentials o f Information Protection: For purposes
of discussing protection, the information stored in a com-
puter system is not a single object. When one is considering
direct access, the information is divided into mutually ex-
clusive partitions, as specified by its various creators. Each
partition contains a collection of information, all of which is
intended to be protected uniformly. The uniformity of pro-
tection is the same kind of uniformity that applies to all of the
diamonds stored in the same vault: any person who has a copy
of the combination can obtain any of the diamonds. Thus the
collections of information in the partitions are the funda-
mental objects to be protected.

Conceptually, then, it is necessary to build an impenetrable
wall around each distinct object that warrants separate protec-
tion, construct a door in the wall through which access can be
obtained, and post a guard at the door to control its use. Con-
trol of use, however, requires that the guard have some way of
knowing which users are authorized to have access, and that
each user have some reliable way of identifying himself to the
guard. This authority check is usually implemented by having
the guard demand a match between something he knows and
something the prospective user possesses. Both protection and
authentication mechanisms can be viewed in terms of this
general model.

Before extending this model, we pause to consider two con-
crete examples, the multiplexing of a single computer system
among several users and the authentication of a user's claimed
identity. These initial examples are complete isolation
systems-no sharing of information can happen. Later we will
extend our model of guards and walls in the discussion of
shared information.

3) A n Isolated Virtual Machine: A typical computer con-
sists of a processor, a linearly addressed memory system, and
some collection of input/output devices associated with the
processor. It is relatively easy to use a single computer to
simulate several, each of which is completely unaware of the
existence of the others, except that each runs more slowly
than usual. Such a simulation is of interest, since during the
intervals when one of the simulated (commonly called virtua2)
processors is waiting for an input or output operation to finish,
another virtual processor may be able to progress at its normal

PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

processor

privileged,/

I r e g i s t e i \

1
mernor y

program

program

B I 7- program J"", -p base

program
S

Fig. 1. Use of a descriptor register to simulate multiple virtual ma-
chines. Rograrn C is in control of the processor. The privileged state
bit has value OFF, indicating that program C is a user program. When
program S is running, the privileged state bit has value ON. In this
(and later) figures, lower addresses are nearer the bottom of the
figure.

rate. Thus a single processor may be able to take the place of
several. Such a scheme is the essence of a multiprogramming
system.

To allow each virtual processor to be unaware of the existence
of the others, it is essential that some isolation mechanism be
provided. One such mechanism is a special hardware register
called a descriptor register, as in Fig. 1. In this figure, all
memory references by the processor are checked by an extra
piece of hardware that is interposed in the path to the memory.
The descriptor register controls exactly which part of memory
is accessible. The descriptor register contains two components:
a base value and a bound value. The base is the lowest num-
bered address the program may use, and the bound is the num-
ber of locations beyond the base that may be used.' ' We will
call the value in the descriptor register a descriptor, as it
describes an object (in this case, one program) stored in mem-
ory. The program controlling the processor has fu l l access to
everything in the base-bound range, by virtue of possession of
its one descriptor. As we go on, we shall embellish the con-
cept of a descriptor: it is central to most implementations of
protection and of sharing of information.'*

So far, we have not provided for the dynamics of a complete
protection scheme: we have not discussed who loads the
descriptor register. If any running program could load it with
any arbitrary value, there would be no protection. The in-

'' In most implementations, addresses are also relocated by adding to
them the value of the base. This relocation implies that for an address
A to be legal, it must tie in the range (0 G A < bound). '' The concepts of base-and-bound registers and hardware-interpreted
descriptors appeared, apparently independently, between 1957 and
1959 on three projects with diverse goals. At M.I.T., J. McCarthy sug-
gested the base-and-bound idea as part of the memory protection sys-

veloped the base-and-bound register as a mechanism to permit reliable
tem necessary to make time-sharing feasible. IBM independently de-

multiprogramming of the Stretch (7030) computer system [311. At

would provide direct support for the naming scope rules of higher level
Burroughs, R. Barton suggested that hardware-interpreted descriptors

languages in the E5000 computer system [32 1.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1285

struction that loads the descriptor register with a new descriptor
must have some special controls-either on the values it will
load or on who may use it. It is easier to control who may use
the descriptor, and a common scheme is to introduce an addi-
tional bit in the processor state. This bit is called the privileged
state bit.l3 All attempts to load the descriptor register are
checked against the value of the privileged state bit; the
privileged state bit must be ON for the register to be changed.
One program (named the supervisor-program S in Fig. 1) runs
with the privileged state bit ON, and controls the simulation
of the virtual processors for the other programs. All that is
needed to make the scheme complete is to ensure that the
privileged state bit cannot be changed by the user programs ex-
cept, perhaps, by an instruction that simultaneously transfers
control to the supervisor program at a planned entry location.
(In most implementations, the descriptor register is not used in
the privileged state.)

One might expect the supervisor program to maintain a table
of values of descriptors, one for each virtual processor. When
the privileged state bit is OFF, the index in this table of the
program currently in control identifies exactly which program-
and thus which virtual processor-is accountable for the ac-
tivity of the real processor. For protection to be complete, a
virtual processor must not be able to change arbitrarily the
values in the table of descriptors. If we suppose the table to
be stored inside the supervisor program, it will be inaccessible
to the virtual processors. We have here an example of a com-
mon strategy and sometime cause of confusion: the protection
mechanisms not only protect one user from another, they may
also protect their own implementation. We shall encounter
this strategy again.

So far , this virtual processor implementation contains three
protection mechanisms that we can associate with our abstrac-
tions. For the first, the information being protected is the
distinct programs of Fig. 1. The guard is represented by the
extra piece of hardware that enforces the descriptor restric-
tion. The impenetrable wall with a door is the hardware that
forces all references to memory through the descriptor mecha-
nism. The authority check on a request to access memory is
very simple. The requesting virtual processor is identified by
the base and bound values in the descriptor register, and the
guard checks that the memory location to which access is re-
quested lies within the indicated area of memory.

The second mechanism protects the contents of the descrig
tor register. The wall, door, and guard are implemented in
hardware, as with the first mechanism. An executing program
requesting to load the descriptor register is identified by the
privileged state bit. If this bit is OFF, indicating that the re-
quester is a user program, then the guard does not allow the
register to be loaded. If this bit is ON, indicating that the re-
quester is the supervisor program, then the guard does allow it.

The third mechanism protects the privileged state bit. It
allows an executing program identified by the privileged state
bit being OFF (a user program) to perform the single operation
“turn privileged state bit ON and transfer to the supervisor
program.” An executing program identified by the privileged
state bit being ON is allowed to turn the bit OFF. This third
mechanism is an embryonic form of the sophisticated protec-
tion mechanisms required to implement protected subsystems.
The supervisor program is an example of a protected subsys-
tem, of which more will be said later.

‘3Als0 called the masterlslave bit, or supenrisor/user bit.

The supervisor program is part of all three protection mecha-
nisms, for it is responsible for maintaining the integrity of the
identifications manifest in the descriptor register and the
privileged state bit. If the supervisor does not do its job cor-
rectly, virtual processors could become labeled with the wrong
base and bound values, or user programs could become labeled
with a privileged state bit that is ON. The supervisor protects
itself from the user programs with the same isolation hardware
that separates users, an example of the “economy of mecha-
nism” design principle.

With an appropriately sophisticated and careful supervisor
program, we now have an example of a system that completely
isolates its users from one another. Similarly isolated permanent
storage can be added to such a system by attaching some long-
term storage device (e.g., magnetic disk) and developing a
similar descriptor scheme for its use. Since long-term storage is
accessed less frequently than primary memory, it is common
to implement its descriptor scheme with the supervisor pro-
grams rather than hardware, but the principle is the same.
Data streams to input or output devices can be controlled
similarly. The combination of a virtual processor, a memory
area, some data streams, and an isolated region of long-term
storage is known as a virtual m a ~ h i n e . ’ ~

Long-term storage does, however, force us to face one
further issue. Suppose that the virtual machine communicates
with its user through a typewriter terminal. If a new user ap-
proaches a previously unused terminal and requests to use a
virtual machine, which virtual machine (and, therefore, which
set of long-term stored information) should he be allowed to
use? We may solve this problem outside the system, by having
the supervisor permanently associate a single virtual machine
and its long-term storage area with a single terminal. Then, for
example, padlocks can control access to the terminal. If, on
the other hand, a more flexible system is desired, the super-
visor program must be prepared to associate any terminal with
any virtual machine and, as a result, must be able to verify the
identity of the user at a terminal. Schemes for performing
this authentication are the subject of our next example.

4) Authentication Mechanisms: Our second example is of
an authentication mechanism: a system that verifies a user’s
claimed identity. The mechanics of this authentication mecha-
nism differ from those of the protection mechanisms for im-
plementing virtual machines mainly because not all of the com-
ponents of the system are under uniform physical control. In
particular, the user himself and the communication system
connecting his terminal to the computer are components to be
viewed with suspicion. Conversely, the user needs to verify
that he is in communication with the expected computer sys-
tem and the intended virtual machine. Such systems follow
our abstract model of a guard who demands a match between
something he knows and something the requester possesses.
The objects being protected by the authentication mechanism
are the virtual machines. In this case, however, the requester
is a computer system user rather than an executing program,
and because of the lack of physical control over the user and
the communication system, the security of the computer sys-
tem must depend on either the secrecy or the unforgeability
of the user’s identification.

virtual IBM System/370 computer systems, complete with private stor-
“For an example, see IBM System VM/37O [1 1 1, which provides

age devices and missing only a few hard-to-simulate features, such as
self-modifying channel programs. Popek and Goldberg [331, [341 have
discussed the general problem of providing virtual machines.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1286 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

In time-sharing systems, the most common scheme depends
on secrecy. The user begins by typing the name of the person
he claims to be, and then the system demands that the user
type a password, presumably known only to that person.

There are, of course, many possible elaborations and em-
bellishments of this basic strategy. In cases where the typing
of the password may be observed, passwords may be good for
only one use, and the user carries a list of passwords, crossing
each one off the list as he uses it. Passwords may have an ex-
piration date, or usage count, to limit the length of usefulness
of a compromised one.

The list of acceptable passwords is a piece of information
that must be carefully guarded by the system. In some
systems, all passwords are passed through a hard-to-invert
transformation’’ before being stored, an idea suggested by
R. Needham [37, p. 1291. When the user types his password,
the system transforms it also and compares the transformed
versions. Since the transform is supposed to be hard to invert
(even if the transform itself is well known), if the stored
version of a password is compromised, it may be very difficult
to determine what original password is involved. It should be
noted, however, that “hardness of inversion” is difficult to
measure. The attacker of such a system does not need to dis-
cern the general inversion, only the particular one applying to
some transformed password he has available.

Passwords as a general technique have some notorious de-
fects. The most often mentioned defect lies in choice of
password-if a person chooses his own password, he may
choose something easily guessed by someone else who knows
his habits. In one recent study of some 300 self-chosen pass-
words on a typical time-sharing system, more than 50 percent
were found to be short enough to guess by exhaustion, de-
rived from the owner’s name, or something closely associated
with the owner, such as his telephone number or birth date.
For this reason, some systems have programs that generate
random sequences of letters for use as passwords. They may
even require that all passwords be system-generated and
changed frequently. On the other hand, frequently changed
random sequences of letters are hard to memorize, so such
systems tend to cause users to make written copies of their
passwords, inviting compromise. One solution to this problem
is to provide a generator of “pronounceable” random pass-
words based on digraph or higher order frequency statistics [261
to make memorization easier.

A second significant defect is that the password must be ex-
posed to be used. In systems where the terminal is distant
from the computer, the password must be sent through some
communication system, during which passage a wiretapper
may be able to intercept it.

An alternative approach to secrecy is unforgeability. The
user is given a key, or magnetically striped plastic card, or
some other unique and relatively difficult-to-fabricate object.
The terminal has an input device that examines the object and
transmits its unique identifying code to the computer system,
which treats the code as a password that need not be kept
secret. F’roposals have been made for fingerprint readers and
dynamic signature readers in order to increase the effort re-
quired for forgery.

rrmeter in a high-order polynomial calculated in modulo arithmetic,
I5For example, Purdy [351 suggests using the password as the pa-

and Evans, Kantrowitz, and Weis [361 suggest a more complex scheme
based on multiple functions.

The primary weakness of such schemes is that the hard-to-
fabricate object, after being examined by the specialized input
device, is reduced to a stream of bits to be transmitted to the
computer. Unless the terminal, its object reader, and its com-
munication lines to the computer are physically secured
against tampering, it is relatively easy for an intruder to
modify the terminal to transmit any sequence of bits he
chooses. It may be necessary to make the acceptable bit se-
quences a secret after all. On the other hand, the scheme is
convenient, resists casual misuse, and provides a conventional
form of accountability through the physical objects used as
keys.

A problem common to both the password and the unforgeable
object approach is that they are “one-way” authentication
schemes. They authenticate the user to the computer system,
but not vice versa. An easy way for an intruder to penetrate a
password system, for example, is to intercept all communica-
tions to and from the terminal and direct them to another
computer-one that is under the interceptor’s control. This
computer can be programmed to “masquerade,” that is, to act
just like the system the caller intended to use, up to the point
of requesting him to type his password. After receiving the
password, the masquerader gracefully terminates the com-
munication with some unsurprising error message, and the
caller may be unaware that his password has been stolen. The
same attack can be used on the unforgeable object system
as well.

A more powerful authentication technique is sometimes
used to protect against masquerading. Suppose that a remote
terminal is equipped with enciphering circuitry, such as the
LUCIFER system [381, that scrambles all signals from that
terminal. Such devices normally are designed so that the exact
encipherment is determined by the value of a key, known as
the encryption or transformation key. For example, the trans-
formation key may consist of a sequence of 1000 binary digits
read from a magnetically striped plastic card. In order that a
recipient of such an enciphered signal may comprehend it, he
must have a deciphering circuit primed with an exact copy of
the transformation key, or else he must cryptanalyze the
scrambled stream to try to discover the key. The strategy of
encipherment/decipherment is usually invoked for the purpose
of providing communications security on an otherwise un-
protected communications system. However, it can simultane-
ously be used for authentication, using the following technique,
first published in the unclassified literature by Feistel [391.
The user, at a terminal, begins bypassing the enciphering equip
ment. He types his name. This name passes, unenciphered,
through the communication system to the computer. The com-
puter looks up the name, just as with the password system.
Associated with each name, instead of a secret password, is a
secret transformation key. The computer loads this trans-
formation key into its enciphering mechanism, turns it on, and
attempts to communicate with the user. Meanwhile, the user
has loaded his copy of the transformation key into his en-
ciphering mechanism and turned it on. Now, if the keys are
identical, exchange of some standard hand-shaking sequence
will succeed. If they are not identical, the exchange will fail,
and both the user and the computer system will encounter un-
intelligible streams of bits. If the exchange succeeds, the com-
puter system is certain of the identity of the user, and the user
is certain of the identity of the computer. The secret used for
authentication-the transformation key-has not been trans-

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1287

mitted through the communication system. If communication
fails (because the user is unauthorized, the system has been re-
placed by a masquerader, or an error occurred), each party to
the transaction has immediate warning of a problem.16

Relatively complex elaborations of these various strategies
have been implemented, differing both in economics and in
assumptions about the psychology of the prospective user.
For example, Branstad [401 explored in detail strategies of
authentication in multinode computer networks. Such elabo-
rations, though fascinating to study and analyze, are diversion-
ary to our main topic of protection mechanisms.

5) Shared Information: The virtual machines of the earlier
section were totally independent, as far as information ac-
cessibility was concerned. Each user might just as well have
his own private computer system. With the steadily declining
costs of computer manufacture there are few technical reasons
not to use a private computer. On the other hand, for many
applications some sharing of information among users is use-
ful, or even essential. For example, there may be a library of
commonly used, reliable programs. Some users may create
new programs that other users would like to use. Users may
wish to be able to update a common data base, such as a file of
airline seat reservations or a collection of programs that imple-
ment a biomedical statistics system. In all these cases, virtual
machines are inadequate, because of the total isolation of their
users from one another. Before extending the virtual machine
example any further, let us return to our abstract discussion of
guards and walls.

Implementations of protection mechanisms that permit
sharing fall into the two general categories described by
Wilkes [3 7] .

a) “List-oriented” implementations, in which the guard
holds a list of identifiers of authorized users, and the user
carries a unique unforgeable identifier that must appear on the
guard’s list for access to be permitted. A store clerk checking
a list of credit customers is an example of a list-oriented imple-
mentation in practice. The individual might use his driver’s
license as a unique unforgeable identifier.

b) “Ticket-oriented” implementations, in which the guard
holds the description of a single identifier, and each user has a
collection of unforgeable identifiers, or tickets,” correspond-
ing to the objects to which he has been authorized access. A
locked door that opens with a key is probably the most com-
mon example of a ticket-oriented mechanism; the guard is im-
plemented as the hardware of the lock, and the matching key
is the (presumably) unforgeable authorizing identifier.

Authorization, defined as giving a user access to some object,
is different in these two schemes. In a list-oriented system, a
user is authorized to use an object by having his name placed

‘6ActualIy, there is still one uncovered possibility: a masquerader
could exactly record the enciphered bits in one communication, and
then intercept a later communication and play them back verbatim.
(This technique is sometimes called spoofing.) Although the spoofer
may learn nothing by this technique, he might succeed in thoroughly

for spoofing is to include in each enciphered message something that is
confusing the user or the computer system. The general countermeasure

ing this part of the message, called the authenticator, the recipient can
unique, yet predictable, such as the current date and time. By examin-

be certain that the deciphered message is not a replayed copy of an old
one. Variations on this technique are analyzed in detail by Smith
e ta l . [381.

the tickets.
‘‘AS shown later, in a computer system, descriptors can be used on

on the guard’s list for that object. In a ticket-oriented system,
a user is authorized by giving him a ticket for the object.

We can also note a crucial mechanical difference between
the two kinds of implementations. The list-oriented mecha-
nism requires that the guard examine his list at the time access
is requested, which means that some kind of associative search
must accompany the access. On the other hand, the ticket-
oriented mechanism places on the user the burden of choosing
which ticket to present, a task he can combine with deciding
which information to access. The guard only need compare
the presented ticket with his own expectation before allowing
the physical memory access. Because associative matching
tends to be either slower or more costly than simple com-
parison, list-oriented mechanisms are not often used in applica-
tions where traffic is high. On the other hand, ticket-oriented
mechanisms typically require considerable technology to con-
trol forgery of tickets and to control passing tickets around
from one user to another. As a rule, most real systems contain
both kinds of sharing implementations-a list-oriented system
at the human interface and a ticket-oriented system in the
underlying hardware implementation. This kind of arrange-
ment is accomplished by providing, at the higher level, a list-
oriented guardla whose only purpose is to hand out temporary
tickets which the lower level (ticket-oriented) guards will
honor. Some added complexity arises from the need to keep
authorizations, as represented in the two systems, synchro-
nized with each other. Computer protection systems differ
mostly in the extent to which the architecture of the underly-
ing ticket-oriented system is visible to the user.

Finally, let us consider the degenerate cases of list- and
ticket-oriented systems. In a list-oriented system, if each
guard’s list of authorized users can contain only one entry, we
have a “complete isolation” kind of protection system, in
which no sharing of information among users can take place.
Similarly, in a ticket-oriented system, if there can be only one
ticket for each object in the system, we again have a “com-
plete isolation” kind of protection system. Thus the “com-
plete isolation” protection system turns out to be a particular
degenerate case of both the list-oriented and the ticket-oriented
protection implementations. These observations are important
in examining real systems, which usually consist of interacting
protection mechanisms, some of which are list-oriented, some
of which are ticket-oriented, and some of which provide com-
plete isolation and therefore may happen to be implemented
as degenerate examples of either of the other two, depending
on local circumstances.

We should understand the relationship of a user to these
transactions. We are concerned with protection of informa-
tion from programs that are executing. The user is the in-
dividual who assumes accountability for the actions of an
executing program. Inside the computer system, a program is
executed by a virtual processor, so one or more virtual proces-
sors can be identified with the activities directed by the user.lg

“Called an agency by Branstad [40]. The attendance of delegates at
the various sessions of a convention is frequently controlled by an
agency-upon presentation of proof of identity, the agency issues a
badge that will be honored by guards at each session. The agency
issuing the badges is list-oriented, while the individual session guards
(who ignore the names printed on the badges) are ticket-oriented.

l9 The terms “process,” “execution point,” and “task” are sometimes
used for this abstraction or very similar ones. We will use the term

a suggestion by Wilkes.
“virtual processor’’ for its self-evident operational definition, following

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1288 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

In a list-oriented system it is the guard’s business to know
whose virtual processor is attempting to make an access. The
virtual processor has been marked with an unforgeable label
identifying the user accountable for its actions, and the guard
inspects this label when making access decisions. In a ticket-
oriented system, however, the guard cares only that a virtual
processor present the appropriate unforgeable ticket when
attempting an access. The connection to an accountable user
is more diffuse, since the guard does not know or care how the
virtual processor acquired the tickets. In either case, we con-
clude that in addition to the information inside the im-
penetrable wall, there are two other things that must be
protected: the guard’s authorization information, and the
association between a user and the unforgeable label or set of
tickets associated with his virtual processors.

Since an association with some user is essential for establish-
ing accountability for the actions of a virtual processor, it is
useful to introduce an abstraction for that accountability-the
principal. A principal is, by definition, the entity accountable
for the activities of a virtual processor.’’ In the situations dis-
cussed so far, the principal corresponds to the user outside
the system. However, there are situations in which a one-to-
one correspondence of individuals with principals is not ade-
quate. For example, a user may be accountable for some very
valuable information and authorized to use it. On the other
hand, on some occasion he may wish to use the computer for
some purpose unrelated to the valuable information. To pre-
vent accidents, he may wish to identify himself with a different
principal, one that does not have access to the valuable in-
formation-following the principle of least privilege. In this
case there is a need for two different principals corresponding
to the same user.

Similarly, one can envision a data base that is to be modified
only if a committee agrees. Thus there might be an authorized
principal that cannot be used by any single individual; all of
the committee members must agree upon its use simultaneously.

Because the principal represents accountability, we shall see
later (in the section on dynamic authorization of sharing) that
authorizing access is done in terms of principals. That is, if
one wishes a friend to have access to some file, the authorization
is done by naming a principal only that friend can use.

For each principal we may identify all the objects in the
system which the principal has been authorized to use. We
will name that set of objects the domain of that principal.

Summarizing, then, a principal is the unforgeable identifier
attached to a virtual processor in a list-oriented system. When
a user first approaches the computer system, that user must
identify the principal to be used. Some authentication mecha-
nism, such as a request for a secret password, establishes the
user’s right to use that principal. The authentication mecha-
nism itself may be either list- or ticket-oriented or of the com-
plete isolation type. Then a computation is begun in which
all the virtual processors of the computation are labeled with

“The word “principal,” suggested by Dennis and Van Horn [41], is
used for this abstraction because of its association with the legal con-
ceuts of authority. accountability, liability, and reswnsibility. The de-

the identifier of that principal, which is considered accountable
for all further actions of these virtual processors. The authenti-
cation mechanism has allowed the virtual processor to enter
the domain of that principal. That description makes apparent
the importance of the authentication mechanism. Clearly, one
must carefully control the conditions under which a virtual
processor enters a domain.

Finally, we should note that in a ticket-oriented system
there is no mechanical need to associate an unforgeable identi-
fier with a virtual processor, since the tickets themselves are
presumed unforgeable. Nevertheless, a collection of tickets
can be considered to be a domain, and therefore correspond
to some principal, even though there may be no obvious identi-
fier for that principal. Thus accountability in ticket-oriented
systems can be difficult to pinpoint.

Now we shall return to our example system and extend it to
include sharing. Consider for a moment the problem of
sharing a library program-say, a mathematical function sub-
routine. We could place a copy of the math routine in the
long-term storage area of each virtual machine that had a use
for it. This scheme, although workable, has several defects.
Most obvious, the multiple copies require multiple storage
spaces. More subtly, the scheme does not respond well to
changes. If a newer, better math routine is written, upgrading
the multiple copies requires effort proportional to the number
of users. These two observations suggest that one would like
to have some scheme to allow different users access to a single
master copy of the program. The storage space will be smaller
and the communication of updated versions will be easier.

In terms of the virtual machine model of our earlier example,
we can share a single copy of the math routine by adding to
the real processor a second descriptor register, as in Fig. 2,
placing the math routine somewhere in memory by itself and
placing a descriptor for it in the second descriptor register.
Following the previous strategy, we assume that the privileged
state bit assures that the supervisor program is the only one
permitted to load either descriptor register. In addition, some
scheme must be provided in the architecture of the processor
to permit a choice of which descriptor register is to be used
for each address generated by the processor. A simple scheme
would be to let the high-order address bit select the descriptor
register. Thus, in Fig. 2, all addresses in the lower half of the
address range would be interpreted relative to descriptor
register 1, and addresses in the upper half of the address range
would be relative to descriptor register 2. An alternate scheme,
suggested by Dennis [421, is to add explicitly to the format of
instruction words a field that selects the descriptor register in-
tended to be used with the address in that instruction. The use
of descriptors for sharing information is intimately related to
the addressing architecture of the processor, a relation that can
cause considerable confusion. The reason why descriptors are
of interest for sharing becomes apparent by comparing parts a
and b of Fig. 2. When program A is in control, it can have
access only to itself and the math routine; similarly, when
program E is in control, it can have access only to itself and
the math routine. Since neither program has the power to

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1289

processor

m e m o r y

program

vir tual

memory

n
processor PI -
I

p r i v i l e g e d
s t a t e b i t I d e s c r i p t o r

r e g i s t e r s H p r o g r a m

I s I

m e m o r y

p r o c e s s o r
p r o g r a m

B
I
2 s h a r e d

m a t h
r o u t i n e off- \ \

\ I

p r i v i l e g e d ’ d e s c r i p t o r
s t a t e b i t) r e g i s t e r s ti p r o g r a m

(b)
Fig. 2. Sharing of a math routine by use of two descriptor registers.

(a) Program A in control of processor. (b) Program B in control of
processor.

Whether or not there are actually two processors is less im-
portant than the existence of the conceptually parallel access
paths implied by Fig. 3. Every virtual processor of the system
may be viewed as having its own real processor, capable of
access to the memory in parallel with that of every other
virtual processor. There may be an underlying processor
multiplexing facility that distributes a few real processors
among the many virtual processors, but such a multiplexing
facility is essentially unrelated to protection. Recall that a
virtual processor is not permitted to load its own protection
descriptor registers. Instead, it must call or trap to the super-
visor program S which call or trap causes the privileged state
bit to go ON and thereby permits the supervisor program to
control the extent of sharing among virtual processors. The
processor multiplexing facility must be prepared to switch the
entire state of the real processor from one virtual processor to
another, including the values of the protection descriptor
registers.

I v i r t u a l /
I Drocessor P, .I /”- \ I shared I

rout ine

\
\

t-l program

(SI
Fig. 3. Fig. 2 redrawn to show sharing of a math routine by two virtual

processors simultaneously.

read bound b a s e w r i t e

J
permission bits

Fig. 4. A descriptor containing READ and WRITE permission bits.

Although the basic mechanism to permit information sharing
is now in place, a remarkable variety of implications that fol-
low from its introduction require further mechanisms. These
implications include the following.

1) If virtual processor P1 can overwrite the shared math
routine, then it could disrupt the work of virtual processor Pz .

2) The shared math routine must be careful about making
modifications to itself and about where in memory it writes
temporary results, since it is to be used by independent com-
putations, perhaps simultaneously.

3) The scheme needs to be expanded and generalized to
cover the possibility that more than one program or data base
is t o be shared.

4) The supervisor needs to be informed about which princi-
pals are authorized to use the shared math routine (unless it
happens to be completely public with no restrictions).

Let us consider these four implications in order. If the
shared area of memory is a procedure, then to avoid the possi-
bility that virtual processor P1 will maliciously overwrite it,
we can restrict the methods of access. Virtual processor PI
needs to retrieve instructions from the area of the shared pro-
cedure, and may need to read out the values of constants em-
bedded in the program, but it has no need to write into any
part of the shared procedure. We may accomplish this restric-
tion by extending the descriptor registers and the descriptors
themselves to include nccessing permission, an idea introduced
for different reasons in the original Burroughs B5000 design
[321. For example, we may add two bits, one controlling per-
mission to read and the other permission to write in the stor-
age area defined by each descriptor, as in Fig. 4. In virtual
processor PI of Fig. 3, descriptor 1 would have both per-
missions granted, while descriptor 2 would permit only reading,

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1290 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

of data and execution of instructions." An alternative
scheme would be to attach the permission bits directly to the
storage areas containing the shared program or data. Such a
scheme is less satisfactory because, unlike the descriptors so
far outlined, permission bits attached to the data would pro-
vide identical access to all processors that had a descriptor.
Although identical access for all users of the shared math
routine of Figs. 1-3 might be acceptable, a data base could not
be set up with several users having permission to read but a
few also having permission to write.

The second implication of a shared procedure, mentioned
before, is that the shared procedure must be careful about
where it stores temporary results, since it may be used simul-
taneously by several virtual processors. In particular, it should
avoid modifying itself. The enforcement of access permission
by descriptor bits further constrains the situation. To prevent
program A from writing into the shared math routine, we have
also prohibited the shared math routine from writing into it-
self, since the descriptors do not change when, for example,
program A transfers control to the math routine.?' The math
routine will find that it can read but not write into itself, but
that it can both read and write into the area of program A .
Thus program A might allocate an area of its own address
range for the math routine to use as temporary ~ torage .?~

As for the third implication, the need for expansion, we
could generalize our example to permit several distinct shared
items merely by increasing the number of descriptor registers
and informing the supervisor which shared objects should be
addressable by each virtual processor. However, there are two
substantially different forms of this generalization-capability
systems and access control list systems. In terms of the earlier
discussion, capability systems are ticket-oriented, while access
control list systems are list-oriented. Most real systems use a
combination of these two forms, the capability system for
speed and an access control list system for the human inter-
face. Before we can pursue these generalizations, and the
fourth implication, authorization, more groundwork must
be laid.

In Section 11, the development of protection continues with
a series of successively more sophisticated models. The initial
model, of a capability system, explores the use of encapsulated
but copyable descriptors as tickets to provide a flexible
authorization scheme. In this context we establish the general
rule that communication external to the computer must pre-
cede dynamic authorization of sharing. The limitations of

example, permission to call as a subroutine, to use indirect addressing,
"In some systems, more bits are used, separately controlling, for

or to store certain specialized processor registers. Such an extension of
the idea of separately controllable permissions is not important to the
present discussion.

"Actually, this constraint has been introduced by our assumption
that descriptors must be statically associated with a virtual processor.
With the addition of protected subsystems, described later, this con-
straint is relaxed.

"Of course, program A cannot allocate any arbitrary set of addresses
for this purpose. The specifications of the math routine would have to
include details about what addresses it is programmed to use relative to
the first descriptor; program A must expect those addresses to be the

wishes to use the shared math routine, will have to reserve the same
ones used when it calls the math routine. Similarly, program E , if it

addresses in its own area. Most systems that permit shared procedures
use additional hardware to allow more relaxed communication conven-
tions. For example, a third descriptor register can be reserved to point
to an area used exclusively as a stack for communication and temporary
storage by shared procedures; each virtual processor would have a dis-
tinct stack. Similar consideration must be given to static (own) veri-
ables. See, for example, Daley and Dennis 1431.

copyable descriptors-primarily lack of accountability for their
use-lead to analysis of revocation and the observation that
revocation requires indirection. That observation in turn leads
to the model of access control lists embedded in indirect ob-
jects so as to provide detailed control of authorization.

The use of access control lists leads to a discussion of con-
trolling changes to authorizations, there being at least two
models of control methods which differ in their susceptibility
to abuse. Additional control of authorization changes is
needed when releasing sensitive data to a borrowed program,
and this additional control implies a nonintuitive constraint on
where data may be written by the borrowed program. Finally,
Section I1 explores the concept of implementing arbitrary ab-
stractions, such as extended types of objects, as programs in
separate domains.

11. DESCRIPTOR-BASED PROTECTION SYSTEMS
A. Separation of Addressing and P r~ tec t ion?~

As mentioned earlier, descriptors have been introduced here
for the purpose of protecting information, although they are
also used in some systems to organize addressing and storage
allocation. For the present, it is useful to separate such or-
ganizational uses of descriptors from their protective use by
requiring that all memory accesses go through two levels of
descriptors. In many implementations, the two levels are
actually merged into one, and the same descriptors serve both
organizational and protection purposes.

Conceptually, we may achieve this separation by enlarging
the function of the memory system to provide uniquely identi-
fied (and thus distinctly addressed) storage areas, commonly
known as segments. For each segment there must be a dis-
tinct addressing descriptor, and we will consider the set of
addressing descriptors to be part of the memory system, as in
Fig. 5. Every collection of data items worthy of a distinct
name, distinct scope of existence, or distinct protection would
be placed in a different segment, and the memory system itself
would be addressed with twocomponent addresses: a unique
segment identifier (to be used as a key by the memory system
to look up the appropriate descriptor) and an offset address
that indicates which part of the segment is to be read or
written. All users of the memory system would use the same
addressing descriptors, and these descriptors would have no
permission bits-only a base and a bound value. This scheme
is functionally similar to that used in the Burroughs B5700/
6700 or Honeywell Multics systems in that it provides a struc-
tured addressing space with an opportunity for systematic and
automatic storage allocation.

The unique identifiers used to label segments are an essential
cornerstone of this organization. They will be used by the
protection system to identify segments, so they must never be
reused. One way of implementing unique identifiers is to pro-
vide a hardware counter register that operates as a clock

24 7- axtension of the discussion of information protection beyond
multiple descriptors requires an understanding of desmiptor-based
addressing techniques. Although subsection 11-A contains a brief re-
view, the reader not previously familiar with descriptor-based architec-
ture may fmd the treatment too sketchy. References [37] and 1441
provide tutorial treatments of descriptor-based addressing, while the
papers by Dennis [42] and Fabry [45] provide in-depth technical dik
cussion. A broad discussion and case studies are given in [46] and
147). The reader who f m L this section moving too rapidly b invited
to skip to Section 111. which requires fewer prerequisites.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1291

mop relottng u n i q u e
identifiers to
oddressing
descriptors \

\
h segmented memory

processor

mcI3 R W unique segment id unique segment id base bound

protectlon descrlptor -
addressing

\
descriptoi

v
map entry

Fig. 5. An organization separating addressing from protection descrip
tors, using a segmented memory. The address passed from the pro-
cessor t o the memory consists of two parts: a unique segment identi-
fier and an offset. Program A is in control. (Compare with Fig.
2(a).) In later figures the map containing addressing descriptors will
be omitted for clarity, but it is assumed to be present in the actual
implementation of a segmented memory.

(counting, say, microseconds) and is large enough never to
overflow in the lifetime of the memory system. The value of
the clock register at the time a segment is created can be used
as that segment's unique identifier.?' As long as the memory
system remembers anything, the time base of the clock register
must not be changed.

The processor of Fig. 5 contains, as part of its state, protec-
tion descriptors similar to those of Figs. 1 and 2, with the
addition of permissions, as in Fig. 4. All references by the
processor are constrained to be to segments described by these
protection descriptors. The protection descriptor itself no
longer contains a base and bound; instead the descriptor con-
tains the unique segment identifier that the memory system
requires as the first part of its two-part address for accessing
that segment. Thus, from the point of view of a program
stored in one of the segments of memory, this system is indis-
tinguishable from that of Fig. 2. Note in Fig. 5 that although
addressing descriptors exist for the segments containing pro-
gram B and program S (the supervisor), they are not accessible
to the processor since it has no protection descriptors for
those two segments. It is useful to distinguish between the
system address space, consisting of all the segments in the
memory system, and the processor address space, consisting of
those segments for which protection descriptors exist. Since
the addressing descriptors are part of the .memory system,
which is shared by all processors, the system address space is

system, it may be a good idea to guard against the possibility that an
"Since the unique identifier will be relied upon by the protection

accidental hardware error in manipulating a unique identifier results co-
incidentally in access to the wrong segment. One form of guard is to
encode the clock reading in some larger number of bits, using a multiple-

and to have the memory system check the coding of each unique identi-
error detecting code, to use the encoded value as the unique identifier,

fier presented to it.

universal. Any single processor address space, on the other
hand, is defined by the particular protection descriptors as-
sociated with the processor and therefore is local. If the
supervisor switches control of a real processor from one virtual
processor to another, it would first reload the protection de-
scriptors; the processor address space thus is different for dif-
ferent users, while the system address space remains the same
for all users.

With the addressing function separated architecturally from
the protection function, we may now examine the two gen-
eralized forms of protection systems: the capability system
and the access control list system.

B. The Capability System
1) The Concept of Capabilities: The simplest generalization

is the capability system suggested by Dennis and Van Horn [4 1] ,
and first partially implemented on an M.I.T. PDP-1 computer
1481 .26 There are many different detailed implementations
for capability systems; we illustrate with a specific example.
Recall that we introduced the privileged state bit to control
who may load values into the protection descriptor registers.
Another way to maintain the integrity of these registers would
be to allow any program to load the protection descriptor
registers, but only from locations in memory that previously
have been certified to contain acceptable protection descriptor
values.

Suppose, for example, that every location in memory were
tagged with an extra bit. If the bit is OFF, the word in that
location is an ordinary data or instruction word. If the bit is
ON, the word is taken to contain a value suitable for loading
into a protection descriptor register. The instruction that
loads the protection descriptor register will operate only if its
operand address leads it to a location in memory that has the
tag bit ON. To complete the scheme, we should provide an in-
struction that stores the contents of a protection descriptor
register in memory and turns the corresponding tag bit ON,
and we must arrange that all other store instructions set the
tag bit OFF in any memory location they write into. This
gives us two kinds of objects stored in the memory: protection
descriptor values and ordinary data values. There are also two
sets of instructions, separate registers for manipulating the two
kinds of objects, and, effectively, a wall that prevents values
that are subject to general computational manipulation from
ever being used as protection descriptor values. This kind of
scheme is a particular example of what is called a tagged
architecture.?'

This particular tagged architecture is known as a capability
system, one that lets the user place protection descriptor
values in memory addresses that are convenient to him. A
memory word that contains a protection descriptor value (in
our simple tagged system, one that has its tag bit ON) is known
as a capability.

16A detailed analysis of the resulting architectural implications was
made by Fabry and Yngve 1491. The capability system is a close reh-
tive of the codeword organization of the Rice Research Computer [S O] ,
but Dennis and Van Horn seem to be the fvst to have noticed the appli-
cation of that organization to interuser protection.

"Tagged architectures were invented for a variety of applications
other than protection. The Burroughs B5700 and its ancestors, and the

multibit tags to separately identify instructions, descriptors, and several
Rice Research Computer [S O] , are examples of architectures that use

different types of data. AU examples of tagged architecture seem to
trace back to suggestions made by J . Iliffe. A thorough discussion of
the concept is given by Feustel 1511.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1292 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

segmented memory
protection
descriptor program shared

processor 1 routlne A
ma t,h

2 z\
4- _= C I I .

I -
3 - g--

I /I pr iva te

i data base
catalog for
Doe

/

catalog for
Smith -\

I

Fig. 6. A simple capability system. Program A is in control of the
proce%sor. Note that there is no way for the processor t o address
Smith’s catalog or data base Y. On the other hand, data base X
could be accessed by loading capability C, into a protection descrip-
tor register. Capability C, is loadable because it is stored in a seg-
ment that can be reached from a capability already loaded in protec-
tion descriptor register 2. Note also that the former function of the
privileged state bit has been accomplished by protecting the capa-
bilities. The privileged state bit also has other uses and will be re-
introduced later.

To see how capabilities can be used to generalize our basic
sharing strategy, suppose that each processor has several (say,
four) protection descriptor registers, and that program A is in
control of a processor, as in Fig. 6. (For clarity, this and
future fiiures omit the addressing descriptors of the segmented
memory.) The first two protection descriptor registers have
already been loaded with values permitting access to two seg-
ments, program A and a segment we have labeled “Catalog for
Doe.” In our example, this latter segment contains two loca-
tions with tags indicating that they are capabilities, C1 and C2.
Program A may direct the processor to load the capability at
location C2 into one of the protection descriptor registers, and
then the processor may address the shared math routine.
Similarly, either program A or the shared math routine may
direct the loading of the capability at location C1 into a pro-
tection descriptor register, after which the processor may
address the segment labeled “Private Data Base X.” By a
similar chain of reasoning, another processor starting with a
capability for the segment labeled “Catalog for Smith” can
address both the shared math routine and the segment “Private
Data Base Y.”

We can now arrange for any desired static pattern of sharing
of segments. For example, for each user, we can provide one
segment for use as a catalog and place in that catalog a capa-
bility for every segment he is authorized to use. Each capa-
bility contains separate read and write permission bits, so that
some users may receive capabilities that permit reading and
writing some segment, while others receive capabilities per-
mitting only reading from that same segment. The catalog seg-
ment actually might contain pairs: a character-string name for
some segment and the associated capability that permits
addressing that segment. A user would create a new segment
by calling the supervisor. The supervisor by convention might
set some protection descriptor to contain a capability for the

new segment.28 The user could then file his new segment by
storing this new capability in his catalog along with a name for
the segment. Thus we have an example of a primitive but
usable filing system to go with the basic protection ~tructure .~’

To complete the picture, we should provide a tie to some
authentication mechanism. Suppose that the system responds
to an authentication request by creating a new virtual processor
and starting it executing in a supervisor program that initially
has a capability for a user identification table, as in Fig. 7. If a
user identifies himself as “Doe” and supplies a password, the
supervisor program can look up his identification in the user
identification table. It can verify the password and load into a
protection descriptor register the capability for the catalog
associated with Doe’s entry in the user identification table.
Next, it would clear the remaining capability registers, destroy-
ing the capability for the user identification table, and start
running some program in Doe’s directory, say program A .
Program A can extend its addressability to any segment for
which a capability exists in Doe’s catalog. Formally, after
verifying the claimed identity of the user, the authentication
system has allowed the virtual processor to enter Doe’s do-
main, starting in procedure A .

By providing for authentication we have actually tied to-
gether two protection systems: 1) an authentication system
that controls access of users to named catalog capabilities, and
2) the general capability system that controls access of the
holder of a catalog capability to other objects stored in the
system.

The authentication system associates the newly created
virtual processor with the principal accountable for its future
activities. Once the virtual processor is started, however, the
character-string identifier “Doe” is no longer used; the associ-
ated catalog capability is sufficient. The replacement of the
character-string form of the principal identifier is possible be-
cause the full range of accessible objects for this user has al-
ready been opened up to him by virtue of his acquisition of
his catalog capability. The catalog capability becomes, in
effect, the principal identifier. On the other hand, some loss
of accountability has occurred. It is no longer quite so easy,
by examining the registers of a running virtual processor, to
establish who is accountable for its activity. This lack of ac-
countability will have to be repaired in order to allow the
virtual processor to negotiate the acquisition of new capabilities.

With this example of a capability system, a catalog is not a
special object. It is merely any segment in which any program
chooses to store capabilities that are, by virtue of their tags,
protected unforgeable objects. If in Fig. 7, program A , running
under Doe’s control, creates a new object, it may choose to
place the new capability in segment X in a position where it
can easily be found later. In such a case, segment X has be-
come, in effect, another catalog. To establish the full range of
objects that Doe may address, it is necessary to examine not
only the initial catalog segment, whose capability is contained

loading a protection descriptor register with a capability for the new
la The construction of a capability for a newly created object requires

segment. This loading can be accomplished either by giving the super-
visor program the privilege of loading protection descriptor registers
from untagged locations, or else by making segment creation a hardware-
supported function that includes loading the protection deacriptor
r e p e r .

’Our model assumed that we are using a “one-level” storage syatem
that serves both as a repository for permanent storage and M the target
for addrum referencea of the processor. The primitive filing system
bued on capabilltle8 is tho only one needed to remember objecta
perunently.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1293

supervisor starts with
th is capabi l i ty segment capabi l i ty

catalog for Jones

n a m e for segment /

I

user identif ication tab1 e

name password catalog for Smith

Jones a b c d
Smith sesame
Doe webehi

for catalog
segment capabi l i ty

name for segment

catalog for Doe

Fig. 7. A capability system with provision for authentication.

in the user identification table, but also all segments it con-
tains capabilities for, and all segments they contain capabilities
for, etc.

The scheme described so far admits any desired static arrange-
ment of accessing authorization. It could be used in an appli-
cation for which a simple, rarely changed, authorization pattern
is useful. For example, a company data base management
system might have a relatively static authorization pattern,
which changes only when major revisions are made to the
style of maintaining the data base. We have not yet provided,
however, for the possibility that Doe, upon creating a new
segment, might wish to authorize access to it for Smith. Such
a need would probably arise if the computer system is used for
the creation and editing of interoffice memoranda and letters
or for constructing programs. We shall call this operation
dynamic authorization. The dynamic authorization of sharing
is a topic that must be examined quite carefully, since it ex-
poses several subtle issues that are fundamental t o sharing
and protection.

2) The Dynamic Authorization o f Sharing: One might pro-
pose to handle dynamic authorization very simply by arrang-
ing that Doe have a capability to write into Smith’s catalog.
Then Doe could store a copy of the capability for the new seg-
ment in Smith’s catalog. But this approach has a defect.
Allowing Doe to have a capability to write into Smith’s catalog
would enable Doe to overwrite and destroy all of Smith’s
capabilities. The inverse strategy of giving Smith a capability
to read Doe’s catalog would give Smith accesi to all of Doe’s
segments. A more “secure” approach to the problem is needed.
To develop this approach, we wiU consider a clumsy strategy
with squaralaw growth, and then refine it.

If the possibility of sharing had been anticipated, both Doe
and Smith might initially have had a capability allowing read-
ing and writing a communication segment used only to pass
messages and capabilities between Doe and Smith. Doe’s pro-
gram deposits the capability for his newly created object in the

communication segment for Smith, and Smith’s program can
pick it up and use it or catalog it at Smith’s convenience. But
that description oversimplifies one step. Both Doe’s and
Smith’s programs somehow have to locate the capability for
the common communication segment. How do they know
what to look for? Consider the case of the sender, Doe’s pro-
gram, f is t . Presumably it looks in some trusted catalog for
the name “Smith” and finds the capability for the communica-
tion segment next to Smith’s name. But how does Doe’s pro-
gram know to look for the name “Smith”? The character-string
name may be embedded in the program by Doe or he may
type it into his program as it runs, but either way one thing is
crucial-that there be a secure path from Doe, who is authoriz-
ing the passing of the capability, to the program, which is
carrying it out. Next, we should ask, where does Doe find out
the character-string name “Smith” so that he could type it in
or embed it in his program? Presumably, he learns Smith’s
name via some path outside the computer. Perhaps Smith
shouts it down the hall to him,” The method of communica-
tion is not important, but the fact of the communication is.
For dynamic authorization of sharing within a computer, there
must be some previous communication from the recipient to
the sender, external to the computer system. Further, this re-
verse external communication path must be sufficiently secure
that the sender is certain of the system-cataloged name of the
intended recipient. That name is, by definition, the identifier
of the recipient’s principal within the computer system. Thus
the sender can be sure that only programs run under the ac-
countability of that principal will have access to his new object.

An analogous chain of reasoning applies to Smith’s program
as the recipient of the capability for the new object. Smith
must leam from Doe some piece of information sufficient that
he can instruct his program to look in the correct communica-
tion segment for the capability which Doe is sending. Again,

”Imagery inrpired by Lampson [30 1.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1294 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

Doe’s principal identifier should be the name used in Smith’s
catalog of communication segments, so Smith can be certain
that only some program run under Doe’s accountability could
possibly have sent the capability. In summary, here is a com-
plete protocol for dynamically authorizing sharing of a new
object.

Sender’s part:
1) Sender learns receiver’s principal identifier via a com-
munication path outside the system.
2) Sender transmits receiver’s principal identifier to
some program running inside the system under the ac-
countability of the sender.
3) Sender’s program uses receiver’s principal identifier
to ensure that only virtual processors operating under
the accountability of the receiver will be able to obtain
the capability being transmitted.

1) Receiver learns sender’s principal identifier, via a
communication path outside the system.
2) Receiver transmits sender’s principal identifier to
some program running inside the system under the ac-
countability of the receiver.
3) Receiver’s program uses the sender’s principal identi-
fier to ensure that only a virtual processor operating
under the accountability of the sender could have sent
the capability being received.

This protocol provides protection for the authorization
changing mechanism (copying of a capability) by requiring an
authority check (comparison of a principal identifier found
inside the system with authorization information transmitted
from outside). Although the analysis may seem somewhat
strained, it is important because it always applies, even though
parts of it may be implicit or hidden. We have described the
protocol in terms of a capability system, but the same protocol
also applies in access control list systems.

Our analysis of the dynamics of authorizing sharing has been
in terms of private communication segments between every
pair of users, a strategy which would lead, with N users, to
some fl communication segments. To avoid this square-law
growth, one might prefer to use some scheme that dynamically
constructs the communication paths also, such as having
special hardware or a protected subsystem that implements a
single “mailbox segment” for each user to receive messages
and capabilities sent by all other users. Of course, the mecha-
nism that implements the mailbox segments must be a pro-
tected, reliable mechanism, since it must infallibly determine
the principal identifier of the sender of a message and label the
message with that identifier, so the receiver can reliably carry
out his step 3) of the protocol. Similarly, as the sender’s
agency, it must be able to associate the recipient’s principal
identifier with the recipient’s mailbox, so that the sender’s
intent in his step 3) of the protocol is carried out correctly.

3) Revocation and Control of Propagation: The capability
system has as its chief virtues its inherent efficiency, simplicity,
and flexibility. Efficiency comes from the ease of testing the
validity of a proposed access: if the accessor can present a
capability, the request is valid. The simplicity comes from the
natural correspondence between the mechanical properties of
capabilities and the semantic properties of addressing vari-
ables. The semantics for dynamically changing addressability
that are part of such modem languages as PL/I and Algol 68
fit naturally into a capability-based framework by using
capabilities as address (pointer) variables. Straightforward

Receiver’s part:

additions to the capability system allow it gracefully to
implement languages with dynamic-type extension [2 1] . Flexi-
bility comes from the defining property of a capability sys-
tem: the user may decide which of his addresses are to con-
tain capabilities. The user can develop a data structure with an
arbitrary pattern of access authorizations to his liking.

On the other hand, there are several potential problems with
the capability system as we have sketched it so far. If Doe has
a change of heart-he suddenly realizes that there is confi-
dential information in the segment he permitted Smith to
read-there is no way that he can disable the copy of the capa-
bility that Smith now has stored away in some unknown loca-
tion. Unless we provide additional control, his only recourse
is to destroy the original segment, an action which may be
disruptive to other users, still trusted, who also have copies of
the capability. Thus revocation of access is a problem.

A second, related property of a capability system is that
Smith may now make copies of the capability and distribute
them to other users, without the permission or even the
knowledge of Doe. While in some cases, the ability of a re-
cipient to pass access authorization along is exactly what the
original grantor intended, in others it is not. We have not pro-
vided for any control of propagation.

Finally, the only possible way in which Doe could make a
list of all users who currently can reach his segment would be
by searching every segment in the system for copies of the
necessary capability. That search would be only the beginning,
since there may be many paths by which users could reach
those capability copies. Every such path must be found, a
task that may involve a fair amount of computation and that
also completely bypasses the protection mechanisms. Thus
review of access is a problem.31

To help counter these problems, constraints on the use of
capabilities have been proposed or implemented in some sys-
tems. For example, a bit added to a capability (the copy bit)
may be used to indicate whether or not the capability may be
stored in a segment. If one user gives another user access to a
capability with the copy bit OFF, then the second user could
not make copies of the capability he has borrowed. Propaga-
tion would be prevented, at the price of lost flexibility.

Alternatively, some segments (perhaps one per user) may be
designated as capability-holding segments, and only those seg-
ments may be targets of the instructions that load and store
descriptor registers. This scheme may reduce drastically the
effort involved in auditing and make revocation possible, since
only capability-holding segments need be examined. (The
CAP system [201 and the Plessey 250 [53] are organized in
approximately this way, and the Burroughs B5000 family re-
stricts descriptor storage to the virtual processor stack and a
single table of outbound references [471 .) In systems that
make a programmer-visible distinction between short-term
processor-addressable memory (addressed by LOAD and STORE
instructions) and long-term storage (addressed by GET and
PUT subroutines), it is possible to restrict capabilities so that

31A fourth problem, not directly related to protection, is the
“garbage collection” or “lost object” problem. If all copies of some

become inaccessible to everyone, but the fact of its inaccessibility is
capability are overwritten, the object that capability describes would

hard to discover, and it may be hard to recover the space it occupies.

systematic in his use of capabilities and remember to destroy the object
The simplest solution is to insist that the creator of an object be

before discarding the last capability copy. Since most computer oper-
ating systems provide for systematic resource accounting, this simple
strategy is usually adequate. See, for example, Robinson etui . 1521.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1295

they may be stored only in processor-addressable memory.
This restriction not only reduces the effort required for audit-
ing, but also limits the lifetime of a capability to that of a
virtual processor. When the system shuts down, the only
memory of the system is in long-term storage and all capabili-
ties vanish. Of course, the next time the system starts up,
newly created virtual processors need some way (such as ap-
peal to an access control list system, described in the next sub-
section) to acquire the capabilities they need.

A third approach is to associate a depth counter with each
protection descriptor register. The depth counter initially
would have the value, say, of one, placed there by the super-
visor. Whenever a program loads a descriptor register from a
place in memory, that descriptor register receives a depth
count that is one greater than the depth count of the descrip-
tor register that contained the capability that permitted the
loading. Any attempt to increase a depth count beyond, say,
three, would constitute an error, and the processor would
fault. In this way, the depth counters limit the length of the
chain by which a capability may propagate. Again, this form
of constraint reduces the effort of auditing, since one must
trace chains back only a fixed number of steps to get a list of
all potential accessors. (The M.I.T. CTSS used a software
version of this scheme, with a depth limit of two.)

To gain more precise control of revocation, Redell [54] has
proposed that the basic capability mechanism be extended to
include the possibility of forcing a capability to specify its
target indirectly through a second location before reaching the
actual object of interest. This second location would be an
independently addressable recognizable object, and anyone
with an appropriate capability for it could destroy the indirect
object, revoking access to anyone else who had been given a
capability for that indirect object. By constructing a separate
indirect object for each different principal he shared an object
with, the owner of the object could maintain the ability to re-
voke access independently for each principal. The indirect ob-
jects would be implemented within the memory-mapping
hardware (e.g., the addressing descriptors of Fig. 5) both to
allow high-speed bypassing if frequent multiple indirections oc-
cur and also to allow the user of a capability to be ignorant of
the existence of the i n d i r e ~ t i o n . ~ ~ Redell's indirect objects are
closely related to the access controllers of the access control
list system, described in the next subsection. While providing
a systematic revocation strategy (if their user develops a pro-
tocol for systematically using them), the indirect objects pro-
vide only slight help for the problems of propagation and
auditing.

The basic trouble being encountered is that an authorization-
a kind of binding-takes place any time a capability is copied.
Unless an indirect object is created for the copy, there is no
provision for reversing this binding. The ability to make a
further copy (and potentially a new authorization) is coupled to
possession of a capability and is not independently controllable.
Restrictions on the ability to copy, while helping to limit the
number or kind of authorizations, also hamper the simplicity,
flexibility, and uniformity of capabilities as addresses. In par-
ticular, capabilities are especially useful as a way of com-
municating exactly the necessary arguments from one pro-

"In early plans for the HYDRA system 121], revocation was to be

separately controlling penniadon to w them that way. This strategy,
provided by allowing capabilities to be used as indirect addresses and by

in contrast to Redell's, makes the fact of indirection known to the user
and is also not as susceptible to speedup tricks.

cedure to another. In this way, they encourage wide use of
procedures, a cornerstone of good programming practice. Re-
strictions on copyability, then, inhibit their usefulness in the
context of procedure calls, and that runs counter to the goal
of providing base-level facilities that encourage good program-
ming practice. This dilemma seems to present an opportunity
for research. At the present level of understanding, the most
effective way of preserving some of the 'useful properties of
capabilities is to limit their free copyability to the bottom-
most implementation layer of a computer system, where the
lifetime and scope of the bindings can be controlled. The
authorizations implemented by the capability system are then
systematically maintained as an image of some higher level
authorization description, usually some kind of an access con-
trol list system, which provides for direct and continuous con-
trol of all permission binding^.^'

C. The Access Control List System
I) Access Controllers: The usual strategy for providing re-

versibility of bindings is to control when they occur-typically
by delaying them until the last possible moment. The access
control list system provides exactly such a delay by inserting
an extra authorization check at the latest possible point.
Where the capability system was basically a ticket-oriented
strategy, the access control list system is a list-oriented
strategy. Again, there are many possible mechanizations, and
we must choose one for illustration. For ease of discussion,
we will describe a mechanism implemented completely in
hardware (perhaps by microprogramming), although, histori-
cally, access control list systems have been implemented partly
with interpretive software. Our initial model will impose the
extra authorization check on every memory reference, an ap-
proach that is unlikely in practice but simpler to describe.
Later we will show how to couple an access control list system
to a capability system, a more typical realization that reduces
the number of extra checks.

The system of Fig. 5 identified protection descriptors as a
processor mechanism and addressing descriptors as a memory
mechanism. Suppose that the memory mechanism is further
augmented as follows. Whenever a user requests that a seg-
ment be created, the memory system will actually allocate two
linked storage areas. One of the storage areas will be used to
store the data of the segment as usual, and the second will be
treated as a special kind of object, which we will call an access
Controller. An access controller contains two pieces of in-
formation: an addressing descriptor for the associated segment
and an access control list, as in Fig. 8. An addressing descrip
tor for the access controller itself is assigned a unique identifier
and placed in the map used by the memory system to locate
objects. The access controller is to be used as a kind of in-
direct address, as in Fig. 9. In order to access a segment, the
processor must supply the unique identifier of that segment's
access controller. Since the access controller is protected,
however, there is no longer any need for these unique identi-
fiers to be protected. The former protection descriptor registers
can be replaced with unprotected pointer registers, which can
be loaded from any addressable location with arbitrary bit

"For example, in the Multics system [551, capabilities are recognized

segments, and the supervisor domain never gives out copies of capabili-
by the hardware only if they are placed in special capability-holding

with each access control list a thread leading to every copy it makes of
ties for those segments to other domains. The supervisor also Ilssociates

a capability, so that revocation is possible.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1296

addressing
descriptor for
this segment

access access control
controller Jones I r e a d l i s t

-
Principal permissions

ident i f ie rs

Fig. 8. Conceptual model of an access controller. When a virtual pro-
cessor attempts to refer to the segment associated with the access
controller, the memory system looks up the principal identifier in
the access control list part. If found, the permissions associated with
that entry of the access control list, together with the addressing
descriptor, are used to complete the access.

PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

pointer registers

Processor /
I

map reloting
unique identif iers t o
addressing,
descripton)

p/&mented memory

access controller

I , e unique identifier \
I , -\
Uunique identifier I base I bound13

Fig. 9. A revision of Fig. 5, with the addition of an access controller
as an indirect address to be used on all references by the processor to
the memory. Since the access controller contains permission bits,
they no longer need appear in the processor registers, which have
been renamed “pointer” registers. Note that the privileged state bit
of the processor has been replaced with a principal identifier register.

patterns. (In terms of IBM System 370 and Honeywell Multics,
the pointer registers contain segment numbers from a universal
address space. The segment numbers lead to the segment
addressing descriptors stored in the access controller.) Of
course, only bit patterns corresponding to the unique identifier
of some segment’s access controller will work. A data refer-
ence by the processor proceeds in the following steps, keyed
to Fig. 9.

1) The program encounters an instruction that would write
in the segment described by pointer register 3 at offset k.

2) The processor uses the unique identifier found in pointer
register. 3 to address access controller ACI. The processor at
the same time presents to the memory system the user’s princi-
pal identifier, a request to write, and the offset k.

3) The memory system searches the access control list in
AC, to see if this user’s principal identifier is recorded there.

4) If the principal identifier is found, the memory system
examines the permission bits associated with that entry of the
access control list to see if writing is permitted.

5) If writing is permitted, the addressing descriptor of seg-
ment X, stored in ACI, and the original offset k are used to
generate a write request inside the memory system.

We need one more mechanism to make this system work.
The set of processor registers must be augmented with a new
protected register that can contain the identifier of the princi-
pal currently accountable for the activity of the virtual proces-
sor, as shown in Fig. 9. (Without that change, one could not
implement the second and third steps.)

For example, we may have an organization like that of
Fig. 10, which implements essentially the same pattern of
sharing as did the capability system of Fig. 6. The crucial dif-
ference between these two figures is that, in Fig. 10, all refer-
ences to data are made indirectly via access controllers. Over-
all, the organization differs in several ways from the pure capa-
bility system described before.

1) The decision to allow access to segment X has known,
auditable consequences. Doe cannot make a copy of the
addressing descriptor of segment X since he does not have di-
rect access to it, eliminating propagation of direct access. The
pointer to X’s access controller itself may be freely copied and
passed to anyone, but every use of the pointer must be via the
access controller, which prevents access by unauthorized

2) The access control list directly implements the sender’s
third step of the dynamic sharing protocol-verifying that the
requester is authorized to use the object. In the capability
system, verification was done once to decide if the first
capability copy should be made; after that, further copying
was unrestricted. The access control list, on the other hand,
is consulted on every access.

3) Revocation of access has become manageable. A change
to an access control list removing a name immediately pre-
cludes all future attempts by that user to use that segment.

4) The question of “who may access this segment?” a p
parently is answered directly by examining the access control
list in the access controller for the segment. The qualifier
“apparently” applies because we have not yet postulated any
mechanism for controlling who may modify access control
lists.

5) AU unnecessary association between data organization
and authorization has been broken. For example, although a
catalog may be considered to “belong” to a particular user, the
segments appearing in that catalog can have different access
control lists. It follows that the grouping of segments for
naming, searching, and archiving purposes cag be independent

“We should note that nothing prevents a program running under an
authorized principal from copying the data of segment X into some
other segment where other principals might be authorized to read it.

away” any form of access permission, for example, by writing into the
In general, a program running under an authorized principal may “give

segment whenever it receives a message from an unauthorized accom-
plice. Partly because of this possibility, the importance of direct ac-
countability of each principal~has been emphasized.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1297

segmented memory

A
shared math

routine Smith

private
data base

Doe X

identifier

pr ivate
date base

Y

Fig. 10. A protection system using access controllers containing acceas control lists. In this system, every segment has a single corresponding
access controller with its own unique identifier for addressing purposes; pointer registers always contain the unique identifiers of access con-
trollers. Program A is in control of the processor, and it has already acquired a pointer to the library catalog. Since the access control list in
the access controller for the library catalog contains Doe’s name, the processor can use the catalog to find the pointer for the shared math
routine. Since his name also appears in the access control list of the math routine, the processor will then be able to use the shared math
routine.

of any desired grouping for protection purposes. Thus, in
Fig. 10, a library catalog has been introduced.

It is also apparent that implementation, especially direct
hardware implementation, of the access control list system
could be quite an undertaking. We will later consider some
strategies to simplify implementation with minimum com-
promise of functions, but first it will be helpful to introduce
one more functional property-protection groups.

2) Protection Groups: Cases often arise where it would be
inconvenient to list by name every individual who is to have
access to a particular segment, either because the list would
be awkwardly long or because the list would change frequently.
To handle this situation, most access control list systems
implement factoring into protection groups, which are princi-
pals that may be used by more than one user. If the name of a
protection group appears in an access control list, all users who
are members of that protection group are to be permitted
access to that segment.

Methods of implementation of protection groups vary widely.
A simple way to add them to the model of Figs. 9 and 10 is to
extend the “principal holding” register of the processor so
that it can hold two (or more) principal identifiers at once,
one for a personal principal identifier and one for each protec-
tion group of which the user is a member. Fig. 10 shows this
extension in dashed lines. In addition, we upgrade the access
control list checker so that it searches for a match between
any of the principal identifiers and any entries of the access
control list.” Finally, who is allowed to use those principals

35 If there is more than one match, and the multiple access control list
entries specify different access permissions, some resolution strategy is
needed. For example, the INCLUSIVE- of the individually specified
access ~ ~ I ~ S S ~ O M might be granted.

that represent protection group identifiers must also be con-
trolled systematically.

We might imagine that for each protection group there is a
protection group list, that is, a list of the personal principal
identifiers of all users authorized to use the protection group’s
principal identifier. (This list is an example of an accm con-
trol list that is protecting an object-a principal identifier-
other than a segment.) When a user logs in, he can specify the
set of principal identifiers he proposes to use. His right t o use
his personal principal identifier is authenticated, for example,
by a password. His right to use the remaining principal identi-
fiers can then be authenticated by looking up the now-
authenticated personal identifier on each named protection
group list. If everything checks, a virtual processor can safely
be created and started with the specified list of principal
identifiers3‘

3) Implemenration Considerations: The model of a com-
plete protection system as developed in Fig. 10 is one of many
possible architectures, most of which have essentially identical
functional properties; our choices among alternatives have
been guided more by pedagogical considerations than by
practical implementation issues. There are at least three key
areas in which a direct implementation of Fig. 10 might en-
counter practical problems.

1) As proposed, every reference to an object in memory
requires several steps: reference to a pointer register; indirect

treated as a special case of a capability, known IU an access key, that
)6 In some system (notably CAL TSS [17]), principal identifiers are

though this approach appears to produce the same effect LI protection
can be copied about, stored anywhere, and passed on to friends. Al-

group, accountability for the use of a prindpal identifier no longer
resdes in an individual, since any holder of a Ley can make further
copies for his friends.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1298 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

/
poin ter regis ters

/
/

processor I , , shadow registers
I

identifiers I access ’ -# I
control ler s e g m e h +

Fig. 11. Use of “shadow” capability registers to speed up an accesa

identifier is firat used, the shadow register is automatically loaded
control list system. When a pointer register containing a unique

from the access controller to which the unique identifier refers.
Later uses of that pointer register thm do not require reference to
the access contrdler. Storing of a pointer register means storing of
the unique identifier only; the shadow register is newr stored.

reference through an access controller including search of an
access control list; and finally, access to the object itself via
addressing descriptors. Not only are these steps serial, but
several memory references are required, so fast memory access
would be needed.

2) An access control list search with multiple principal iden-
tifiers is likely to require a complex mechanism, or be slow, or
both. (This tradeoff between performance and complexity
contrasts with the capability system, in which a single com-
parison is always sufficient.)

3) Allocation of space for access control lists, which can
change in length, can be a formidable implementation prob-
lem. (Compared to a capability system, the mechanics of
changing authorization in an access control list system are
inherently more cumbersome.)

The fmt of these problems is attacked by recognizing that
the purpose of the access control list is to establish authoriza-
tion rather than to mediate every detailed access. Mediation
of access would be handled more efficiently by a capability
system. Suppose we provide for each pointer register a
“shadow” capability register that is invisible to the virtual
processor, as in Fig. 1 1. Whenever a pointer register containing
the unique identifier of an access controller is f m t used, the
shadow register is loaded with a capability consisting of a copy
of the addressing descriptor for the segment protected by the
access controller, together with a copy of the appropriate set
of permission bits for this principal.” Subsequent references
via that pointer register can proceed directly using the shadow
register rather than indirectly through the access controller.
One implication is a minor change in the revocability proper-
ties of an access control list: changing an access control list
does not affect the capabilities already loaded in shadow
registers of running processors. (One could restore complete
revocability by clearing all shadow registers of all processors
and restarting any current access control list searches. The
next attempted use of a cleared shadow register would aut*
matically trigger its reloading and a new access control list

check.) The result is a highly constrahed but very fast capabil-
ity system beneath the access control list system. The detailed
checking of access control falls on the capability mechanism,
which on individual memory references exactly enforces the
constraints specified by the access control list system.

The second and third problems, allocation and search of
access control lists, appear to require more compromise of
functional properties. One might, for example, constrain all
access control lists to contain, say, exactly five entries, to
simplify the space allocation problem. One popular implemen-
tation allows only three entries on each access control list.
The first is filled in with the personal principal identifier of the
user who created the object being protected, the second with
the principal identifier of the (single) protection group to
which he belongs, and the third with the principal identifier of
a universal protection group of which all users are members.
The individual access permissions for these three entries are
specified by the program creating the segment.”

A completely different way to provide an access control list
system is to implement it in interpretive software in the path
to the secondary storage or file system. Primary memory p r e
tection can be accomplished with either base-and-bound
registers, or more generally with a capability system in which
the capabilities cannot be copied into the file system. This a p
proach takes the access control list checking mechanisms out
of the heavily used primary memory access path, and reduces
the pressure to compromise its functional properties. Such a
mixed strategy, while more complex, typically proves to be
the most practical compromise. For example, the Multics sys-
tem [551 uses software-interpreted access control lists together
with hardware-interpreted tables of descriptors. Similarly, the
“guard f ie” of the Burroughs B6700 Master Control Program
is an example ‘of an access controller implemented inter-
pretively [57].

4) Authorify to Change Access Control Lists: The access
control list organization brings one issue into focus: control of
who may modify the access control information. In the capa-
bility system, the corresponding consideration is diffuse. Any
program having a capability may make a copy and put that
copy in a place where other programs, running in other virtual
processors, can make use (or further copies) of it. The access
control list system was devised to provide more precise control
of authority, so some mechanism of exerting that control is
needed. The goal of any such mechanism is to provide within
the computer an authority structure that models the authority
structure of whatever organization uses the computer. Two
different authority-controlling policies, with subtly different
modeling abilities, have been implemented or proposed. We
name these two self control and hierarchical control.

The simplest scheme is self control. With this scheme, we
extend our earlier concept of access permission bits to include
not just permission to read and write, but also permission to
modify the acces control list that contains the permission
bits. Thus, in Fig. 12, we have a slightly more elaborate access
controller, which by itself controls who may make modifica-
tions to it. Suppose that the creation of a new segment is
accompanied by the creation of an access controller that con-
tains one initial entry in its access control list-an entry giving
all permissions to the principal identifier associated with the
creating virtual processor. The creator receives a pointer for

“iWe have thua merged, for speed, the protection descriptor and the [151 and UNIX [IS]. This idea seems to have originated in the Univer-
*‘Variationr of this strategy am implemented in software in TENEX

addredsing descriptor. dty of Cdifornia SDS-940 TSS [56].

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1299

b o u n d
addressing
descriptor fo r
this segment

accesm

pr inc ipa l pe rmis s ions
i d e n t i f i e r s

Fig. 12. The access controller extended for selfcontained control over
modiflation of its access control list. In thia example, user Smith
has three permissions: to read and to write into the associated seg-
ment, and to make modifications to the access control list of this

though he can read and write in the segment described by this access
access controller. Jones cannot modify the access control List, even

controller. Doe is even more constrained.

the access controller he has just created, and then can adjust
its access control list to contain any desired list of principal
identifiers and permissions.jp

Probably the chief objection is to the self-control approachis
that it is so absolute: there is no provision for graceful changes
of authority not anticipated by the creator of an access control
list. For example, in a commercial time-sharing system, if a
key member of a company’s financial department is taken ill,
there may be no way for his manager to authorize temporary
access to a stored budget file for a co-worker unless the absent
user had the foresight to set his access control lists just right.
(Worse yet would be ‘the possibility of accidentally producing
an object for which its access controller permits access to no
one-another version of the garbage collection problem.) To
answer these objections, the hierarchical control scheme is
sometimes used.

To obtain a hierarchical control scheme, whenever a new
object is created the creator must specify some previously
existing access controller to regulate future changes to the
access control list in the access controller for the new object.
The representation of an access controller must also be ex-
panded to contain some kind of pointer to the access control-
ler that regulates it (for example, a unique identifier). In addi-
tion, the interpretation of the permission bit named “ACL-
mod” is changed to apply to those access controllers that
hierarchically are immediately below the access controller con-
taining the permission bit. Then, as in Fig. 13, all of the access
controllers of the system will be arranged in a hierarchy, or
tree structure, branching from the first access controller in the
system, whose creation must be handled as a special case, since
there is no previously existing access controller to regulate it.
The hierarchical arrangement is now the pattern of access con-
trol, since a user with permission to modify access control
lists may add his own principal identifier, with permission to
modify access, to lower level access controllers, giving himself
ability to change access control lists still further down the

39The mechanics of adjustment of the access control list require
using a special “store” instruction (or calling a supervisor entry in a
software implementation) that interprets its addrw, M direct, rather
than indirect, but still p e r f o r m s the access control list checks before
performing the store. This specid instruction must also restrict the
range of a d d r a s ~ 6 it .Ilowr, so = to prevent modifying the addresing
dacriptor stored in the access controller.

AC6
i\

A C 4 I

--7 / /
segment A segment X segment Y

Fig. 13. Hierarchical control of authority to modify access control
lists. Each access controller has an extra field in addition to those of

level access controller. Authority to access segments A , X, and Y is
Fig. 12; the extra field contains the unique identifier of some higher

controUed by access controllers AC, , AC, , and AC, , respectively.

while authority to modify AC, is controlled by AC,. Authority to
Authority to modify AC, and AC, is in turn controlled by AC,,

controller in the system. In this example, the authority to modify
modify AC, and AC, is controlled by AC, , which is the f i t access

AC, is similar to the self-control scheme. Note that segments S4, S5,
and S6 may be degenerate; AC,, AC,, and AC, may exist solely to
control the authority to modify other access controllers. The mean-
ing of the backpointer, say, from AC, to AC,, is that if a user at-
tempts to modify the access control list of AC,, the backpointer is
followed, leading to AC,. o n l y if the user’s principal identifier is
found in AC, (with appropriate permission) is the modification to
AC, permitted. Segments A , X, and Y am arranged in an independent
hierarchy of their own, with A superior to X and Y, by virtue of the
pointer values P, and P, found in segment A .

hierarchy. Permission to modify access at any one node of the
hierarchy permits the holder to grant himself access to any-
thing in the entire subtree based on that node.40

The hierarchical control scheme might be used in a time-
sharing system as follows. The f m t access controller created is
given an access control list naming one user, a system adminis-
trator. The system administrator creates several access con-
trollers (for example, one for each department in his company)
and grants permission to modify access in each controller to
the department administrator. The department administrator
can create additional access controllers in a tree below the one
for his department, perhaps for subdepartments or individual
computer users in his department. These individual users can
develop any pattern of sharing they wish, through the use of
access control lists in access controllers, for the segments they
create. In an emergency, however, the department administra-
tor can intervene and modify any access control list in his
department. Similarly, the system administrator can intervene

.‘The simplest way to handle the f i t accm controller is to have it
refer to itself. This approach provides self control at one point in the
system; the difficulty of providing for unantidpated chmges in author-
ity is red and mwt be countered by careful planning by the system
administrator.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1300 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

in case a department administrator makes a mistake or is un-
available?

The hierarchical system in our example is subject to the
objection that the system administrator and department ad-
ministrators are too powerful; any hierarchical arrangement
inevitably leads to concentration of authority at the higher
levels of the hierarchy. A hierarchical arrangement of authority
actually corresponds fairly well to the way many organizations
operate, but the hierarchical control method of modeling the
organization has one severe drawback: the use and possible
abuse of higher level authority is completely unchecked. In
most societal organizations, higher level authority exists, but
there are also checks on it. For example, a savine bank
manager may be able to authorize a withdrawal despite a lost
passbook, but only after advertising its loss in the newspaper.
A creditor may remove money from a debtor’s bank account,
but only with a court order. A manager may open an em-
ployee’s locked file cabinet, but (in some organizations) only
after temporarily obtaining the key from a security office, an
action which leaves a record in the form of a logbook entry.
A policeman may search your house, but the search is illegal
unless he first obtained a warrant. In each case, the authority
to perform the operation exists, but the use of the authority is
coupled with checks and balances designed to prevent abuse of
the authority. In brief, the hierarchical control scheme pro-
vides for exercise of authority but, as sketched so far, has no
provision for preventing abuse of that authority.

One strategy that has been suggested in various forms [58],
1591 is to add a field to an access controller, which we may
call the prescript field. Whenever an attempt is made to
modify an access control list (either by a special store instruc-
tion or by a call to a supervisor entry, depending on the im-
plementation), the access-modifying permission of the higher
level access controller regulating the access control list is
checked as always. If the permission exists, the prescript field
of the access control list that is about to be modified is
examined, and some action, depending on the value found, is
automatically triggered. The following list suggests some
possible actions that might be triggered by the prescript value,
and some external policies that can be modeled with the
prescript scheme.

1) No action.
2) Identifier of principal making change is logged (the

3) Change is delayed one day (“cooling-off” period).
4) Change is delayed until some other principal attempts the

same change (“buddy” system).
5) Change is delayed until signal is received from some

specific (systemdesignated) principal (“court order”).

“audit trail”).

The goal of all of the policies (and the prescript mechanism in
general) is to ensure that some independent judgment moder-
ates otherwise unfettered use of authority.

The notion of a prescript, while apparently essential to a
protection system intended to model typical real authority
structures, has not been very well developed in existing or

proposed computer systems. The particular prescript mecha-
nism we have used for illustration of the concept can model
easily only a small range of policies. One could, for example,
arrange that a prescript be invoked on every access to some
segment, rather than just on changes in the authority structure.
One could implement more complex policies by use of pro-
tected subsystems, a general escape mechanism described
briefly in a later section.
5) Discretionary and Nondiscretionary Controls: Our dis-

cussion of authorization and authority structures has so far
rested on an unstated assumption: the principal that creates a
file or other object in a computer system has unquestioned
authority to authorize access to it by other principals. In the
description of the self-control scheme, for example, it was
suggested that a newly created object begins its existence with
one entry in its access control list, giving all permissions to its
creator.

We may characterize this control pattern as discretionary4’
implying that the individual user may, at his own discretion,
determine who is authorized to access the objects he creates.
In a variety of situations, discretionary control may not be
acceptable and must be limited or prohibited. For example,
the manager of a department developing a new product line
may want to “compartmentalize” his department’s use of the
company computer system to ensure that only those em-
ployees with a need to know have access to information about
the new product. The manager thus desires to apply the
principle of least privilege. Similarly, the marketing manager
may wish to compartmentalize all use of the company com-
puter for calculating product prices, since pricing policy may
be sensitive. Either manager may consider it not acceptable
that any individual employee within his department can
abridge the compartmentalization decision merely by chang-
ing an access control list on an object he creates. The manager
has a need to limit the use of discretionary controls by his em-
ployees. Any limits he imposes on authorization are controls
that are out of the hands of his employees, and are viewed by
them as nondiscretionary. Similar constraints are imposed in
military security applications, in which not only isolated com-
partments are required, but also nested sensitivity levels (e.g.,
top secret, secret, and confidential) that must be modeled in
the authorization mechanics of the computer system. Non-
discretionary controls may need to be imposed in addition to
or instead of discretionary controls. For example, the depart-
ment manager may be prepared to allow his employees to ad-
just their access control lists any way they wish, within the
constraint that no one outside the department is ever given
access. In that case, both nondiscretionary and discretionary
controls apply.

The key reason for interest in nondiscretionary controls is
not so much the threat of malicious insubordination as the
need to safely use complex and sophisticated programs created
by suppliers who are not under the manager’s control. A con-
tract software house may provide an APL interpreter or a fast
file sorting program. If the supplied program is to be useful, it
must be given access to the data it is to manipulate or interpret.
But unless the borrowed program has been completely audited,

“A variation is the use of the segments controlled by access control- there is no way to be Sure that it does not misuse the data

segments below. This variation, if carried to the extreme, maps
lers higher in the hierarchical authority structure as catalogs for the (for example, by making an illicit copy) or expose the data

together the authority control hierarchy and the cataloguing hierarchy. either accidentally or intentionally. One way to prevent this
Some mechanical simplifications can be made, but try@ to make dual kind of security violation would be to forbid the use of bar-
use of a single hierarchy may lead to cataloguing strategigl inappropriate
for the data brwr, or else to proanwar to &tort the desired authority
structure. The Multicr mystem [581, for example, use8 thia d t i o a “A term suggested by R. Schell [60] .

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1301

rowed programs, but for most organizations the requirement
that all programs be locally written (or even thoroughly
audited) would be an unbearable economic burden. The
alternative is confinement of the borrowed program, a term
introduced by Lampson [6 11. That is, the borrowed program
should run in a domain containing the necessary data, but
should be constrained so that it cannot authorize sharing of
anything found or created in that domain with other domains.

Complete elimination of discretionary controls is easy to
accomplish. For example, if self-controlling access controllers
are being used, one could arrange that the initial value for the
access control list of all newly created objects not give
“ACL-mod” permission to the creating principal (under which
the borrowed program is running). Then the borrowed pro-
gram could not release information by copying it into an object
that it creates and then adjusting the access control list on
that object. If, in addition, all previously existing objects in
the domain of the borrowed program do not permit that
principal to modify the access control list, the borrowed
program would have no discretionary control at all and the
borrower would have complete control. A similar modification
to the hierarchical control system can also be designed.

It is harder to arrange for the coexistence of discretionary
and nondiscretionary controls. Nondiscretionary controls may
be implemented, for example, with a second access control
list system operating in parallel with the first discretionary
control system, but using a different authority control pattern.
Access to an object would be permitted only if both access
control list systems agreed. Such an approach, using a fully
general access control list for nondiscretionary controls, may
be more elaborate than necessary. The few designs that have
appeared so far have taken advantage of a perceived property
of some applications of nondiscretionary controls: the desired
patterns usually arerelatively simple, such as “divide the activi-
ties of this system into six totally isolated compartments.” It
is then practical to provide a simplified access control list
system to operate in parallel with the discretionary control
machinery.

An interesting requirement for a nondiscretionary control
system that implements isolated compartments arises whenever
a principal is authorized to access two or more compartments
simultaneously, and some data objects may be labeled as being
simultaneously in two or more compartments (e.g., pricing
data for a new product may be labeled as requiring access to
the “pricing policy” compartment as well as the “new product
line” compartment). In such a case it would seem reasonable
that, before permitting reading of data from an object, the
control mechanics should require that the set of compartments
of the object being referenced be a subset of the compartments
to which the accessor is authorized. However, a more stringent
interpretation is required for permission to write, if borrowed
programs are to be confined. Confiement requires that the
virtual processor be constrained to write only into objects that
have a compartment set identical to that of the virtual p r e
cessor itself. If such a restriction were not enforced, a mali-
cious borrowed program could, upon reading data labeled for
both the “pricing policy” and the “new product line” com-
partments, make a copy of part of it in a segment labeled only
“pricing policy,” thereby compromising the “new product
line” compartment boundary. A similar set of restrictions on
writing can be expressed for sensitivity levels; a complete and
systematic analysis in the military security context was
developed by Weissman [141. He suggested that the problem

be solved by automatically labeling any written object with
the compartment labels needed to permit writing, a strategy he
named the “high water mark.” As an alternative, the strategy
suggested by Bell and LaPadula [621 declared that attempts to
write into objects with too few compartment labels are errors
that cause the program to stop.43 Both cases recognize that
writing into objects that do not have the necessary compart-
ment labels represents potential “declassification” of sensitive
information. Declassification should occur only after human
judgment has been interposed to establish that the particular
information to be written is not sensitive. Developing a sys-
tematic way to interpose such human judgments is a research
topic.

Complete confmement of a program in a shared system is
very difficult, or perhaps impossible, to accomplish, since the
program may be able to signal to other users by strategies more
subtle than writing into shared segments. For example, the
program may intentionally vary its paging rate in a way users
outside the compartment can observe, or it may simply stop,
causing its user to go back to the original author for help,
thereby revealing the fact that it stopped. D. Edwards charac-
terized this problem with the phrase “banging on the walls.”
Lampson [611, Rotenberg [591, and Fenton 1641 have ex-
plored this problem in some depth.

D. Protecting Objects Other Than Segments
So far, it has been useful to frame our discussion of protec-

tion in terms of protecting segments, which basically are
arbitrary-sized units of memory with no internal structure.
Capabilities and access control lists can protect other kinds of
objects also. In Fig. 9, access controllers themselves were
treated as system-implemented objects, and in Fig. 13 they
were protected by other access controllers. It is appropriate to
protect many other kinds of objects provided by the hardware
and software of computer systems. To protect an object other
than a segment, one must first establish what kinds of opera-
tions can be performed on the object, and then work out an
appropriate set of pelmissions for those operations. For a data
segment, the separately controllable operations we have used
in our examples are those of reading and writing the contents.

For an example of a different kind of system-implemented
object, suppose that the processor is augmented with instruc-
tions that manipulate the contents of a segment as a first-in,
first-out queue. These instructions might interpret the first
few words of the segment as pointers or counters, and the
remainder as a storage area for items placed in the queue. One
might provide two special instructions, “enqueue” and
“dequeue,” which add to and remove from the queue. Typi-
cally, both of these operations would need to both read and
write various parts of the segment being used as a queue.

As described so far, the enqueue and dequeue instructions
would indiscriminately treat any segment as a queue, given
only that the program issuing the instruction had loaded a
capability permitting reading and writing the segment. One
could not set up a segment so that some users could only en-
queue messages, and not be able to dequeue-or even directly
read-messages left by others. Such a distinction between

suggested 88 a way of monitoring the trustworthincsa, as contrasted to
“The dual strategy of maintaining a “low water mark” ha8 been

the contamination level, of a computation. The Multics temporary ring
&tor maintain8 ruch a low water mark on indirect addrwa evalua-
tion [63].

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1302 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

TABLE I
TYPICAL SYSTEM-PROVIDED PROTECTED OBJECTS

Object
Typical Separately Permittable

Operations

Data segment

Access controller

FIFO message queue

READ data from the segment
WRITE data into the segment
Use any capability found in the

Use any READ capability found in

WRITE a capability into the segment
 LAD access control list
Modify names appearing on an

access control list
Modify permissions in access

control list entries
Destroy object protected by this

access controller
Enqueue a message
Dequeue a message
Examine queue contents without

segment

the segment

dequeueing
Input/Output device READ data

W R I T E data
Issue devicecontrol commands

Removable recording medium READ data
(e.g., magnetic tape reel) WRITE over data

WRITE data in new area

queues and other segments can be made by introducing the
concept of type in the protection system.

Consider, for example, the capability system in Fig. 6.
Suppose we add to a capability an extra field, which we will
name the Qpe field. This field will have the value 1 if the
object described by the capability is an ordinary segment, and
the value 2 if the object is to be considered a queue. The
protection descriptor registers are also expanded to contain a
type field. We add to the processor the knowledge of which
types are suitable as operands for each instruction. Thus the
special instructions for manipulating queues require that the
operand capability have type field 2, while all other instruc-
tions require an operand capability with type field 1. Further,
the interpretation of the permission bits can be different for
the queue type and the segment type. For the queue type,
one might use the first permission bit t o control use of the
enqueue instruction and the second permission bit for the de-
queue instruction. Finally, we should extend the “create”
operation to permit specification of the type of object being
created.

Clearly, one could extend the notion of type beyond seg-
ments and queues; any data structure could be similarly
distinguished and protected from misuse. Further, input and
output streams attached to interactive terminals, printers, and
the like could be considered distinct types with their own
repertoire of separately permitted operations. The concept of
type extension is not restricted to capability systems; in an
access control list system one could place the type field in the
access controller and require that the processor present t o the
memory, along with each operand address, an indication of the
type and permission bits required for the operation being
performed. Table I lists some typical system-implemented
objects and the kinds of operations one might selectively
permit. This table could be extended to include other objects
that are basically interpreted data structures, such as accounts
or catalogs.

Finally, one may wish to extend dynamically the range of
objects protected. Such a goal might be reached by making
the type field large enough to contain an additional unique
identifier, and allowing for software interpretation of the
access to typed objects. This observation brings us t o the
subject of user-programmed controls on sharing and the imple
mentation of protected objects and protected subsystems. We
shall not attempt to examine this topic in depth, but rather
only enough to learn what problems are encountered.

E . Protected Objects and Domains

Both the capability system and the access control list system
allow controlled sharing of the objects implemented by the
system. Several common patterns of use can be independently
controlled, such as reading, writing, or running as a program.
While it is a great improvement over “all-or-nothing” sharing,
this sort of controlled sharing has two important limitations.

The first limitation is that only those access restrictions pro-
vided by the standard system facilities can be enforced. It is
easy to imagine many cases where the standard controls are
not sufficient. For example, an instructor who maintains his
course grade records in a segment on an interactive system
may wish to allow each student to read his own grades to
verify correct recording of each assignment, but not the grades
of other students, and to allow any student t o examine the
histogram of the class grades for each assignment. Implement-
ing such controls within systems of the sort discussed in the
last few sections would be awkward, requiring at least the
creation of a separate segment for each student and for the
distributions. If, in addition, the instructor wishes an assistant
to enter new grades, but wants to guarantee that each grade
entered cannot be changed later without the instructor’s spe-
cific approval, we have a situation that is beyond the ability of
the mechanisms so far described.

The mechanisms described so far cannot handle this situation
because the manipulations we wish to perform on a grade or a
set of grades are not fundamental operations of the base-level
system. In essence, we wish to dynamically defiie a new type,
the grade record, and provide a set of programs that interpre-
tively implement the operations appropriate for this new
t ~ p e . 4 ~

The second limitation concerns users who borrow programs
constructed by other users. Execution of a borrowed program
in the borrower’s domain can present a real danger to the
borrower, for the borrowed program can exercise all the
capabilities in the domain of the borrower. Thus a user must
have a certain amount of faith in the provider of a program
before he executes the program in his own domain.

The key to removing these limitations is the notion of a pro-
tected subsystem. A protected subsystem is a collection of
program and data segments that is “encapsulated” so that
other executing programs cannot read or write the program
and data segments and cannot disrupt the intended operation
of the component programs, but can invoke the programs by
calling designated entry points. The encapsulated data seg-
ments are the protected objects. Programs in a protected sub-
system can act as caretakers for the protected objects and
interpretively enforce arbitrarily complex controls on access to
them. Programs outside the protected subsystem are allowed
to manipulate the protected objects only by invoking the care

the clars concept of Simula 67 [65].
44 This notion of a dynamically defmed type is an enforced version of

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1303

osslstants can
~ n v o k e this prwram

Invoke thls oroorom
students can x Ins t ruc tor con

Invoke this Drogrom

dlrect read/wrlte
access to components
from outslde not
a I lowed

/
/

/
I

i u u \ \ I /

I \ /
/

direct read a-d write references

\ by pI , P2 , and P3 to grode

Fig. 14. A protected subsystem to implement the gradekeeping system
described in the text. P, , which can be invoked by all students in the
subject, is progammed to return the d e r ’ s grade for a particular

which can be invoked by the teaching assistants for the subject, is
assignment or the distribution of all grades for an assignment. P,,

programmed to allow the addition of new grades to the record but to
prevent changing a grade once it is entered. P, , which can be invoked

any data in the grade record.
only by the instructor, is programmed to read or write on request

taker programs. Algorithms in these caretaker programs may
perform any appropriate operation, possibly depending on the
circumstances of invocation, and may even record each access
request in some way in some protected objects. For example,
the protected subsystem shown in Fig. 14 implements the
grade keeping system discussed above. Clearly, any access
constraints that can be specified in an algorithm can be imple-
mented in this fashion. Giving users the ability to construct
protected subsystems out of their own program and data seg-
ments allows users to provide arbitrary controls on sharing.

If programs inside a protected subsystem can invoke pro-
grams in another protected subsystem without compromising
the security of the first subsystem, then we can plug together
multiple protected subsystems to perform a computation. We
also find a way around the borrowed program problem. The
normal domain of a user is one example of a protected sub-
system. The user arranges for programs borrowed from other
users to execute outside of this “home” protected subsystem.
In this way, the borrowed programs can be invoked without
giving them access to all the programs and data of the bor-
rower. If the borrowed program is malicious or malfunctions,
the damage it can do is limited. The lending user could also
encapsulate the lent program complex in a protected sub-
system of its own and thus insulate it from the programs of
the b~rrower.~’

‘5EncapsuIation of a borrowed program in a protected subsystem is
done with a different goal than confmement of a borrowed program
within a compartment. Encapsulation may be uaed to limit the access a

to allow 8 borrowed program to have accem to data, but ensure that
barowed program has to the borrower’s data. Confinement h intended

the program m o t release the information. The two threats from bor-
rowed programs that are countered by encapsulation and conffnement

D. Edwards [sal.
M frequently combined under the name ‘‘Trojan Home,” suggested by

The notion of protected subsystems, then, provides mutual
protection for multiple program complexes cooperating in the
same computation and removes two limitations of facilities
providing simple controlled sharing. It is clear from the d e
scription of protected subsystems that each must operate in
its own domain. Implementing protected subsystems requires
mechanisms that allow the association of more than one
domain with a computation and also requires means for chang-
ing from one protection domain to another as control passes
from one protected subsystem to another. The design must
ensure that one protected subsystem cannot interfere in any
way with the correct operation of another subsystem involved
in the same computation.

We note in passing that the supervisor in most computer sys-
tems is an example of a protected subsystem. If general
facilities are provided for supporting user-constructed p r e
tected subsystems, then these mechanisms can be applied to
protect the supervisor from user programs as well. Thus the
protection mechanisms are protecting their own implementa-
tion. The resulting uniformity is consistent with the design
principle of economy of mechanism.

In order to implement protected subsystems, then, there
must be a way of associating multiple domains with a single
computation. One way would be to use a separate virtual
processor, each with its own domain, for each protected sub-
system, a notion proposed by Dennis and Van Horn [41 I and
discussed by Lampson [301. A computation involving multi-
ple protected subsystems would require multiple cooperating
virtual processors. The invocation of one protected subsystem
by another, and the communication of any response, would be
done using the interprocessor communication facilities of the
system [671. An implementation using multiple virtual pro-
cessors, though conceptually straightforward, tends to be awk-
ward and inefficient in practice. Furthermore, it tends to
obscure important features of the required mechanisms.
Unless there is an inherent reason for the protected subsystems
in a computation to be expressed as asynchronous activities, a
single virtual processor implementation seems more natural.
Such an implementation would require the association of
multiple domains with a single virtual processor, a strategy
proposed by LeClerc (681, [691 and explored in detail by
Lampson [19 1, Schroeder [701, Needham [201, Sturgis [171 ,
Jones [7 1] , and Rotenberg [591 . In this case, communication
among protected subsystems could be via interprocedure call
and return operations.

The essence of changing domains is, in access control list
terms, to change principal identifiers; in capability terms it is
to acquire the set of capabilities of the new domain. In both
cases, it is also essential that the virtual processor begin execu-
tion at some agreed-to starting point in the new domain.

Let us consider first an access control list implementation.
Suppose we extend the possible permissions on a segment, as
recorded in an access controller, to include ENTER permission,
and add one more field to an access controller, the domain
identifier, which is the principal identifier of the domain to be
entered. The meaning of ENTER permission on a segment is
that a virtual processor having only that permission may use
(the first address in) that segment only as the target of a GO
TO or CALL instruction. Further, upon executing a GO TO or
CALL instruction, the processor will automatically pick up the
domain identifier field in the access controller and use it as
the principal identifier in transactions with the memory
system.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1304 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

We now have a controlled domain entry facility. A user
wishing to provide a protected subsystem can do so by setting
the access control lists of all objects that are to be internal
parts of the system to contain one of his own principal identi-
fiers. He also adds to the access control list of the initial
procedure of his subsystem ENTER permission for any other
principals who are allowed to use his protected subsystem.

In a capability system, a similar addition produces protected
subsystems. The permission field of a capability is extended to
include ENTER permission, and when a capability is used as the
target of a GO TO or a CALL instruction, control is passed to
the procedure in the segment pointed to by the capability.
Simultaneous with passing control to the procedure, the
processor switches on the READ permission bit of the capa-
bility, thereby making available to the virtual processor a new
domain-all those objects that can be reached starting from
capabilities found in the procedure.

Two mechanisms introduced earlier can now be seen to be
special cases of the general domain entry. In the initial dis-
cussion of the capability system, we noted that the authentica-
tion system starts a new user by allowing a virtual processor to
enter that user’s domain at a controlled starting point. We
could use the domain entry mechanism to accomplish this
result as follows. A system program is “listening” to all cur-
rently unused terminals or system ports. When a user walks up
to a terminal and attempts to use it, the system program cre-
ates a new virtual processor and has that processor ENTER the
domain named by the prospective user. The entry point
would be to a program, perhaps supplied by the user himself,
which authenticates his identity before doing any other com-
putation. Because a protected subsystem has been used, the
program that monitors the unused terminals does not have
access to the data in the protected subsystem (in contrast with
the system of Fig. 7), a situation in better accord with the
principle of least privilege. Instead, it has an enter capability
for every domain that is intended to be entered from a termi-
nal, but that capability leads only to a program that demands
authentication.

We have sketched only the bare essentials of the mechanism
required to provide domain switching. The full mechanics of a
practical system that implements protected objects and sub-
systems are beyond the scope of this tutorial, but it is useful
to sketch quickly the considerations those mechanisms must
handle.

1) The principle of “separation of privilege” is basic to the
idea that the internal structure of some data objects is acces-
sible t o virtual processor A , but only when the virtual pro-
cessor is executing in program B. If, for example, the protec-
tion system requires possession of two capabilities before it
allows access to the internal contents of some objects, then
the program responsible for maintenance of the objects can
hold one of the capabilities while the user of the program can
hold the other. Morris [721 has described an elegant semantics
for separation of privilege in which the first capability is
known as a seal. In terms of the earlier disCussion of types,
the type field of a protected object contains a seal that is
unique to the protected subsystem; access to the internal
structure of an object can be achieved only by presenting the
original seal capability as well as the capability for the object
itself. This idea apparently was suggested by H. Sturgis. The
HYDRA and CAL systems illustrate two different implemen-
tations of this principle.

2) The switching of protection domains by a virtual pro-
cessor should be carefully coordinated with the mechanisms
that provide for dynamic activation records and static (own)
Tariable storage, since both the activation records and the
static storage of one protection domain must be distinct from
that of another. (Using a multiple virtual processor imple-
mentation provides a neat automatic solution to these
problems.)

3) The passing of arguments between domains must be
carefully controlled to ensure that the called domain will be
able to access its arguments without violating its own protec-
tion intentions. Calls by value represent no special problem,
but other forms of argument reference that require access to
the original argument are harder. One argument that must be
especially controlled is the one that indicates how to return to
the calling domain. Schroeder 1701 explored argument pass-
ing in depth from the access control list point of view, while
Jones [71 I explored the same topic in the capability
framework.

The reader interested in learning about the mechanics of
protected objects and subsystems in detail is referred to the
literature mentioned above and in the Suggestions for Further
Reading. This area is in a state of rapid development, and
several ideas have been tried out experimentally, but there is
not yet much agreement on which mechanisms are funda-
mentaL For this reason, the subject is best explored by case
study.

111. THE STATE OF THE ART

A. Implementations of Protection Mechanisms
Until quite recently, the protection of computer-stored in-

formation has been given relatively low priority by both the
major computer manufacturers and a majority of their custom-
ers. Although research time-sharing systems using base and
bound registers appeared as early as 1960 and Burroughs mar-
keted a descriptor-based system in 1961, those early features
were directed more toward preventing accidents than toward
providing absolute interuser protection. Thus in the design of
the IBM System/360, which appeared in 1964 [73], the only
protection mechanisms were a privileged state and a protection
key scheme that prevented writing in those blocks of memory
allocated to other users. Although the 360 appears to be the
first system in which hardware protection was also applied to
the 1 / 0 channels, the early IBM software used these mecha-
nisms only to the minimum extent necessary to allow accident-
free multiprogramming. Not until 1970 did “fetch protect”
(the ability to prevent one user from reading primary memory
allocated to another user) become a standard feature of the
IBM architecture [74]. Recently, descriptor-based architec-
tures, which can be a basis for the more sophisticated protec-
tion mechanisms described in Section 11, have become common
in commercially marketed systems and in most manufacturers’
plans for forthcoming product lines. Examples of commercially
available descriptor-based systems are the IBM System/370
models that support virtual memory, the Univac (formerly
RCA) System 7, the Honeywell 6180, the Control Data Corpo-
ration Star-100, the Burroughs B5700/6700, the Hitachi
8800, the Digital Equipment Corporation PDP-11/45, and the
Plessey System 250. On the other hand, exploitation of such
features for controlled sharing of information is still the excep-
tion rather than the rule. Users with a need for security find

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1305

that they must improvise or use brute force techniques such as
complete dedication of a system to a single task at a time
[75]. The Department of Defense guide for safeguarding
classified information stored in computers provides a good
example of such brute force techniques [761 .

In the decade between 1964 and 1974, several protection
architectures were implemented as research and development
projects, usually starting with a computer that provided only
a privileged mode, adding minor hardware features and inter-
preting with software the desired protection architecture.
Among these were M.I.T.’s CTSS which, in 196 1, implemented
user authentication with all-or-nothing sharing and, in 1965,
added shared files with permission lists 1121. In 1967, the
ADEPT system of the System Development Corporation im-
plemented in software on an IBM System/360 a model of the
U.S. military security system, complete with clearance levels,
compartments, need-to-know, and centralized authority con-
trol [141. At about the same time, the IBM Cambridge
Scientific Center released an operating system named CP/67,
later marketed under the name VM/370, that used descriptor-
based hardware to implement virtual System/360 computers
using a single System/360 Model 67 [111. In 1969, the Uni-
versity of California (at Berkeley) CAL system implemented a
software-interpreted capability system on a Control Data 6400
computer [171. Also in 1969, the Multics system, a joint
project of M.I.T. and Honeywell, implemented in software and
hardware a complete descriptor-based access control list system
with hierarchical control of authorization on a Honeywell 645
computer system [26], [77]. Based on the plans for Multics,
the Hitachi Central Research Laboratory implemented a sim-
plified descriptor-based system with hardware-implemented
ordered domains (rings of protection) on the HITAC 5020E
computer in 1968 [78]. In 1970, the Berkeley Computer
Corporation also implemented rings of protection in the BCC
500 computer [191. In 1973, a hardware version of the idea
of rings of protection together with automatic argument ad-
dress validation was implemented for Multics in the Honeywell
6 180 [631. At about the same time, the Plessey Corporation
announced a telephone switching computer system, the
Plessey 250 [531, based on a capability architecture.

Current experimentation with new protection architectures
is represented by the CAP system being built at Cambridge
University [20] and the HYDRA system being built at
Carnegie-Mellon University [2 1] . Recent research reports by
Schroeder [701, Rotenberg [59], Spier e l al. [79], and
Redell [54] propose new architectures that appear practical
to implement.

B. Current Research Directions
Experimentation with different protection architectures has

been receiving less attention recently. Instead, the trend has
been to concentrate in the following five areas: 1) certification
of the correctness of protection system designs and implemen-
tations, 2) invulnerability to single faults, 3) consttaints on use
of information after release, 4) encipherment of information
with secret keys, and 5) improved authentication mechanisms.
These five areas are discussed in turn below.

A research problem attracting much attention today is how
to certify the correctness of the design and implementation of
hardware and software protection mechanisms There are
actually several subproblems in this area.

a) One must have a precise model of the protection goals of a

system against which to measure the design and implementa-
tion. When the goal is complete isolation of independent
users, the model is straightforward and the mechanisms of the
virtual machine are relatively easy to match with it. When
controlled sharing of information is desired, however, the
model is much less clear and the attempt to clarify it generates
many unsuspected questions of policy. Even attempts to
model the welldocumented military security system have led
to surprisingly complex formulations and have exposed for-
midable implementation problems [141, [62].

b) Given a precise model of the protection goals of a system
and a working implementation of that system, the next chal-
lenge is to verify somehow that the presented implementation
actually does what it claims. Since protection functions are
usually a kind of negative specification, testing by sample
cases provides almost no information. One proposed approach
uses proofs of correctness to establish formally that a system
is implemented correctly. Most work in this area consists of
attempts to extend methods of proving assertions about pro-
grams to cover the constructs typically encountered in operat-
ing systems [521.

c) Most current systems present the user with an intricate
interface for specifying his protection needs. The result is that
the user has trouble figuring out how to make the specification
and verifying that he requested the right thing. User interfaces
that more closely match the mental models people have of
information protection are needed.

d) In most operating systems, an unreasonably large quan-
tity of “system” software runs without protection constraints.
The reasons are many: fancied higher efficiency, historical ac-
cident, misunderstood design, and inadequate hardware sup-
port. The usual result is that the essential mechanisms that
implement protection are thoroughly tangled with a much
larger body of mechanisms, making certification impossibly
complex. In any case, a minimum set of protected supervisor
functions-a protected kernel-has not yet been established for
a full-scale modem operating system. Groups at M.I.T. [80]
and at Mitre [8 1 I , [821 are working in this area.

Most modern operating systems are vulnerable in their reac-
tion to hardware failures. Failures that cause the system to
misbehave are usually easy to detect and, with experience,
candidates for automatic recovery. Far more serious are
failures that result in an undetected disabling of the protection
mechanisms. Since routine use of the system may not include
attempts to access things that should not be accessible, failures
in access-checking circuitry may go unnoticed indefinitely.
There is a challenging and probably solvable research problem
involved in guaranteeing that protection mechanisms are in-
vulnerable in the face of all single hardware failures. Molho
[83] explored this topic in the IBM System 360/Model 50
computer and made several suggestions for its improvement.
Fabry [841 has described an experimental “complete isola-
tion” system in which all operating system decisions that
could affect protection are duplicated by independent hard-
ware and software.

Another area of research concerns constraining the use to
which information may be put after its release to an executing
program. In Section I, we described such constraints as a
fifth level of desired function. For example, one might wish
to “tag” a file with a notation that any program reading that
file is to be restricted forever after from printing output on
remote terminals located outside the headquarters building.

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

1306 PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

For this restriction to be complete, it should propagate with
all results created by the program and into other files it writes.
Information use restrictions such as these are common in legal
agreements (as in the agreement between a taxpayer and a tax
return preparing service) and the problem is to identify cor-
responding mechanisms for computer systems that could help
enforce (or detect violations of) such agreements. Rotenberg
explored this topic in depth [591 and proposed a “privacy
restriction processor’’ to aid enforcement.

A potentially powerful technique for protecting information
is to encipher it using a key known only to authorized acces-
sors of the information. (Thus encipherment is basically a
ticket-riented system.) One research problem is how to com-
municate the keys to authorized users. If this communication
is done inside the computer system, schemes for protecting
the keys must be devised. Strategies for securing multinode
computer communication networks using encipherment are a
topic of current research; Branstad has summarized the state
of the art [401. Another research problem is development of
encipherment techniques (sometimes called privacy trans-
formations) for random access to data. Most well-understood
enciphering techniques operate sequentially on long bit streams
(as found in point-to-point communications, for example).
Techniques for enciphering and deciphering small, randomly
selected groups of bits such as a single word or byte of a file
have been proposed, but finding simple and fast techniques
that also require much effort to cryptanalyze (that is, with
high work factors) is still a subject for research. A block
enciphering system based on a scheme suggested by Feistel was
developed at the IBM T. J. Watson Research Laboratory by
Smith, Notz, and Osseck [381. One special difficulty in this
area is that research in encipherment encounters the practice
of military classification. Since World War 11, only three
papers with significant contributions have appeared in the open
literature [27], [39], [85] ; other papers have only updated,
reexplained, or rearranged concepts published many years
earlier.

Finally, spurred by the need. for better credit and check-
cashing authentication, considerable research and development
effort is going into better authentication mechanisms. Many
of these strategies are based on attempts to measure some
combination of personal attributes, such as the dynamics of a
handwritten signature or the rhythm of keyboard typing.
Others are directed toward developing machine-readable iden-
tification cards that are hard to duplicate.

Work in progress is not well represented by published litera-
ture. The reader interested in further information on some of
the current research projects mentioned may find useful the
proceedings of two panel sessions at the 1974 National Com-
puter Conference [861, [871, a recent workshop [881, and a
survey paper [89 I .

C. Concluding Remarks
In reviewing the extent to which protection mechanisms are

systematically understood (which is not a large extent) and
the current state of the art, one cannot help but draw a parallel
between current protection inventions and the f i t mass-
produced computers of the 1950’s. At that time, by virtue of
experience and strongly developed intuition, designers had
confidence that the architectures being designed were com-
plete enough to be useful. And it turned out that they were.
Even so, it was quickly established that matching a problem
statement t o the architecture-programming-was a major ef-

fort whose magnitude was quite sensitive to the exact architec-
ture. In a parallel way, matching a set of protection goals to a
particular protection architecture by setting the bits and loca-
tions of access control lists or capabilities or by devising pro-
tected subsystems is a matter of programming the architecture.
Following the parallel, it is not surprising that users of the
current rust crop of protection mechanisms have found them
relatively clumsy to program and not especially well matched
to the users’ image of the problem to be solved, even though
the mechanisms may be sufficient. As in the case of all pro-
gramming systems, it wil l be necessary for protection systems
to be used and analyzed and for their users to propose dif-
ferent, better views of the necessary and sufficient semantics
to support information protection.

ACKNOWLEDGMENT
R. Needham, A. Jones, J. Dennis, J. P. Anderson, B. Lind-

say, L. Rotenberg, B. Lampson, D. Redell, and M. Wilkes care
fully reviewed drafts of the manuscript and offered technical
suggestions. In addition, the preparation of this paper was
aided by discussions with many people including H. Forsdick,
P. Janson, A. Huber, V. Voydock, D. Reed, and R. Fabry.
L. Schroeder ruthlessly edited out surplus jargon and prose
inelegance.

SUGGESTIONS FOR FURTHER READING

The following short bibliography has been selected from the
reference list to direct the reader to the most useful, up-to-
date, and significant materials currently available. Many of
these readings have been collected and reprinted by L. J.
Hoffman in [901. The five bibliographies and collections
(item 8 below) provide access to a vast collection of related
literature.

1) Privacy and the impact of computers [1 I -[31, [911,
[921.

2) Case studies of protection systems [141, [171, [201,
[261, [631, [831, [841.

3) Protected objects and protected subsystems [301, [451,
1541, [591, [701-[721.

4) Protection with encipherment [381-1401, [931, [941.
5) Military security and nondiscretionary controls [821 ,

6) Comprehensive discussions of all aspects of computer

7) Surveys of work in progress [861-[891.
8) Bibliographies and collections on protection and privacy

[%I , [961.

security [61 -[81.

[901, [971-[loo].

REFERENCES
References are presented in order of first citation. The sections in

which each reference b cited appear in parentheses following the refer-
ence. Section SFR b Suggestions for Further Reading.

[11 A. Westin, Privacy and Freedom. New York: Atheneum, 1967.

[2] A. MiUer, Z’Re Amuult on pn’wcy. AM Arbor, Mich.: Univ. of
Mich. Ress, 1971 ; a h New York: Signet, 1972, Paperback

(I-Al, SFR)

W4934. (EA1, SFR)
[31 Dept. of -Health, Education, and Welfare, Records, Computers,

and the Rkhrs of citizens. Cambridge, Mass.: M.I.T. Press,
1973. GA1. SFR)

[4] R. Turn and W. Ware, “princy and security in computer sys-
tems,” Am-. Scienrin, vot 63, pp. 196-203, Mar.-Apr. 1975.

[SI W. Ware. “Security and privacy in computer systems,” in 1967

[6] J. Anderson, “Information security in a multi-user computer
SrCC, AFIPS Cons hoc., vol. 30, pp. 287-290. (I-AI)

environment,” in Adwnces in Computers, vol. 12. New York:
Academic Press, 1973, pp. 1-35. (I-AI. SFR)

(I-A1)

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore. Restrictions apply.

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1307

J. Martin, Security, Accuracy, and Priwcy in Computer S y s
tems. Englewood Cliffs, N.J.: Prentice-Hall, 1973. (I-Al, SFR)
R. Patrick, Security Systems Review Manual. Montvale, N.J.:
AFIPS Press, 1974. (I-Al, SFR)
G. Bender, D. Freeman, and J. Smith, “Function and design of
DOS/360 and TOSl360,” IBM Syst. J . , vol. 6, pp. 2-21, 1967.

R. Hargraves and A. Stephenson, “Design considerations for an
educational timesharing system,” in 1969 SJCC, AFIPS Conf.

R. Meyer and L. Seawight, “A virtual machine time-sharing sys-
tem,” IBM Sysr. J., vol. 9, pp. 199-21 8, 1970. (I-A2, I-B3,

M.I.T. Computation Center, CTSS Programmer’s Guide, 2nd ed.

D. Stone, “PDP-10 system concepts and capabilities,” in PDP-10
Cambridge, Mass.: M.I.T. Press, 1965. (I-A2, 111-A)

Applications in Science, vol. 11. Maynard, Mass: Digital Equip
ment Corp., undated (ca. 1970), pp. 32-55. (I-A2)
C. Weissman,“Security controls in the ADEFT-50 time-sharing
system,” in 1969 FJCC, AFIPS Con$ R o c . , vot 35, pp. 119-

D. Bobrow e t al., “TENEX, a paged time sharing system for the
PDP-10,” Commun. ACM, vol. 15, pp. 135-143, Mar. 1972.

years,” in 1972 SJCC, AFIPS Conf. Roc., vol. 40, pp. 571-583.
F. Corbat6, J. Saltzer, and C. Clingen, “Multics-The first seven

H. Sturgis, “A postmortem for a time sharing system,” Ph.D.
dissertation. Univ. of Calif., Berkeley. 1973. (A h available as

(I-A2)

R O C . , VOI. 34, pp. 657-664. (I-A?)

111-A)

133. (I-A2,II-C5,111-A, III-B, SFR)

(I-A2, 11-C3)

(I-A2)

Xerox Palo’ Alto Res. Center Tech:.Rep. CSL74-1.) (I-A2,

D. Ritchie and K. Thompson, “The UNIX time-sharing system,”

~~~~~ ~ ~ 

1142, 11-E,  111-A, SFR) 

Commun.  ACM, vol. 17; pp. 365-375, July  1974.  (I-A2, II-C3) 

AFIPS  Con$ R o c . ,  vol. 35, pp. 27-38. (I-A2, 11-E,  111-A) 
B. Lampson,  “Dynamic protection  structures,” in 1969 FJCC, 

tions,” in 1972 FJCC,  AFIPS Con$ Roc . ,  vol. 41,  pt. I, pp. 
R. Needham, “Protection systems and protection  implementa- 

W. Wulf et  al., “HYDRA: The kernel of a  multiprocessor operat- 
ing system,” Commun.  ACM, vol. 17, pp. 337-345, June  1974. 

tion of security measures in information systems,” Commun. 
R. Conway, W. Maxwell, and H. Morgan, “On the implementa- 

I. Reed,  “The  application of information  theory  to privacy in 
data banks,”  Rand Corp., Tech. Rep.  R-1282-NSF,  1973. 

tems,” in 1974  NCC, AFIPS Con$ R o c . ,  vol. 43, pp. 994-996. 
D. Hsiao, D. Ken,  and F. Stahl, “Research on data secure sys- 

L. Hoffman  and W. Miller, “Getting  a pemnal  dossier from a 
statistical data  bank,” Datamation, vol. 16, pp. 74-75, May 

I. Saltzer, “Protection and the  control  of  information sharing in 
Multics,” Commun  ACM, vol. 17, pp. 388-402, July  1974. 

P. Baran, “Security,  secrecy, and tamper-free  considerations, ’ 
On Dism‘buted  Communications, no. 9, Rand Corp. Tech. Rep. 

G. Popek, “A principle  of  kernel design,” in 1974  NCC, AFlPS 
Conf. R o c . ,  vol. 43, pp. 977-978. (I-A3) 
D. Hollingsworth,  “Enhancing computer system  security,” Rand 
Corp. Paper P-5064,  1973. (I-A3) 
B. Lampson, “Protection,” in Proc. 5th Princeton Symp.  Infor- 
mation  Science  and Systems (Mar. 1971), pp. 437443.  (Re- 
printed in ACM  Operating  Syst.  Rev., vol. 8,  pp. 18-24, Jan. 

ations,” Commun.  ACM, vol. 2, pp. 13-17, Nov. 1959. (I-B3) 
E. Codd etal . ,  “Multiprogramming Stretch: Feasibility consider- 

W. Lonergan and P. King, “Design of the  B5000 system,” Dzta- 
mation, vol. 7, pp. 28-32, May 1961. (I-B3, I-B5) 

izable third generation  architectures,” Commun  ACM, vol. 17, 
G. Popek and R. Goldberg, ‘‘Formal requirements  for virtual- 

AFIPS  Con5 R o c . ,  vol. 42, pp. 309-318. (LB3) 
R. Goldberg,  “Architecture of virtual machines,” in 1973 N E ,  

G. Purdy, “A high security log-in procedure,” Commun.  ACM, 

A. Evans, W. Kantrowitz, and E. Weiss. “A user authentication 
scheme not requiring  secrecy in the  computer,” Commun. ACM, 

M. Wilkes, Timeahwing  Computer  Systems, 2nd ed. New 
York: American-Elsevier, 1972. (I-B4, I-B5, 11-A) 
J. Smith, W. Notz, and P. Osseck, “An experimental application 
of cryptography to a remotely accessed data system,” in Proc. 
ACM25th  Nat.  Conf., pp. 282-298, 1972.  (I-B4,III-B, SFR) 

571-578.  (I-A2, 11-B3,  11-E,  111-A, SFR) 

(I-A2, 11-B3,  111-A) 

ACM, V O ~ .  15, pp. 21 1-220, Apr. 1972. (I-A2) 

(I-A2) 

(I-A2) 

1970.  (I-A?) 

(I-A3, I-B4, 111-4 SFR) 

RM-3765-PR, 1964. (I-A3, 111-B) 

1974.) (I-Bl, 11-B2,  11-E, SFR) 

pp. 412421,  July 1974. (I-B3) 

V O ~ .  17, pp. 442445,  Aug. 1974.  (EB4) 

VOI. 17, pp. 437-442, Aug. 1974. (I-B4) 

[39] H. Feistel, “Cryptographic  coding  for data bank privacy,” IBM 
Corp. Res. Rep. RC 2827, Mar. 1970. (I-B4,1II-B, SFR) 

[ 401 D. Branstad, “Security  aspects  of computer networks,” in AIAA 
Computer  Network System  Conf.  (Apr. 1973), Paper 73-427. 
(1-M. I-BS. 111-B. SFR) 

[ 41 ] jI E.’ Van Horn, “Programming semantics  for multi- 
programmed computations,” Commun.  ACM, vol. 9, pp. 143- 
155, Mar. 1966. (I-B5, 11-Bl, 11-E) 

[42] J. Dennis, “Segmentation and  the design of multiprogrammed 
computer systems,” J. ACM, vol. 12, pp. 589-602, Oct.  1965. 

[43] R. Daley and J. Dennis, “Virtual  memory, processes, and shar- 
ing in Multics,” Commun.  ACM, vol. 11. DD. 306-312. May 

(I-B5, 11-A) 

I49 1 

~I .. 
1968. (I-BS) 

~, - 

McGraw-Hill, 1970. (11-A) 
R. Watson, Timesharing System Design Concepts New York: 

R. Fabry, “Capability-based addressing,” Commun.  ACM, vol. 

E. Organick, The  Multics  System: An  Exomination of its StruC- 
ture. Cambridge, M a s s :  M.I.T. Press, 1971. (11-A) 

New York:  Academic Press, 1973. (11-A, II-B3) 
W. Ackerman and W. PIummer, “An implementation  of  a  multi- 
processing computer system,” in R o c .  ACM Symp.  Operating 
System Principles (Oct. 1967), Paper D-3.  (11-B1) 
R. Fabry, “Preliminary description of a supervisor for a ma- 

Rep., vol. 18, sec. IB, Univ. of Chicago, Aug. 1968. (11-Bl) 
chine  oriented around capabilities,” Znst. Comput.  Res. Quart. 
J. Iliffe and  J.  Jodeit, “A dynamic  storage  allocation scheme,” 

E. A. Feustel, “On the advantages of tagged architecture,” IEEE 
Comput. J . ,  vol. 5, pp. 200-209,  Oct. 1962. (11-B1) 

Trans. Comput., vol.  (2-22, pp. 644-656, July 1973. (11-B1) 
L. Robinson e t  al., “On attaining reliable software for a secure 
operating  system,” in In?. Con$ Reliable S o f r w e  (Apr. 1975), 

system  250,” in IRIA In?. Workshop  Protection  in  Operating 
D. England, “Capability  concept mechanism and  structure in 

Systems (Aug. 1974), pp. 63-82. (11-B3,  111-A) 
D. Redell, “Naming and protection in extendible  operating 
systems,” Ph.D. dissertation, Univ. of Calif., Berkeley, 1974. 
(Available as M.I.T. Proj. MAC Tech. Rep. TR-140.)  (ILB3, 
111-4 SFR) 
A. Bensoussan, C. Clingen, and R. Daley, “The Multics virtual 
memory:  Concepts and design,” Commun.  ACM, vol. 15, pp. 
308-318, May 1972. (ILB3, 11-C3) 

machine in a time-sharing system,” Roc .  IEEE, vol. 54, pp. 
B. W. Lampson, W.  W. Lichtenberger, and M. W. Pirtle, “A user 

H. Bingham, “Access controls in Burroughs large systems,’’ 
1766-1774, Dec. 1966. (IIC3) 

Privacy  and Security in Computer S y s t e m ,  Nat. Bur. Stand. 
Special Pub. 404. pp. 4 2 4 5 ,  Sept. 1974.  (IIC3) 

secondary  storage,” in 1965  FJCC, AFIPS Conf.  Proc., vol. 27, 
R. Daley and P. Neumann, “A general-purpose file system  for 

sertation, M.I.T., Cambridge, Mass., 1973. (Also available as 
L. Rotenberg, “Making computers keep  secrets,” Ph.D. dis- 

M.I.T. Proj. MAC Tech. Rep. TR-115.) (11-C4, 1145, 11-E, 

in Int. Con$ Reliable  Softnure, Los Angeles, Calif., pp. 285- 
K. Walters e t  al., “Structured specification of a  security  kernel,” 

B. Lampson, “A note on the confmement  problem,” Commun. 

D. Bell and L. LaPadula, “Secure computer systems,” Air Force 
Elec. Syst. Div. Rep. ESD-TR-75278, vola  I, 11, and 111,  Nov. 

M. Schroeder and J. Saltzer, “A hardware  architecture for im- 
plementing protection rings,” Commun.  ACM, vol. 15, pp. 157- 

J .  Fenton, “Memoryless subsystems,” Comput. J . ,  vol. 17, pp. 
143-147, May 1974. ( I I C S )  

Smtc%ured Programming. New York: Academic Press, 1972, 
0. Dah1 and C. Hoare, “Hierarchical program structures,” in 

D. Branstad, ‘‘Privacy and  protection in operating aystems,” 
Computer, vol. 6, pp. 4 3 4 6 ,  Jan. 1973. (11-E) 
P. Brinch-Hansen, “The  nucleus  of  a  multiprogramming  system,” 
Commun.  ACM, vol. 13, pp. 238-250, Apr. 1970. (11-E) 
J .  LeClerc, “Memory structures for interactiw  computen,” 

D. Evans and J .  LeClerc, “Address mapping and  the  control of 
Ph.’D. dissertation, Univ. of Calif., Berkeley, May 1966. 01-E) 

access in an  interactive computer,”  in 196  7  SJCC,  AFIPS Conf. 

M. Schroeder,  “Cooperation  of  mutually suspicious subsystems 
in a computer  utility,” Ph.D. dissertation, M.I.T., Cambridge, 
Mass., 1972. (Also available as M.I.T. Roj. MAC Tech. Rep. 

17, pp. 403412,  July  1974. (11-A, SFR) 

- , Computer  System  Organization:  The BS 700/B6700 Series. 

pp. 267-284. (ILB3, 111-B) 

pt. I, pp. 213-229. (IIC4) 

111-4 111-B, SFR) 

293, Apr. 1975. (11-C5) 

ACM,vol. 16, pp. 613-615, Oct.  1973. (11-C5) 

1973. (11-CS,  111-B) 

170, Mar. 1972. (11-CS,  111-A, SFR) 

pp. 175-220. (11-E) 

ROC. ,  VOI. 30, pp. 23-30. (11-E) 

TR-104.) (11-E,  111-A, SFR) 

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore.  Restrictions apply.



1308 PROCEEDINGS OF THE IEEE, VOL. 63, NO. 9, SEPTEMBER 1975 

[71] A. Jones,  “Protection in programmed systems,” Ph.D. disserta- 

[72] J. Morris, “Protection in programming languages,” Commun. 

[73] G. Amdahl, G. Blaauw, and F. Brooks, “Architecture of the 
IBM System/360,” IBM J.  Res.  Dcvelop., VOI. 8, pp. 87-101, 

[74]  IBM Corp., “System  370/Principles of operation,” IBM Corp. 
Apr. 1964. (111-A) 

[75] R. Bisbey, 11, and G. Popek,  “Encapsulation: An approach to 
Syst. Ref. Lib. GA22-7000-3, 1973. (111-A) 

operating  system  security,” in R o c .  ACM 1974  Annu.  Conf., 

[ 76) Dept. of Defense, Manuol of Techniques curd Procedures f o r  Im- 
plementing,  Deactivating,  Testing,  and Evaluating Secure 
Resource-Sharing  ADP Systems, DOD5200.28-M, Aug. 1972. 

[77] R. Graham, “Protection in an  information processing utility,” 
Commun.  ACM, vol. 11, pp. 365-369, May 1968. (111-A) 

[ 781 S. Motobayashi, T. Masuda, and N. Takahashi, “The Hitac 5020 
time-sharing system,” in Roc. ACM 24th  Not.  Conf., pp.  419- 

[79] M. Spier, T. Hastings, and D. Cutler, “An experimental  imple- 
mentation of the kernel/domain  architecture,” ACM  Operating 
Syst.  Rev., vol. 7, pp. 8-21, Oct.  1973. (111-A) 

[SO]  M.I.T. Proj. MAC, “Computer systems  research,” in Project 
MAC Progress Report XI: July I973  to  June 1974, pp. 155- 
183. (111-B) 

[ S l ]  E. Burke, “Synthesis of a  software  security  system,” in Proc. 
ACM 1974 Annu.  Conf., pp. 648-650. (111-B) 

[82] W. Schiller, “Design of  a  security kernel for the PDP-11/45,” 
Air Force Elec. Syst. Div. Rep. ESD-TR-73-294, Dec. 1973. 

[83] L. Molho, “Hardware aspects  of secure computing,” in 1970 
SJCC,AFIPS  Conf. Proc., vol. 36,  pp. 135-141. (111-B, SFR) 

[84]  R. Fabry,  “Dynamic verification of operating  system decisions,” 
Commun.  ACM, vol. 16, pp.  659-668, Nov. 1973. (111-B, SFR) 

[ 851 C. Shannon,  “Communication  theory  of secrecy systems,” Bell 
Syst.  Tech.  J., vol. 28, pp. 656-715, Oct. 1949. (111-B) 

tion, Carnegie-Mellon Univ., Pittsburgh, Pa., 1973. (11-E, SFR) 

ACM,vol. 16, pp. 15-21,  Jan.  1973. (II-E, SFR) 

pp. 666-675. (111-A) 

(111-A) 

429,  1969. (111-A) 

(IIi-B, SFR) 

[86] S. Lipner, Chm., “A panel mion-Security kernels,” in 1974 
NCC, AFIPS Cons   Roc . ,  vol. 43, pp. 973-980. (111-B, SFR) 

(871 R Mathis, am., “A panel session-Reaearch in data security- 
Policies and projects,” in 1974  NCC, AFIPS Con$ hoc., vol. 43, 

[88] Institut  de Recherche  d’Informatique et d’Automatique (IRIA), 
Int.  Workshop  Protection in Operating  Systems. Rocquencourt, 
France: IRIA, Aug. 1974. (HI-B, SFR) 

[89] J. Saltzer, “Ongoing research and development on information 
protection,” ACM  Opemting  Syst.  Rev., vol. 8, pp. 8-24, July 

[go]  L. Hoffman, Ed., Security curd pn’vocy in Computer  Systems. 

[ 91 ] C. W. Beardsley, “Is your computer insecure?” IEEE S p e c m m ,  

[92]  D. Parker, S. Nycom,  and S. Oura,  “Computer  abuse,” Stanford 

[93] D. Kahn, The  Codebreakers. New York: Mamillan, 1967. 
Res. Inst., Proj. ISU 2501, Nov. 1973.  (SFR) 

(SFR) 
[94] G. Mellen, “Cryptology, computers,  and common sense,” in 

[95]  J. Anderson,  “Computer  security  technology  planning study,” 
1973  NCC,AFIPS  Conf. Roc., vol. 42, pp. 569-579. (SFR) 

Air Force Elec. Syst. Div. Rep. ESD-TR-73-51, Oct.  1972. 
(SFR) 

[ 961 W. Ware e t  al., “Security controls  for  computer systems,” Rand 
Corp. Tech. Rep. R-609, 1970. (Classified confidential.) (SFR) 

[97] R. Anderson and E.  Fa!ylund, “Privacy and  the  computer: An 
annotated bibliography, ACM Comput.  Rev., vol. 13, pp. 551- 
559, Nov. 1972. (SFR) 

[98]  I. Bergart, M. Denicoff, and D. Hsiao, “An annotated  and cross- 
referenced bibliography on computer security and access con- 
trol in computer systems,”  Ohio State Univ., Computer  and 
Information Science Res. Center Rep. OSUCISRC-T072-12, 
1972. (SFR) 

I991 S. Reed and M. Gray,  “Controlled accessibility bibliography,” 
Nat. Bur. Stand. Tech. Note  780,  June  1973.  (SFR) 

[ 1001 J.  Scherf,  “Computer and  data base security:  A comprehensive 
annotated bibliography,” M.I.T. Proj. MAC Tech. Rep. TR-122, 
Jan. 1974.  (SFR) 

pp. 993-999. QII-B, SFR) 

1974. (111-B, SFR) 

Los Angela, Calif.:  Melville Pub. Co., 1973. (SFR) 

V O ~ .  9, pp. 67-78, Jan. 1972.  (SFR) 

The Role of Rain  in  Satellite  Communications 

Abtrrrct-The most fundamental obstacle encountered in design of 
satellite communication systems at frequencies above 10 GHz is attenua- 
tion by rain. ‘zhe m i c r o w e  power radiated toward an earth station, 
being limited by factors such as available  primary power and size of 
antennr on the satellite, is insufticient, with present technology, to 
memnne the large attenuation produced by intense rain cells on the 
earthapace path. me d t a n t  loss of signal makes for unreliable 
trmanission. In what follows, methods of meunrrement of this atten- 
uation at vuious trequencies and a technique ded path diversity that 
substantially improves the reliability are presented. Other degradations 
produced by rain, such as depolarization, inkderence, mcrease in 
earthstation noise, and deterioration of earth-station antenna perfor- 
mance, pe also discussed. 

I 
I. INTRODUCTION 

N EARLY EXPERIMENTS using  microwaves for broad- 
band transmission  via satellite, it was quickly recognized 
that rain influenced  performance of the system. For 

example,  in  the Telstar  experiment [ 11,  in which 4 G H z  

Manuscript received February 28,  1975; revised April 12,  1975. 
The  authors are with Bell Laboratories, Crawford Hill, Holmdel, N.J. 

07733. 

s igna ls  from  the satellite were  received with sensitive maser 
amplifiers [ 21 , it was found  that  the level of  noise increased 
significantly when it was  raining in  the vicinity of the receiving 
station. This increase  stemmed  primarily  from two sources: 
blackbody  radiation  from the  raindrops  in  the  sky [ 31, and 
emission and  reflection from  water  layers  that formed on  the 
radomes used to protect  the earth-station  antennas [4 ] .  It 
was  also  observed that  interfering signals could enter  such 
systems  by way  of scattering  from the  raindrops [ 5 1 . We now 
know  that al l  of these  effects  can be explained  by  theories  of 
electromagnetic wave interaction  with  liquid  water  in  its 
various  forms. All of these  theories  rely  upon  knowledge of 
the basic  microwave properties of liquid  water,  first  studied 
in  depth  by  Saxton [61. Best estimates [61, [71 of the real 
(refractive)  and  imaginary (dissipative) components of the 
refractive  index of water  are  shown  in Fig. 1 for  the wave- 
length  range  1 mm to 10 cm.  The  corresponding  frequency 
scale, 300 to 3 GHz, is shown on  the upper abscissa. The 
curves are  a  typical  lossdispersion pair representing  a reso- 
nance  in the liquid  water at a wavelength of about 1  cm (30 

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore.  Restrictions apply.


