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Invited Paper 

computer-stored informstion from  unauthorized use or modification. 
Abrtmet-This tutorid paper explores the mechanics of protecting 

It concentrates on those architectural structures-whether hardware or 
aoftware-that are necessrry to support  information  protection.  The 
papa develops in three. main section& Section I describes deaired 
functions, design  principles, and examples  of elemmtary protection  and 
authentication mechanismr Any  reader h n i h  with  computers 
show find the T i  section to  be reasonably accessiile.  Section II 
requirea some  famlliuity with d&ptor-b8sed  computer architecture. 
It examines in depth the principles  of modem protection architecturea 
and the relation  between  capability systems and access control list 
systems, and en&  with a brief  analysis  of  protected subsystems and 
protected  objects.  The  reader  who is dismayed  by  either the pre- 
requisites or the level  of  detail in the second  section may wish to skip 
to Section III, which  reviews the state of the art and  current research 
projects  and  provides suggestions for  further read@. 

GLOSSARY 

T HE FOLLOWING glossary provides, for reference, 
brief definitions for several terms as used in  this paper 
in the  context of protecting information in computers. 

Access The  ability to make use  of information 
stored in a computer system. Used fre- 
quently as  a verb, to  the  horror of 
grammarians. 

Access control list A list of principals that are authorized 
to have access to  some object. 

Authenticate  To verify the  identity of a  person (or 
other agent external  to  the  protection 
system) making a  request. 
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Authorize 

Capability 

Certify 

Complete  isolation 

Confinement 

Descriptor 

Discretionary 

Domain 

Encipherment 

Grant 
Hierarchical control 

To grant  a principal access to certain 
information. 
In  a computer system, an  unforgeable 
ticket, which when presented can be 
taken as  incontestable proof that  the 
presenter is authorized to have access 
to  the object named in the  ticket. 
To check the accuracy,  correctness, and 
completeness of a  security or  protection 
mechanism. 
A protection system that separates 
principals into  compartments between 
which no flow of information  or  control 
is possible. 
Allowing a  borrowed program to  have 
access to data, while ensuring that  the 
program cannot release the  information. 
A protected value which is (or leads to) 
the physical address of some protected 
object. 
(In contrast  with nondiscretionary.) 
Controls on access to an  object that 
may be changed by the  creator of the 
object. 
The set  of  objects that  currently may be 
directly accessed by a  principal. 
The  (usually) reversible scrambling of 
data according to a secret transforma- 
tion key, so as to make it safe for trans- 
mission or storage in a physically unpro- 
tected environment. 
To  authorize (s .v . ) .  
Referring to ability to  change authoriza- 
tion, a  scheme in which the record of 
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List-oriented 

Password 

Permission 

Prescript 

Rincipal 

Privacy 

Protection 

Self control 

each authorization is controlled by an- 
other  authorization, resulting in a hier- 
archical tree of authorizations. 
Used to describe a protection system in 
which each protected  object has  a list of 
authorized principals. 
A  secret  character  string used to  au- 
thenticate  the claimed identity of an 
individual. 
A  particular form of allowed access, 
e.g., permission to READ as  contrasted 
with permission to WRITE. 
A  rule that must be followed  before 
access to  an object is permitted,  thereby 
introducing  an  opportunity  for human 
judgment  about  the need for access, so 
that abuse of the access is discouraged. 
The  entity in a computer system to  
which authorizations are granted;  thus 
the unit of accountability in a com- 
puter system. 
The  ability of an  individual (or organiza- 
tion)  to decide  whether,  when,  and to 
whom personal (or organizational) in- 
formation is released. 

Propagation When a  principal, having been autho- 
rized access to some object, in turn 
authorizes access to another principal. 

Protected  object A  data structure whose existence is 
known,  but whose internal organiza- 
tion is not accessible, except  by invok- 
int  the  protected subsystem (q .v . )  
that manages it. 

Protected subsystem  A  collection of procedures  and  data 
objects that is encapsulated in a  domain 
of its own so that  the  internal  structure 
of a data object is accessible only  to  the 
procedures of the  protected subsystem 
and  the procedures may be called only 
at designated domain entry  points. 
1) Security (q.v.) .  2) Used more nar- 
rowly to denote mechanisms and  tech- 
niques that  control  the access of execut- 
ing  programs to  stored  information. 

Protection  group A  principal that may be used by several 
different individuals. 

Revoke To  take away previously authorized 
access from some principal. 

Security With respect to  information processing 
systems, used to denote mechanisms 
and  techniques that  control who may 
use or modify the  computer  or  the in- 
formation stored in it. 
Referring to  ability to change authoriza- 
tion, a  scheme in which each  authoriza- 
tion  contains within  it the specification 
of which principals may change it. 

Ticket-oriented Used to  describe a protection system in 
which each  principal  maintains  a list of 
unforgeable bit patterns, called tickets, 
one  for each  object the principal is 
authorized to have access. 

User Used imprecisely to  refer to  the individ- 
ual who is accountable for some  identi- 
fiable set of activities in a computer 
system. 

I. BASIC PRINCIPLES OF INFORMATION  PROTECTION 

A.  Considerations Surrounding the  Study of Protection 
1 )  General Observations: As computers become better 

understood  and more  economical, every day brings new a p  
plications. Many  of these new applications involve both stor- 
ing information  and simultaneous use by several individuals. 
The key  concern in this paper is multiple use. For  those a p  
plications in which all users should not have identical author- 
ity, some  scheme is needed to  ensure that  the  computer sys- 
tem  implements the desired authority  structure. 

For example, in an  airline seat reservation system,  a reserva- 
tion agent might have authority to  make  reservations  and to  
cancel  reservations for people whose names he can supply. A 
flight boarding  agent might have the  additional  authority  to 
print  out  the list of all passengers who hold reservations on  the 
flights for which he is responsible. The airline might wish to 
withhold from  the reservation agent the  authority to  print out 
a list of reservations, so as to be sure that a  request for a pas- 
senger list from a law enforcement agency is reviewed by  the 
correct level of management. 

The airline example is one of protection of corporate infor- 
mation for  corporate self-protection (or public interest, de- 
pending on one’s view). A  different kind of example is an  on- 
line warehouse inventory  management  system that generates 
reports  about  the  current  status of the inventory. These re- 
ports  not only  represent corporate  information  that must be 
protected  from release outside the  company,  but also may 
indicate the quality of the  job being done by the warehouse 
manager. In order to preserve his personal privacy, it may be 
appropriate t o  restrict the access to such  reports, even within 
the  company,  to  those who have a  legitimate reason to be 
judging the quality of the warehouse manager’s work. 

Many other examples of systems  requiring protection of 
information are encountered every day:  credit  bureau data 
banks; law enforcement  information systems; timesharing 
service bureaus; on-line medical information systems; and 
government social service data processing systems. These 
examples span a wide range of needs for organizational  and 
personal privacy. All have in  common controlled sharing of 
information among  multiple users. All, therefore, require 
some plan to  ensure that  the  computer system helps imple- 
ment  the correct authority  structure. Of course, in some 
applications no special provisions in the  computer system 
are necessary. It may be, for instance, that an  externally 
administered code of ethics or a lack of knowledge about 
computers adequately protects  the stored  information. Al- 
though  there are situations in which the  computer need pro- 
vide no aids to  ensure protection of information,  often  it is 
appropriate to have the  computer enforce  a desired authority 
structure. 

The words “privacy,” “security,” and  “protection” are 
frequently used in connection  with  information-storing sys- 
tems.  Not all authors use these terms in the same way. This 
paper uses definitions  commonly encountered in computer 
science literature. 

The term  “privacy”  denotes  a socially defined  ability of an 
individual (or organization) to  determine  whether,  when,  and 
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to  whom personal (or organizational)  information is to be 
released. 

This paper will not be explicitly  concerned  with  privacy, 
but  instead  with the mechanisms used to help achieve it.’ 

The term  “security”  describes  techniques  that  control  who 
may use or modify the computer or the information  contained 
in it. ’ 

Security  specialists (e.g., Anderson [ 61 ) have found  it  useful 
to place  potential  security  violations  in  three  categories. 

1) Unauthorized  information  release:  an  unauthorized  per- 
son is able to  read  and take advantage of information  stored 
in the computer. This category of concern  sometimes  extends 
to “traffic analysis,” in which the  intruder observes  only the 
patterns of information use and  from  those  patterns can infer 
some  information  content.  It also includes  unauthorized use 
of a  proprietary  program. 

2) Unauthorized  information  modification: an unauthorized 
person is able to  make  changes  in  stored  information-a  form 
of sabotage.  Note that  this  kind of  violation  does  not  require 
that  the  intruder see the  information  he has  changed. 

3)  Unauthorized  denial of use: an  intruder can prevent  an 
authorized  user  from  referring to  or  modifying  information, 
even though  the  intruder may not be able to refer to or mod- 
ify the information. Causing a system  “crash,”  disrupting  a 
scheduling  algorithm, or  firing  a bullet into  a  computer are 
examples  of  denial of use. This is  another  form of sabotage. 

The term  “unauthorized” in the  three categories  listed  above 
means that release,  modification, or denial  of use occurs  con- 
trary to  the desire  of the person  who  controls  the  information, 
possibly even contrary to  the constraints  supposedly  enforced 
by the system.  The biggest complication in a general-purpose 
remoteaccessed  computer  system is that  the  “intruder” in 
these  definitions may be an  otherwise  legitimate user of the 
computer  system. 

Examples of security  techniques  sometimes  applied to com- 
puter  systems  are  the  following: 

1) labeling files with  lists of authorized users, 
2) verifying the  identity of a  prospective user by  demanding 

3) shielding the  computer t o  prevent  interception  and sub 

4) enciphering  information  sent  over  telephone lines, 
5 )  locking the  room  containing  the  computer, 
6 )  controlling who is allowed to make changes to  the com- 

puter system (both  its  hardware  and  software), 
7) using redundant  circuits  or  programmed  cross-checks  that 

maintain  security  in  the  face of hardware  or  software 

8) certifying  that  the  hardware  and  software are  actually 

a password, 

sequent  interpretation of electromagnetic  radiation, 

failures, 

implemented as intended. 

It is apparent  that  a wide range of considerations  are  pertinent 
to  the engineering of security of information.  Historically, the 

be found in [ 11, and  an interesting study of  the impact of technology 
‘A thorough  and scholarly discussion of the concept of privacy may 

on privacy is given in [2].  In 1973, the U.S. Department  of  Health, 
Education, and Welfare published a related study [ 31. A recent paper 
by Turn and Ware [4 ]  discusses the relationship  of the social objective 
of privacy to the security mechaniams of  modern computer systems. 

tems  that handle clacrdfied defense information, and priwcy for systems 
‘W. Ware [ 51 has suggested that  the  term security be used for sy% 

handling  nondefense  information. This suggestion has never really 
taken hold  outside the defense security community,  but  literature 
originating  within that  community  often uses Ware’s defmitions. 

literature of computer  systems has more  narrowly  defined  the 
term protection to  be just those  security  techniques  that  con- 
trol  the access of executing  programs to stored inf~rmat ion .~  
An example of a protection  technique is labeling of computer- 
stored  files  with lists of authorized  users.  Similarly,  the  term 
authentication is used for  those  security  techniques  that verify 
the  identity of a person (or  other  external  agent) making a 
request of a  computer  system. An example of an  authentica- 
tion  technique is demanding a password. This paper  concen- 
trates  on  protection  and  authentication mechanisms,  with 
only  occasional  reference to  the  other equally  necessary se- 
curity mechanisms. One  should  recognize  that  concentration 
on  protection and authentication mechanisms  provides a nar- 
row view of information  security,  and  that  a  narrow view is 
dangerous.  The  objective of a secure  system is to prevent all 
unauthorized use of information,  a negative kind of require- 
ment. It is hard to prove that  this negative  requirement has 
been  achieved, for  one must  demonstrate  that every possible 
threat  has  been  anticipated.  Thus an expansive view  of the 
problem is most  appropriate to  help  ensure that  no gaps a p  
pear in  the  strategy. In  contrast,  a  narrow  concentration  on 
protection mechanisms,  especially  those logically impossible 
to defeat, may lead to  false  confidence  in  the  system as a 
whole.4 

2)  Functional  Levels  of  Information  Protection: Many dif- 
ferent designs have been  proposed  and  mechanisms imple- 
mented  for  protecting  information in computer  systems. One 
reason for  differences  among  protection  schemes is their  dif- 
ferent  functional  properties-the  kinds of access control  that 
can be expressed  naturally  and  enforced. It is convenient to  
divide protection  schemes  according to  their  functional p r o p  
erties. A rough  categorization is the following. 

a) Unprotected  systems: Some systems have no  provision 
for  preventing  a  determined user from having access to every 
piece of information  stored in the system.  Although  these 
systems  are  not  directly of interest  here,  they  are  worth men- 
tioning  since, as  of 1975,  many of the most widely used, com- 
mercially available  batch  data  processing  systems  fall into  this 
category-for  example,  the Disk Operating  System  for  the IBM 
System 370 [ 91. Our  definition of protection, which excludes 
features  usable  only  for  mistake  prevention, is important  here 
since it is common  for  unprotected  systems to  contain  a va- 
riety of mistake-prevention  features.  These may provide  just 
enough  control  that  any  breach of control is likely to be the 
result of a  deliberate  act  rather  than an accident.  Neverthe- 

include mechanisms designed to  limit the consequences of  accidental 
’Some authors have widened the scope of the  term  “protection”  to 

mistakes in programming or in applying programs. With this wider 
definition, even computer systems used by a single person might in- 
clude “protection” mechanisms. The effect of  this broader  defmition 
of “protection” would be to include in our study mechanisms that may 
be deliberately bypassed by the user, on the ba& that  the probability 
of accidental  bypass can be made as smal l  as desired by careful design. 
Such accident-reducing mechanisms are often essential, but  one would 
be ill-advised to apply one to  a situation in which a  systematic attack 
by another user is to be prevented.  Therefore,  we will insist on the 
narrower d e f d i o n .  Protection mechanisms are  very useful in prevent- 
ing mistakes, but mistake-preventing mechanisms that can be delibera- 
tely bypassed have little value in providing protection. Another com- 
mon extension  of  the  term  “protection” is to techniques that ensure 
the reliability  of information storage and computing service despite 
accidental  failure  of  individual components  or programs. In this paper 
we arbitrarily  label those concerns  “reliability” or “integrity,”  although 
it  should be recognized that historically the  study of protection mecha- 

systems. 
nisms is rooted in attempts to  provide reliability in multiprogramming 

‘The broad view, encompassing all the considerations  mentioned 
here and more, is taken in several current  books [ 61 -[ 81. 
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less, it would be a  mistake to claim that  such systems  provide 

b) All-or-nothing systems: These are  systems that provide 
isolation of users, sometimes  moderated  by  total sharing of 
some  pieces of information. If only  isolation is provided, the 
user  of such  a  system  might just as well  be  using his own pri- 
vate computer, as  far  as  protection  and  sharing of information 
are  concerned. More commonly,  such  systems also have public 
libraries to which every user  may have  access. In  some cases 
the public  library  mechanism  may  be  extended to accept user 
contributions,  but still on  the basis that all users have equal 
access. Most of the first  generation of commercial  time- 
sharing  systems  provide  a protection scheme  with  this level of 
function.  Examples  include  the  Dartmouth  Time-sharing 
System  (DTSS) [ 101 and  IBMs  VM/370 system [ 11 I .  There 
are  innumerable  others. 

c)  Controlled sharing:  Significantly more  complex ma- 
chinery is required to control explicitly  who  may access each 
data  item  stored  in the system. For  example,  such a  system 
might provide  each file with  a list of authorized  users  and al- 
low  an  owner to  distinguish several common  patterns of use, 
such  as  reading,  writing, or  executing  the  contents of the file 
as a  program.  Although  conceptually  straightforward,  actual 
implementation is surprisingly  intricate,  and  only  a  few com- 
plete  examples  exist.  These  include M.I.T.’s Compatible 
Time-sharing  System (CTSS) [ 121, Digital Equipment Cor- 
poration’s  DECsystem/ 10 [ 131 , System  Development Cor- 
poration’s Advanced Development Prototype (ADEPT) 
System [ 141,  and Bolt,  Beranek, and Newman’s TENEX 
[ 151 .6 

d) User-programmed sharing controls: A user  may want 
to restrict access to a file in a way not provided in  the  standard 
facilities for controlling sharing. For example,  he may  wish to 
permit access only on weekdays  between  9:00 A M .  and 
4:OO P.M. Possibly, he may  wish to permit access to only  the 
average value  of the  data  in a file. Maybe he wishes to require 
that a file be  modified  only if two users  agree. For  such cases, 
and  a  myriad of others,  a  general  escape is to provide for user- 
defined protected  objects and subsystems. A protected  sub- 
system is a  collection of programs  and data  with the  property 
that  only  the programs  of the subsystem have direct access to 
the  data  (that is, the protected  objects). Access to those 
programs is limited to calling specified entry points.  Thus the 
programs of the subsystem  completely  control the operations 
performed on  the data. By constructing  a  protected subsys- 
tem, a user can  develop  any  programmable  form of access 
control to the objects  he creates.  Only  a  few of the  most ad- 
vanced  system designs  have tried to permit user-specified  pro- 
tected  subsystems.  These  include Honeywell’s  Multics [ 161, 
the University of California’s  CAL system [ 171, Bell Labora- 
tories’ UNIX system [ 181,  the Berkeley Computer  Corpora- 
tion BCC-500 [ 191,  and  two systems  currently  under con- 
struction: the CAP system of Cambridge  University [ 201,  and 
the HYDRA system of  Camegie-Mellon  University [ 2 1 1 .  Ex- 

nally  designed  as unprotected, and  later modified to implement some 
’One can develop  a  spirited argument as to whether systems origi- 

higher  level of protection goal, should be  reclassified or continue to be 
considered  unprotected.  The  argument arises from  skepticism  that one 
can successfully  change the fundamental design decisions  involved. 
Most  large-scale  commercial  batch  processing systems fall into this 
questionable  area. 
‘An easier-to-implement  strategy of providing  shared  catalogs  that 

are accessible  among  groups of users who anticipate the need to share 
was introduced in CTSS  in 1962, and is used today in some commercial 
systems. 

any security.5 
ploring  alternative mechanisms for implementing  protected 
subsystems is a  current  research  topic. A specialized use of 
protected subsystems is the  implementation of protection 
controls based on  data  content.  For example, in a file of 
salaries, one may  wish to permit access to all salaries under 
$15 000. Another example is permitting access to certain 
statistical aggregations of data  but  not to any  individual  data 
item. This area of protection raises questions  about  the 
possibility  of discerning  information  by  statistical  tests  and  by 
examining  indexes,  without ever  having direct access to  the 
data  itself.  Protection based on  content is the subject of a 
variety of recent  or  current research  projects [ 221-[  251 and 
will not be  explored  in  this  tutorial. 

e)  Putting strings on information:  The foregoing three 
levels have been  concerned  with  establishing  conditions for  the 
release of information to  an  executing program. The  fourth 
level of capability is to maintain  some control over the user of 
the  information even after it has been  released. Such control 
is desired, for example,  in releasing income  information to  a 
tax advisor;  constraints  should  prevent him from passing the 
information  on to  a  firm which prepares mailing lists. The 
printed  labels  on classified military  information declaring a 
document to be  “Top  Secret”  are  another  example of a  con- 
straint on information  after  its release to a  person  authorized 
to receive it. One may not  (without risking  severe penalties) 
release such  information to others,  and  the label serves as a 
notice of the restriction.  Computer  systems that implement 
such  strings on information  are  rare  and  the  mechanisms are 
incomplete. For example, the ADEPT system [ 141 keeps 
track of the classification level of all input  data used to  create 
a  file; all output  data are  automatically labeled with the 
highest classification  encountered  during  execution. 

There is a  consideration that  cuts across all levels of func- 
tional  capability: the dynamics of use. This term  refers to 
how  one establishes  and changes the specification of who  may 
access what.  At any of the levels it is relatively easy to envi- 
sion  (and design) systems that statically  express  a  particular 
protection  intent. But the need to change  access authoriza- 
tion dynamically and  the need for such changes to be re- 
quested  by  executing  programs  introduces  much  complexity 
into  protection systems. For a given functional level, most 
existing protection systems  differ  primarily in the way they 
handle  protection  dynamics.  To gain some  insight into  the 
complexity  introduced  by  program-directed changes to access 
authorization,  consider the question  “Is  there  any way that 
O’Hara could access file X?” One should  check to see not 
only if  O’Hara has access to file X, but also whether  or  not 
O’Hara  may  change the specification of file X’s accessibility. 
The  next  step is to see if O’Hara  can  change the specification 
of who may  change the specification of file X’s accessibility, 
etc.  Another  problem of dynamics arises when the owner 
revokes  a user’s  access to a file while that file is being  used. 
Letting  the previously authorized user continue  until  he is 
“finished”  with the  information may not be acceptable, if the 
owner  has  suddenly realized that  the file contains sensitive 
data. On the  other  hand,  immediate withdrawal of authoriza- 
tion may  severely disrupt the user. It should  be  apparent that 
provisions for  the dynamics of  use are at least as important as 
those  for  static specification of protection  intent. 

In  many cases, it is not necessary to meet the  protection 
needs of the person  responsible for  the  information  stored in 
the  computer  entirely  through computer-aided  enforcement. 
External mechanisms such as contracts,  ignorance, or barbed 
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wire fences may provide some of the required  functional 
capability. This discussion,  however, is focused on the in- 
ternal mechanisms. 

3) Design Principles: Whatever the level  of functionality 
provided, the usefulness of a set of protection  mechanisms d e  
pends  upon  the  ability of a system to prevent  security viola- 
tions.  In  practice,  producing  a  system  at  any level  of func- 
tionality  (except level one)  that  actually does  prevent all such 
unauthorized  acts  has  proved to  be extremely  difficult. So- 
phisticated  users of most  systems  are  aware of at  least  one way 
to crash the system,  denying other users authorized access to  
stored  information.  Penetration  exercises involving a large 
number of different  general-purpose  systems all have shown 
that users can construct  programs  that can obtain  unautho- 
rized access to information  stored  within. Even in  systems 
designed and  implemented  with  security as an important ob- 
jective, design and  implementation  flaws  provide  paths  that 
circumvent the  intended access constraints. Design and  con- 
struction  techniques  that  systematically  exclude flaws  are the 
topic of much  research  activity, but  no  complete  method a p  
plicable to  the construction of large general-purpose  systems 
exists  yet. This difficulty is related to  the negative  quality 
of the requirement t o  prevent all unauthorized  actions. 

In the absence of such  methodical  techniques,  experience 
has  provided  some  useful  principles that can guide the design 
and  contribute  to  an  implementation  without  security flaws. 
Here are  eight  examples of design principles that  apply par- 
ticularly to protection mechanisms.’ 

a)  Economy of mechanism: Keep the design  as simple 
and small as possible. This well-known principle  applies to 
any  aspect of a  system,  but  it deserves emphasis for  protec- 
tion  mechanisms  for  this  reason: design and  implementation 
errors  that  result in unwanted access paths will not be noticed 
during norqal use (since  normal use usually  does not  include 
attempts  to exercise  improper access paths). As a  result,  tech- 
niques  such as line-by-be inspection of software  and physic31 
examination of hardware that  implements  protection mecha- 
nisms are  necessary. For  such  techniques to  be  successful, a 
small and  simple design is essential. 

b) Fail-safe defaults: Base access decisions on permission 
rather  than  exclusion. This principle, suggested by E. Glaser 
in 1965,* means that  the  default  situation is lack of  access, 
and  the  protection scheme  identifies  conditions  under which 
access is permitted.  The  alternative, in which mechanisms 
attempt  to identify  conditions  under which access should be 
refused,  presents  the wrong psychological base for  secure sys- 
tem design. A conservative design must be based on arguments 
why objects  should be accessible,  rather  than why they  should 
not.  In  a large system  some  objects will  be inadequately  con- 
sidered, so a  default of lack of permission is safer. A design 
or  implementation  mistake  in  a mechanism that gives explicit 
permission tends to  fail  by refusing  permission, a safe  situa- 

originally published in Communications of the ACM 126, p. 3981. 
‘Deaign principles b), d), f), and h) are revised versions of material 

8 Copyright 1974, Association for Computing Machinery, Inc., re- 
printed by permission. 

ever possible. Many of the seminal  ideas, however, were widely spread 
this paper we have attempted to identify original sources when- 

by  word of mouth or internal memorandum rather than by purnal 
publication, and historical accuracy is sometimes difficult to obtain. 
In addition, some ideas related to protection were originally conceived 
in other contexts. In such cases, we have attempted to credit the per- 
son who f i t  noticed their applicability to protection in computer 
systems, rather than the original inventor. 

tion, since it will be quickly  detected. On the  other  hand,  a 
design or  implementation  mistake in a mechanism that ex- 
plicitly  excludes access tends to  fai l  by allowing access, a 
failure which may  go unnoticed  in  normal use. This principle 
applies both  to  the  outward  appearance of the  protection 
mechanism  and to  its  underlying  implementation. 

c)  Complete  mediation: Every access to every object 
must be checked for  authority. This principle, when system- 
atically  applied, is the primary  underpinning of the  protection 
system.  It  forces  a system-wide view  of access control, which 
in  addition  to  normal  operation  includes  initialization, r e  
covery,  shutdown,  and  maintenance.  It  implies  that  a  fool- 
proof method of identifying  the  source of every request  must 
be devised. It also requires  that  proposals to  gain performance 
by  remembering the  result of an  authority  check be examined 
skeptically. If a change  in authority  occurs,  such remembered 
results  must be systematically  updated. 

d)  Open design: The design should  not be secret [27].  
The  mechanisms  should not  depend  on  the ignorance of  po- 
tential  attackers,  but  rather  on the possession of specific,  more 
easily protected,  keys  or  passwords. This decoupling of pro- 
tection mechanisms  from protection  keys  permits  the mecha- 
nisms to be examined by many reviewers without  concern  that 
the review may itself compromise  the safeguards.  In  addition, 
any  skeptical  user may be allowed to  convince himself that  the 
system  he is about  to use is adequate  for his p ~ r p o s e . ~  Fi- 
nally,  it  is simply not  realistic to  attempt  to maintain  secrecy 
for  any system which receives wide distribution. 

e) Separation of  privilege:  Where feasible, a  protection 
mechanism that  requires  two  keys to  unlock it is more  robust 
and  flexible  than  one  that allows access to  the  presenter of 
only  a single key.  The  relevance of this  observation to  com- 
puter  systems was pointed  out by R. Needham in 1973. The 
reason is that,  once  the mechanism is locked,  the  two  keys can 
be physically  separated  and  distinct  programs,  organizations, 
or  individuals  made  responsible  for  them. From  then  on,  no 
single accident,  deception,  or  breach of trust is sufficient to  
compromise the  protected  information. This principle is often 
used in  bank safe-deposit  boxes. It is also at work in  the d e  
fense  system that  fires  a nuclear  weapon  only if two  different 
people  both give the  correct  command.  In  a  computer sys- 
tem,  separated  keys  apply to any  situation in which two  or 
more  conditions  must be met  before access should  be per- 
mitted.  For  example,  systems providing userextendible pro- 
tected  data  types  usually  depend on separation of privilege for 
their  implementation. 

f )  Least privilege: Every program  and every user of  the 
system  should  operate using the least  set of privileges  neces- 
sary to complete  the  job.  Primarily,  this principle  limits the 
damage that can  result  from  an  accident  or  error. It also r e  
duces  the  pumber of potential  interactions  among privileged 
programs to  the minimum  for  correct  operation, so that unin- 
tentional,  unwanted,  or  improper uses  of  privilege are less 
likely to occur.  Thus, if a  question arises related to  misuse of 
a privilege, the  number of programs that must be audited is 
minimized.  Put  another way, if a mechanism can provide 
“fiiewalls,”  the  principle of least privilege provides a  rationale 

accepted, especially by those accustomed to  dealing with military se- 
9We should note that the principle of open design is not universally 

curity. The notion that the mechanism not depend on ignorance is 
generally accepted, but some would argue that its design should remain 
secret. The reason is that a secret design may have the additional ad- 
vantage of significantly raising the price of penetration, especially the 
risk of detection. 
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for where to install the firewalls. The  military  security  rule of 
“need-to-know” is an  example of this principle. 

g) Least common mechanism: Minimize the  amount of 
mechanism common to more than one user and  depended on 
by all users [ 281. Every shared mechanism (especially one in- 
volving shared variables) represents  a potential  information 
path between users and  must be designed with  great care to be 
sure it does not  unintentionally compromise  security.  Fur- 
ther,  any mechanism serving all users must be certified to  the 
satisfaction of every user, a job presumably  harder than satis- 
fying only  one  or a  few users. For example, given the choice 
of implementing  a new function as a supervisor procedure 
shared by all users or as  a  library  procedure that can be han- 
dled as  though  it were the user’s own, choose the  latter course. 
Then, if one  or a  few users are not satisfied with the level of 
certification of the  function,  they can provide a substitute or 
not use it at all. Either way, they can avoid being harmed by 
a  mistake in it. 

h) Psychological acceptability: It is essential that  the 
human  interface be designed for ease of use, so that users 
routinely  and  automatically  apply  the  protection mechanisms 
correctly. Also, to  the  extent  that  the user’s mental image of 
his protection goals matches the mechanisms he  must use, 
mistakes will be minimized. If he  must  translate his image of 
his protection needs into a radically different  specification 
language, he will make errors. 

Analysts of traditional physical security systems have sug- 
gested two  further design principles which, unfortunately, 
apply  only  imperfectly to computer systems. 

a) Work factor: Compare the cost of circumventing the 
mechanism with the resources of a potential  attacker.  The 
cost of circumventing, commonly known  as the “work fac- 
tor,” in some cases can be easily calculated. For example, 
the  number of experiments needed to  try all possible four- 
letter  alphabetic passwords is 264 = 456 976. If the  potential 
attacker must enter each  experimental password at a  terminal, 
one might  consider  a  four-letter password to  be adequate. On 
the  other  hand, if the  attacker could use a large computer 
capable of trying a million passwords per second, as might be 
the case where industrial espionage or military security is being 
considered,  a four-letter password would be a  minor barrier 
for  a potential  intruder.  The  trouble with the work factor 
principle is that many computer  protection mechanisms are 
not susceptible to  direct  work factor calculation, since defeat- 
ing them by systematic attack may be logically impossible. 
Defeat can be accomplished only by indirect strategies, such 
as waiting for an  accidental  hardware  failure or searching for 
an error in implementation. Reliable estimates of the length 
of such  a wait or search are very difficult to make. 

b) Compromise  recording: It is sometimes suggested that 
mechanisms that reliably record that a  compromise of infor- 
mation has occurred  can be used in place of more  elaborate 
mechanisms that completely  prevent loss. For example, if a 
tactical  plan is known to have been compromised, it may be 
possible to construct a  different one, rendering the compro- 
mised version worthless. An unbreakable  padlock on a flimsy 
file cabinet is an  example of such  a mechanism. Although the 
information  stored inside may be easy to  obtain,  the cabinet 
will inevitably be damaged in  the process and  the  next legiti- 
mate user will detect  the loss. For  another example,  many 
computer systems  record the  date  and  time of the most re- 
cent use of each file. If this record is tamperproof  and re- 

ported to  the owner, it may help discover unauthorized use. 
In computer systems, this  approach is used rarely, since it is 
difficult to guarantee discovery once security is broken. 
Physical damage usually is not involved, and logical damage 
(and internally stored records of tampering) can be undone 
by a clever attacker.” 

As is apparent, these principles do  not represent  absolute 
rules-they serve best as warnings. If some part  of a design 
violates a  principle, the violation is a symptom of potential 
trouble,  and  the design should be carefully reviewed to  be sure 
that  the  trouble has  been accounted  for  or is unimportant. 

4)  Summary of Considerations Surrounding Protection: 
Briefly, then, we may outline our discussion to this point. 
The  application of computers to information handling prob- 
lems produces  a need for a variety of security mechanisms. 
We are focusing on one aspect, computer  protection mecha- 
nisms-the mechanisms that  control access to  information by 
executing programs. At least four levels of  functional goals 
for a protection system can be identified: all-or-nothing sys- 
tems,  controlled sharing, user-programmed sharing controls, 
and putting strings on information. But at all levels, the pro- 
visions for dynamic changes to authorization  for access are  a 
severe complication. 

Since no one knows  how to build a  system without flaws, 
the  alternative is to rely on eight design principles, which tend 
to reduce both  the  number and the seriousness of any flaws: 
Economy of mechanism, fail-safe defaults,  complete media- 
tion,  open design, separation of privilege, least privilege, least 
common mechanism, and psychological acceptability. 

Finally,  some protection designs can be evaluated by com- 
paring the resources of a potential  attacker with the work 
factor required to defeat the system,  and  compromise  record- 
ing may be a  useful  strategy. 

B. Technical  Underpinnings 
I )  The  Development Plan: At this  point we begin a develop- 

ment of the technical basis of information  protection  in mod- 
ern computer systems. There are two ways to approach  the 
subject: from  the  top  down, emphasizing the  abstract con- 
cepts involved, or from  the  bottom  up, identifying insights by 
studying  example  systems. We shall follow the  bottom-up 
approach,  introducing a series of models of systems as they are 
(or could be)  built in real life. 

The  reader  should  understand that on this  point  the authors’ 
judgment differs from  that of some of their colleagues. The 
top-down  approach can be very satisfactory when a  subject is 
coherent  and self-contained, but  for a topic still  containing 
od hoc strategies and competing world views, the  bottom-up 
approach seems safer. 

Our  first  model is of a  multiuser system that completely iso- 
lates  its users from  one  another. We shall then see how the 
logically perfect walls of that system can be lowered in a con- 
trolled way to allow limited sharing of information between 
users. Section I1  of this  paper generalizes the mechanics of 
sharing using two  different models: the capability  system  and 
the access control list system. It  then  extends these two 
models to handle  the  dynamic situation in which authorizations 

sign what  appear to be  compromisable  implementation mom, along 
‘“An interesting suggestion  by Hollingsworth [ 2 9 ]  is to secretly  de- 

with monitors of attempted  exploitation of the apparent errors. The 
monitors  might then provide  early  warning of attempts to violate sya- 
tern security. This suggestion  takes us into the  realm of counterintelli- 
gence,  which M beyond o w  intended scope. 
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can  change under  control of the programs  running  inside the 
system. Further  extensions to  the models  control  the  dy- 
namics. The  fiial  model  (only superficially  explored) is of 
protected  objects  and  protected  subsystems,  which allow arbi- 
trary  modes of sharing that are  unanticipated  by  the  system 
designer.  These models  are  not  intended so much to explain 
the  particular  systems as they  are  to explain the underlying 
concepts of information  protection. 
Our emphasis  throughout  the  development is on direct 

access to information  (for  example, using LOAD and STORE 
instructions)  rather  than  acquiring  information  indirectly  (as 
when calling a data base management  system to request the 
average  value of a  set of numbers  supposedly not  directly 
accessible). Control of such access is the  function of the pro- 
tected  subsystems  developed  near the  end of the paper. Herein 
lies perhaps the chief defect of the  bottom-up  approach, since 
conceptually  there  seems to be no reason to distinguish  direct 
and  indirect access, yet  the detailed  mechanics  are  typically 
quite  different.  The beginnings of  a  top-down  approach based 
on a message model  that avoids  distinguishing between  direct 
and  indirect  information access may  be  found  in  a  paper  by 
Lampson 1301. 

2) The  Essentials o f  Information  Protection: For purposes 
of discussing protection,  the  information  stored in  a  com- 
puter system  is not a single object. When one  is considering 
direct access, the  information is divided into  mutually ex- 
clusive partitions, as specified by  its various  creators.  Each 
partition  contains  a  collection of information, all of which is 
intended to be protected  uniformly.  The  uniformity of pro- 
tection is the same kind of uniformity  that applies to all of the 
diamonds  stored in  the same vault:  any  person  who  has  a  copy 
of the  combination can obtain  any of the diamonds.  Thus the 
collections of information  in  the  partitions  are the funda- 
mental  objects to be protected. 

Conceptually, then,  it is necessary to build  an  impenetrable 
wall around  each  distinct  object  that  warrants  separate  protec- 
tion,  construct  a  door  in  the wall through  which access  can  be 
obtained,  and  post  a  guard  at  the  door to control  its use. Con- 
trol of  use, however,  requires that  the guard  have some way of 
knowing  which users are  authorized to have  access, and  that 
each  user have some reliable way of identifying himself to the 
guard. This  authority check is usually implemented  by having 
the guard  demand  a  match  between  something  he  knows  and 
something  the prospective  user possesses. Both  protection  and 
authentication  mechanisms can be viewed in  terms of this 
general  model. 

Before  extending  this  model, we  pause to consider two con- 
crete  examples, the multiplexing of a single computer system 
among several  users and the  authentication of a user's  claimed 
identity.  These initial examples  are  complete  isolation 
systems-no sharing of information  can  happen.  Later we will 
extend our model of guards  and walls in  the discussion of 
shared  information. 

3) A n  Isolated Virtual  Machine: A typical  computer con- 
sists of a  processor,  a  linearly  addressed  memory  system,  and 
some  collection of input/output devices associated  with the 
processor. It is relatively easy to use a single computer to 
simulate several, each of which is completely  unaware of the 
existence of the  others,  except  that each  runs  more slowly 
than usual. Such  a  simulation is of interest,  since  during  the 
intervals  when  one of the simulated  (commonly called virtua2) 
processors is waiting for  an  input  or  output  operation to finish, 
another virtual processor  may be  able to progress at  its  normal 
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Fig. 1. Use of a  descriptor  register to simulate  multiple virtual ma- 
chines.  Rograrn C is in  control of the processor.  The  privileged state 
bit  has  value OFF, indicating  that program C is a  user  program.  When 
program S is running, the privileged state bit  has  value ON. In this 
(and  later)  figures, lower addresses are  nearer the  bottom of  the 
figure. 

rate.  Thus  a single processor  may be  able to take  the place of 
several. Such  a  scheme is the essence  of a  multiprogramming 
system. 

To allow  each  virtual  processor to be  unaware of the existence 
of the  others, it is  essential that some  isolation  mechanism be 
provided.  One  such  mechanism is a special hardware register 
called a descriptor  register, as in Fig. 1. In this figure, all 
memory  references  by the processor  are  checked  by  an  extra 
piece of hardware that is interposed  in  the  path to the  memory. 
The  descriptor register controls  exactly which part of memory 
is accessible. The  descriptor register contains  two  components: 
a base value and  a bound value. The base is the lowest  num- 
bered address the program  may  use,  and the  bound is the  num- 
ber of locations  beyond  the base that may  be used.' ' We will 
call the value in  the  descriptor register a descriptor, as it 
describes  an  object  (in this case, one  program)  stored  in mem- 
ory. The program  controlling the processor  has fu l l  access to 
everything in  the base-bound  range, by  virtue of possession of 
its  one descriptor. As we go  on, we shall embellish the con- 
cept of a  descriptor:  it is central to most  implementations of 
protection  and of sharing of information.'* 

So far, we  have not provided for  the  dynamics of a  complete 
protection scheme: we have not discussed who  loads  the 
descriptor register. If any  running  program  could  load it with 
any  arbitrary value, there  would  be no  protection.  The in- 

'' In most  implementations,  addresses are also relocated  by  adding to 
them  the value of the base. This  relocation  implies  that  for an address 
A to be legal, it must  tie  in  the  range (0 G A < bound). '' The concepts of  base-and-bound  registers and hardware-interpreted 
descriptors  appeared,  apparently independently,  between  1957 and 
1959 on three  projects with diverse  goals.  At  M.I.T., J. McCarthy sug- 
gested  the  base-and-bound  idea as part of the  memory protection sys- 

veloped the base-and-bound  register as a  mechanism to permit  reliable 
tem necessary to make  time-sharing  feasible. IBM independently de- 

multiprogramming of  the Stretch (7030) computer system [ 311. At 

would provide  direct  support  for  the  naming scope rules of higher  level 
Burroughs, R. Barton  suggested  that  hardware-interpreted  descriptors 

languages  in the E5000 computer system [ 32 1. 
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struction  that  loads  the  descriptor register with  a new descriptor 
must have some special controls-either on  the values it will 
load or  on who  may use it. It is easier to control  who may  use 
the  descriptor,  and a common scheme is to introduce  an  addi- 
tional  bit  in  the  processor  state. This bit is called the privileged 
state  bit.l3 All attempts  to load  the  descriptor register are 
checked against the value of the privileged state  bit;  the 
privileged state  bit  must be ON for  the register to be changed. 
One  program  (named the supervisor-program S in Fig. 1)  runs 
with  the privileged state bit ON, and  controls  the  simulation 
of the virtual  processors for  the  other programs.  All that  is 
needed to make the scheme  complete  is to ensure that  the 
privileged state bit  cannot be changed  by the user programs ex- 
cept,  perhaps, by an  instruction  that simultaneously  transfers 
control to the supervisor program at a  planned  entry  location. 
(In  most  implementations,  the  descriptor register is not used in 
the privileged state.) 

One  might expect  the supervisor program to maintain  a  table 
of values of descriptors, one  for  each  virtual  processor. When 
the privileged state bit is OFF, the  index in  this  table of the 
program  currently  in  control  identifies  exactly  which program- 
and thus which  virtual processor-is accountable  for  the ac- 
tivity of the real  processor. For  protection to be complete,  a 
virtual  processor  must not be able to change arbitrarily the 
values in  the  table of descriptors. If we suppose the  table to 
be  stored inside the supervisor program, it will be  inaccessible 
to  the virtual processors. We have here  an  example of a  com- 
mon  strategy  and  sometime  cause of confusion:  the  protection 
mechanisms not  only  protect  one user from  another, they may 
also protect their own implementation. We shall encounter 
this  strategy again. 

So far ,  this  virtual  processor  implementation  contains  three 
protection  mechanisms that we can  associate with  our abstrac- 
tions. For  the  first,  the  information being  protected is the 
distinct  programs of Fig. 1. The guard is represented  by the 
extra piece of hardware  that  enforces  the descriptor  restric- 
tion.  The  impenetrable wall with  a  door is the hardware that 
forces all references to memory  through  the  descriptor mecha- 
nism. The  authority check on a  request to access memory is 
very simple.  The  requesting  virtual  processor is identified  by 
the base and  bound values in the  descriptor register,  and the 
guard checks that  the  memory  location  to which access  is re- 
quested lies within the indicated  area of memory. 

The  second  mechanism protects  the  contents of the  descrig 
tor register. The wall, door,  and guard are  implemented  in 
hardware, as with the  first mechanism. An executing  program 
requesting to load the  descriptor register is identified  by the 
privileged state  bit. If this  bit is OFF, indicating that  the re- 
quester is a user program, then  the guard  does not allow the 
register to be  loaded. If this bit  is ON,  indicating that  the re- 
quester is the supervisor program, then  the guard does allow it. 

The  third  mechanism  protects  the privileged state  bit. It 
allows an  executing  program  identified  by  the privileged state 
bit being OFF (a user program) to perform  the single operation 
“turn privileged state bit ON and  transfer to the supervisor 
program.” An executing  program  identified  by  the privileged 
state  bit being ON is  allowed to  turn  the bit OFF. This  third 
mechanism is an  embryonic  form of the sophisticated  protec- 
tion  mechanisms  required to implement  protected  subsystems. 
The supervisor program is an  example of a  protected subsys- 
tem, of which  more will  be  said later. 

‘3Als0 called the masterlslave bit, or supenrisor/user bit. 

The supervisor program is part of all three  protection mecha- 
nisms, for  it is responsible for maintaining the integrity of the 
identifications  manifest  in  the  descriptor register and  the 
privileged state bit. If the supervisor does not do  its  job cor- 
rectly,  virtual  processors  could  become labeled with  the wrong 
base and  bound values, or user programs could become labeled 
with  a privileged state  bit  that  is ON. The supervisor protects 
itself from  the user programs  with the same  isolation  hardware 
that separates users,  an example of the  “economy of mecha- 
nism”  design principle. 

With an  appropriately  sophisticated  and  careful supervisor 
program,  we now have an  example of a  system that completely 
isolates its users from  one  another. Similarly isolated  permanent 
storage can  be added to such  a  system by attaching  some long- 
term  storage device  (e.g., magnetic  disk)  and developing a 
similar descriptor  scheme for  its use. Since long-term  storage is 
accessed less frequently  than  primary  memory,  it is common 
to implement  its  descriptor scheme  with the supervisor  pro- 
grams rather  than  hardware,  but  the  principle is the same. 
Data  streams to  input  or  output devices  can be  controlled 
similarly. The  combination of a  virtual  processor,  a  memory 
area, some data streams,  and  an  isolated region of long-term 
storage is known as  a  virtual m a ~ h i n e . ’ ~  

Long-term storage  does,  however,  force us to face one 
further issue. Suppose that  the virtual  machine  communicates 
with  its user through  a  typewriter  terminal. If a new  user  ap- 
proaches  a previously unused  terminal  and  requests to use a 
virtual  machine,  which  virtual  machine  (and,  therefore, which 
set of long-term  stored  information)  should  he  be allowed to 
use? We may solve this  problem  outside the system, by having 
the supervisor permanently associate a single virtual  machine 
and its long-term  storage area with  a single terminal.  Then, for 
example,  padlocks can control access to the terminal.  If, on 
the  other  hand, a  more  flexible  system is desired, the super- 
visor program  must be prepared to associate any  terminal  with 
any  virtual  machine  and,  as  a  result,  must be able to verify the 
identity of the user at a  terminal.  Schemes  for  performing 
this  authentication  are  the  subject of our  next example. 

4 )  Authentication Mechanisms: Our  second  example  is of 
an  authentication  mechanism:  a  system  that verifies a user’s 
claimed identity.  The  mechanics of this  authentication mecha- 
nism differ  from  those of the  protection mechanisms for im- 
plementing  virtual  machines  mainly because not all of the com- 
ponents of the system are under  uniform  physical  control. In 
particular, the user  himself and the  communication  system 
connecting his terminal to  the  computer  are  components  to be 
viewed with  suspicion. Conversely, the user needs to verify 
that  he  is in  communication  with  the  expected  computer sys- 
tem  and the  intended  virtual  machine.  Such  systems  follow 
our  abstract  model of a guard who  demands  a  match  between 
something  he  knows  and  something the requester possesses. 
The  objects being protected  by  the  authentication mechanism 
are the virtual machines. In  this case, however, the requester 
is a  computer  system user rather  than  an  executing  program, 
and because  of the lack of physical control over the user and 
the  communication  system,  the  security of the  computer sys- 
tem  must  depend  on  either  the secrecy or  the unforgeability 
of the user’s identification. 

virtual IBM System/370 computer systems,  complete with  private  stor- 
“For an example,  see IBM System VM/37O [ 1 1  1,  which  provides 

age devices and missing only  a  few hard-to-simulate  features,  such as 
self-modifying  channel  programs.  Popek  and  Goldberg [ 331, [ 341  have 
discussed the general  problem of providing  virtual  machines. 
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In time-sharing systems, the most  common  scheme  depends 
on secrecy. The user begins by typing  the name of the person 
he claims to be, and then  the system  demands that  the user 
type a password, presumably known  only to  that person. 

There  are, of course, many possible elaborations and em- 
bellishments of this basic strategy. In cases where the typing 
of the password may be observed, passwords may be good for 
only  one use, and the user carries a list of passwords, crossing 
each one off the list as he uses it. Passwords may have an ex- 
piration date,  or usage count, to limit  the  length of usefulness 
of a  compromised one. 

The list of acceptable passwords is a piece of information 
that must be carefully  guarded by the system.  In some 
systems, all passwords are passed through  a hard-to-invert 
transformation’’  before being stored, an idea suggested by 
R. Needham [ 37, p. 1291. When the user types  his password, 
the system  transforms it also and compares the transformed 
versions. Since the transform is supposed to be hard to invert 
(even if the transform itself is well known), if the stored 
version of a password is compromised, it may be very difficult 
to determine  what original password is involved. It should be 
noted, however, that “hardness of inversion” is difficult to 
measure. The  attacker of such  a  system  does not need to dis- 
cern the general inversion, only the particular one applying to 
some transformed password he  has available. 

Passwords as a general technique have some notorious de- 
fects. The most often mentioned  defect lies in choice of 
password-if a  person chooses his own password, he may 
choose  something easily guessed by someone else who  knows 
his habits.  In  one recent  study of some 300 self-chosen pass- 
words  on  a  typical time-sharing system,  more than 50 percent 
were found  to be short enough to guess by exhaustion, de- 
rived from  the owner’s name, or something closely associated 
with  the owner, such as his telephone number  or  birth date. 
For  this reason, some systems have programs that generate 
random  sequences of letters  for use as passwords. They may 
even require that all passwords be system-generated and 
changed frequently. On  the  other  hand,  frequently changed 
random sequences of letters are hard to memorize, so such 
systems tend to cause users to make written copies of their 
passwords, inviting compromise.  One  solution to this problem 
is to provide a  generator of “pronounceable”  random pass- 
words based on digraph or higher order frequency  statistics [ 261 
to make memorization easier. 

A  second significant defect is that  the password must be ex- 
posed to be used. In  systems where the terminal is distant 
from  the  computer,  the password must be sent  through some 
communication  system,  during which passage a  wiretapper 
may be able to intercept  it. 

An alternative  approach to secrecy is unforgeability. The 
user is given a key,  or magnetically striped  plastic  card,  or 
some other unique and relatively difficult-to-fabricate object. 
The terminal  has  an input device that examines the object  and 
transmits its unique  identifying  code to the  computer system, 
which treats  the code as a password that need not be kept 
secret. F’roposals have been made for fingerprint  readers and 
dynamic  signature  readers in order to increase the  effort re- 
quired for forgery. 

rrmeter in a high-order  polynomial  calculated in modulo arithmetic, 
I5For  example, Purdy [ 351 suggests using the password as the pa- 

and Evans,  Kantrowitz, and Weis [ 361 suggest a more complex  scheme 
based on multiple functions. 

The primary weakness of such schemes is that  the hard-to- 
fabricate  object, after being examined by the specialized input 
device, is reduced to a  stream of bits to be transmitted to  the 
computer. Unless the terminal,  its  object  reader, and its com- 
munication lines to the  computer are physically secured 
against tampering, it is relatively easy for an intruder to 
modify the terminal to transmit any sequence of bits  he 
chooses. It may be necessary to  make the acceptable bit se- 
quences  a secret after all. On the  other  hand,  the scheme is 
convenient, resists casual misuse, and provides a  conventional 
form of accountability  through the physical objects used as 
keys. 

A  problem common to  both  the password and the unforgeable 
object approach is that  they are “one-way” authentication 
schemes. They authenticate  the user to the  computer system, 
but  not vice versa. An easy way for an intruder to penetrate a 
password system, for example, is to intercept all communica- 
tions to and from  the terminal  and  direct them to another 
computer-one that is under  the interceptor’s  control.  This 
computer can be programmed to  “masquerade,” that is, to act 
just like the system the caller intended to use, up to  the  point 
of requesting him to  type his password. After receiving the 
password, the masquerader gracefully terminates  the com- 
munication  with  some  unsurprising  error message, and  the 
caller may be unaware that  his password has been stolen.  The 
same attack can be used on  the unforgeable object  system 
as well. 

A more  powerful authentication technique  is  sometimes 
used to  protect against masquerading. Suppose that a remote 
terminal is equipped  with  enciphering  circuitry,  such  as the 
LUCIFER  system [ 381, that scrambles all signals from  that 
terminal.  Such devices normally are designed so that  the  exact 
encipherment is determined by the value of a key, known  as 
the encryption or transformation key. For example, the trans- 
formation key may consist of a  sequence of 1000 binary digits 
read from a magnetically striped  plastic card. In order  that a 
recipient of such an  enciphered signal may comprehend it,  he 
must have a  deciphering  circuit primed with an exact  copy of 
the  transformation  key,  or else he  must cryptanalyze  the 
scrambled  stream to  try  to discover the key. The strategy of 
encipherment/decipherment is usually invoked for  the purpose 
of providing communications security on an  otherwise un- 
protected communications system. However, it can simultane- 
ously be used for  authentication, using the following technique, 
first published in the unclassified literature by Feistel [391. 
The user, at a  terminal, begins bypassing the enciphering equip 
ment. He types his name. This name passes, unenciphered, 
through the communication  system to the  computer.  The com- 
puter  looks  up  the name, just as  with the password system. 
Associated with each name,  instead of a secret password, is a 
secret transformation key. The  computer loads this trans- 
formation key into  its enciphering mechanism, turns  it  on, and 
attempts  to communicate  with the user. Meanwhile, the user 
has loaded his copy of the  transformation key into  his en- 
ciphering mechanism and  turned  it  on. Now, if the keys are 
identical,  exchange of some  standard hand-shaking sequence 
will succeed. If they are not identical, the exchange will fail, 
and both  the user and the  computer system will encounter un- 
intelligible streams of bits. If the exchange succeeds, the com- 
puter system is certain of the  identity of the user, and the user 
is certain of the  identity of the  computer.  The secret used for 
authentication-the  transformation key-has not been trans- 
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mitted  through  the  communication system. If communication 
fails (because the user is unauthorized, the system  has  been re- 
placed by  a  masquerader, or  an  error  occurred),  each  party to  
the  transaction  has  immediate warning of a problem.16 

Relatively complex  elaborations of these  various  strategies 
have been  implemented,  differing  both in economics  and  in 
assumptions  about  the  psychology of the prospective user. 
For  example, Branstad [401 explored  in  detail  strategies of 
authentication  in  multinode  computer  networks.  Such elabo- 
rations,  though  fascinating to study  and analyze,  are diversion- 
ary to our main topic of protection mechanisms. 

5 )  Shared Information: The virtual  machines of the earlier 
section were totally  independent, as far as  information ac- 
cessibility was concerned.  Each user might just as well  have 
his own  private  computer  system. With the steadily declining 
costs of computer  manufacture  there  are few technical  reasons 
not  to use a  private  computer. On the  other  hand,  for  many 
applications  some  sharing of information  among users is use- 
ful,  or even essential. For  example,  there may  be  a  library of 
commonly  used, reliable programs. Some users  may create 
new programs that  other users  would like to use. Users may 
wish to be  able to update a common  data base, such as a file of 
airline  seat  reservations or a  collection of programs that imple- 
ment  a  biomedical  statistics  system. In all these cases, virtual 
machines  are  inadequate,  because of the  total  isolation  of  their 
users from  one  another. Before extending  the virtual  machine 
example  any further,  let us return to our  abstract discussion  of 
guards  and walls. 

Implementations of protection  mechanisms that  permit 
sharing fall into  the  two general  categories  described  by 
Wilkes [ 3 7 ] .  

a) “List-oriented”  implementations,  in  which  the guard 
holds  a list of identifiers of authorized users, and  the user 
carries  a  unique  unforgeable  identifier that must  appear  on  the 
guard’s list for access to be permitted. A store clerk  checking 
a list of credit  customers is an  example of a  list-oriented imple- 
mentation  in  practice.  The  individual  might use his driver’s 
license as  a  unique  unforgeable  identifier. 

b) “Ticket-oriented”  implementations, in which the guard 
holds  the  description of a single identifier,  and  each user has  a 
collection of unforgeable  identifiers, or  tickets,” correspond- 
ing to  the  objects to which he  has been  authorized access. A 
locked  door  that  opens with  a  key is probably  the  most com- 
mon  example of a  ticket-oriented  mechanism; the guard is im- 
plemented as the hardware of the  lock, and the matching key 
is the  (presumably) unforgeable  authorizing  identifier. 

Authorization, defined as giving a user  access to some  object, 
is different  in  these  two  schemes. In a  list-oriented  system,  a 
user is  authorized to use  an object  by having his  name placed 

‘6ActualIy, there is still one uncovered  possibility:  a  masquerader 
could exactly record the enciphered bits  in  one  communication, and 
then intercept  a  later communication and  play them back  verbatim. 
(This technique is sometimes called spoofing.) Although  the spoofer 
may  learn  nothing  by  this technique, he  might  succeed  in  thoroughly 

for spoofing is to include  in  each  enciphered  message  something  that is 
confusing the user or the computer system. The  general  countermeasure 

ing this part of the message,  called the authenticator, the  recipient can 
unique, yet predictable,  such as the  current  date  and time. By examin- 

be  certain  that the deciphered  message is  not a  replayed copy of an old 
one. Variations on this technique are analyzed in detail  by  Smith 
e ta l .  [ 381. 

the  tickets. 
‘‘AS shown later,  in  a  computer system, descriptors  can  be  used on 

on  the guard’s list for  that  object.  In a  ticket-oriented  system, 
a user is authorized  by giving him a  ticket  for  the  object. 

We can also note a  crucial  mechanical  difference  between 
the  two  kinds of implementations.  The list-oriented mecha- 
nism requires that  the guard  examine  his list at  the  time access 
is requested,  which  means  that  some  kind of associative search 
must  accompany  the access.  On the  other  hand,  the ticket- 
oriented mechanism  places on  the user the  burden of choosing 
which ticket to present,  a  task  he can combine  with  deciding 
which information to access. The guard  only  need  compare 
the presented  ticket  with his own  expectation  before allowing 
the physical  memory access.  Because  associative matching 
tends to be either  slower or  more costly than simple com- 
parison,  list-oriented  mechanisms  are not  often used in applica- 
tions where traffic is high. On  the  other  hand, ticket-oriented 
mechanisms typically  require  considerable  technology to con- 
trol forgery of tickets  and to control passing tickets  around 
from  one user to another. As a  rule,  most  real  systems  contain 
both  kinds of sharing  implementations-a  list-oriented  system 
at  the  human  interface  and a  ticket-oriented  system  in  the 
underlying  hardware  implementation. This kind of arrange- 
ment is accomplished  by providing, at  the higher level, a list- 
oriented  guardla whose only purpose is to hand out  temporary 
tickets  which the lower level (ticket-oriented)  guards will 
honor.  Some  added  complexity arises from  the need to keep 
authorizations, as represented  in the  two systems,  synchro- 
nized with  each other.  Computer  protection  systems  differ 
mostly  in the  extent  to which the  architecture of the underly- 
ing ticket-oriented  system is visible to  the user. 

Finally,  let us consider the degenerate cases of list- and 
ticket-oriented  systems. In a  list-oriented  system, if each 
guard’s list of authorized users  can contain  only  one  entry, we 
have a  “complete  isolation”  kind of protection  system, in 
which no sharing of information  among users  can take place. 
Similarly,  in  a  ticket-oriented  system, if there  can be only  one 
ticket  for  each  object  in  the  system, we again  have a  “com- 
plete  isolation”  kind of protection  system.  Thus  the  “com- 
plete  isolation”  protection  system turns  out  to be a  particular 
degenerate case  of both  the list-oriented and  the  ticket-oriented 
protection  implementations. These observations  are important 
in  examining real systems,  which usually consist of interacting 
protection  mechanisms,  some of which are  list-oriented,  some 
of which are  ticket-oriented,  and  some of which  provide  com- 
plete  isolation  and  therefore may happen to be  implemented 
as degenerate  examples of either of the  other  two,  depending 
on local  circumstances. 

We should  understand  the relationship of a user to these 
transactions. We are  concerned  with  protection of informa- 
tion  from  programs  that are  executing. The user is the in- 
dividual who assumes accountability  for  the  actions of an 
executing  program.  Inside  the  computer  system,  a  program  is 
executed by a  virtual  processor, so one  or more  virtual proces- 
sors can  be identified  with the activities  directed  by the  user.lg 

“Called an agency by Branstad [40]. The  attendance of delegates at 
the various  sessions of a convention  is frequently  controlled  by an 
agency-upon  presentation of proof of identity,  the agency  issues  a 
badge  that will be honored  by  guards at each  session.  The  agency 
issuing  the  badges is list-oriented,  while the individual  session  guards 
(who ignore the names  printed on the badges) are ticket-oriented. 

l9 The  terms  “process,” “execution  point,” and “task” are sometimes 
used  for this abstraction or very  similar ones. We will  use  the  term 

a  suggestion  by  Wilkes. 
“virtual  processor’’  for its self-evident  operational definition,  following 
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In  a list-oriented  system it is the guard’s business to know 
whose virtual  processor is attempting to make  an access. The 
virtual  processor  has  been  marked  with  an  unforgeable  label 
identifying the user accountable  for its actions, and  the  guard 
inspects  this  label  when  making access decisions. In  a  ticket- 
oriented  system,  however, the guard  cares  only that  a virtual 
processor  present the  appropriate  unforgeable  ticket  when 
attempting an access. The  connection  to  an  accountable  user 
is more  diffuse, since the guard  does not know  or  care  how  the 
virtual  processor  acquired the tickets.  In  either case, we con- 
clude that in addition to  the  information  inside  the im- 
penetrable wall, there  are  two  other things that must be 
protected:  the guard’s authorization  information,  and  the 
association  between  a user and  the  unforgeable  label or set  of 
tickets  associated  with his virtual  processors. 

Since  an  association  with  some user is essential  for  establish- 
ing accountability  for  the  actions of a virtual  processor, it is 
useful to introduce  an  abstraction  for  that  accountability-the 
principal. A principal  is,  by  definition, the  entity accountable 
for the activities of a virtual processor.’’ In the  situations dis- 
cussed so far,  the principal  corresponds to  the user  outside 
the system. However, there  are  situations in which  a  one-to- 
one  correspondence of individuals  with  principals is not ade- 
quate.  For  example,  a user may be accountable for some  very 
valuable  information  and  authorized to use it. On the  other 
hand, on some  occasion  he may  wish to use the  computer  for 
some  purpose  unrelated to  the valuable  information. To pre- 
vent  accidents,  he may wish to  identify himself with  a  different 
principal,  one that does not have access to  the valuable in- 
formation-following the principle of least privilege. In  this 
case there is a need for  two different  principals  corresponding 
to  the same user. 

Similarly,  one can envision a  data base that is to be modified 
only if a  committee agrees. Thus  there  might be an  authorized 
principal that  cannot  be used by any single individual;  all of 
the  committee members  must agree upon  its use simultaneously. 

Because the principal  represents  accountability, we shall see 
later  (in  the  section  on  dynamic  authorization of sharing) that 
authorizing access is done in terms of principals. That is, if 
one wishes a  friend to have access to some  file, the  authorization 
is done by naming  a  principal  only that friend can use. 

For  each  principal we may identify  all  the  objects in the 
system  which  the  principal  has  been  authorized to use. We 
will name that set of objects  the domain of that principal. 

Summarizing,  then,  a  principal is the unforgeable  identifier 
attached to a virtual  processor  in  a  list-oriented  system. When 
a  user  first  approaches the  computer system, that user  must 
identify  the principal to be used.  Some  authentication  mecha- 
nism, such as a  request  for  a  secret  password,  establishes the 
user’s right  to use that principal.  The  authentication  mecha- 
nism itself may be either  list-  or  ticket-oriented  or of the com- 
plete  isolation  type.  Then  a  computation is begun in  which 
all the  virtual  processors of the  computation  are  labeled  with 

“The word  “principal,”  suggested  by  Dennis  and  Van Horn [41], is 
used for  this abstraction  because of its association with the  legal con- 
ceuts of authority.  accountability,  liability, and reswnsibility. The  de- 

the  identifier of that principal,  which is considered  accountable 
for all further  actions of these  virtual  processors.  The  authenti- 
cation  mechanism  has  allowed the virtual processor to  enter 
the domain of that principal. That description  makes  apparent 
the  importance of the  authentication  mechanism.  Clearly,  one 
must  carefully  control the  conditions under  which  a  virtual 
processor  enters  a  domain. 

Finally, we should note  that  in  a ticket-oriented  system 
there is no mechanical need to associate  an  unforgeable  identi- 
fier  with a virtual  processor, since the  tickets  themselves  are 
presumed  unforgeable.  Nevertheless, a collection of tickets 
can be considered to be a  domain,  and  therefore  correspond 
to some  principal, even though  there may  be no obvious  identi- 
fier for  that principal. Thus accountability in ticket-oriented 
systems can be difficult to pinpoint. 

Now  we shall  return to our example  system  and extend  it  to 
include  sharing.  Consider  for  a  moment  the  problem of 
sharing  a  library  program-say,  a  mathematical  function  sub- 
routine. We could place a copy of the  math  routine  in  the 
long-term  storage area of each  virtual  machine that had a use 
for  it.  This  scheme,  although  workable,  has several defects. 
Most obvious, the multiple  copies  require  multiple  storage 
spaces. More subtly,  the  scheme  does  not  respond well to 
changes. If a newer,  better math  routine is written,  upgrading 
the  multiple  copies  requires  effort  proportional to  the number 
of users. These two observations suggest that  one would  like 
to have some  scheme to allow different  users access to  a single 
master copy of the program.  The  storage  space will be smaller 
and the communication of updated versions will be easier. 

In  terms of the  virtual  machine  model of our  earlier  example, 
we can share a single copy of the  math  routine by adding to 
the real  processor  a  second  descriptor  register,  as  in Fig. 2, 
placing the  math  routine somewhere in memory  by itself and 
placing a  descriptor for  it  in  the second  descriptor  register. 
Following the previous strategy, we assume that  the privileged 
state  bit assures that  the supervisor  program is the only  one 
permitted to load  either  descriptor  register.  In  addition,  some 
scheme  must be provided  in  the  architecture of the processor 
to permit  a  choice of which  descriptor  register is to  be used 
for  each  address  generated by the processor. A simple  scheme 
would be to let  the high-order  address  bit  select the descriptor 
register.  Thus, in Fig. 2, all  addresses in the lower half of the 
address range would be interpreted  relative to descriptor 
register 1, and addresses  in the  upper half of the address range 
would be relative to descriptor  register 2. An alternate  scheme, 
suggested by Dennis [421, is to add  explicitly to  the format of 
instruction  words  a  field  that  selects  the  descriptor  register in- 
tended to be used with the address  in that  instruction. The use 
of descriptors  for  sharing  information is intimately  related to 
the addressing  architecture of the processor,  a  relation that can 
cause considerable  confusion.  The  reason why descriptors  are 
of interest  for  sharing  becomes  apparent by comparing  parts a 
and b of Fig. 2. When program A is in control,  it  can  have 
access only to itself and  the  math  routine; similarly,  when 
program E is in  control,  it  can have access only to itself  and 
the  math  routine. Since neither  program has the power to 
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Fig. 2. Sharing of a  math  routine by use of two descriptor  registers. 

(a) Program A in control of processor. (b) Program B in control of 
processor. 

Whether or not  there are actually two processors is less im- 
portant  than  the existence of the conceptually parallel access 
paths implied by Fig. 3. Every virtual processor of the system 
may be viewed as having its own real processor, capable of 
access to  the memory in parallel with  that of every other 
virtual  processor.  There may be an  underlying processor 
multiplexing  facility that distributes  a  few real processors 
among the many  virtual processors, but such  a  multiplexing 
facility is essentially unrelated to protection. Recall that a 
virtual processor is not  permitted  to load its own protection 
descriptor registers. Instead, it must call or  trap  to  the super- 
visor program S which call or  trap causes the privileged state 
bit to go ON and thereby permits the supervisor program to 
control  the  extent of sharing among  virtual processors. The 
processor multiplexing  facility must be prepared to switch the 
entire state of the real processor from  one virtual processor to 
another, including the values of the  protection descriptor 
registers. 
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Fig. 3. Fig. 2 redrawn to show sharing of a  math  routine by two virtual 

processors  simultaneously. 
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Fig. 4. A  descriptor  containing READ and WRITE permission bits. 

Although the basic mechanism to permit information sharing 
is now in place, a  remarkable  variety of implications that fol- 
low from  its  introduction require further mechanisms. These 
implications  include the following. 

1) If virtual processor P1 can overwrite the shared math 
routine,  then  it could  disrupt the work of virtual processor Pz . 

2) The shared math  routine must be careful about making 
modifications to itself and about where in memory  it writes 
temporary  results, since it is to be used by independent com- 
putations, perhaps  simultaneously. 

3) The scheme needs to be expanded and generalized to 
cover the possibility that  more  than  one program or data base 
is t o  be shared. 

4) The supervisor needs to be informed about which princi- 
pals are authorized to use the shared math  routine (unless it 
happens to be completely  public  with no restrictions). 

Let us consider these four implications in order. If the 
shared area of memory is a  procedure, then to avoid the possi- 
bility that virtual processor P1 will maliciously overwrite it, 
we can restrict the  methods of access. Virtual processor PI 
needs to retrieve instructions  from the area of the shared pro- 
cedure,  and may need to  read out  the values of constants em- 
bedded in  the program, but  it has no need to write into  any 
part of the shared procedure. We may accomplish this restric- 
tion  by extending the descriptor registers and the descriptors 
themselves to include nccessing permission, an idea introduced 
for  different reasons in  the original Burroughs B5000 design 
[ 321. For example, we may add two bits, one controlling per- 
mission to  read and the  other permission to write in the stor- 
age area defined by each  descriptor, as in Fig. 4. In virtual 
processor PI of Fig. 3, descriptor  1 would have both per- 
missions granted, while descriptor 2 would permit  only reading, 
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of data  and  execution of  instructions." An alternative 
scheme would  be to attach  the permission bits  directly to  the 
storage  areas  containing the shared program or  data. Such  a 
scheme is less satisfactory because, unlike the  descriptors so 
far  outlined, permission bits  attached to  the  data would  pro- 
vide identical access to all processors that  had a  descriptor. 
Although  identical access for all users of the shared math 
routine of  Figs. 1-3 might be acceptable,  a data base could not 
be set up with several  users  having  permission to read but a 
few  also  having  permission to write. 

The  second  implication of a shared procedure,  mentioned 
before,  is  that  the shared  procedure  must be careful about 
where it  stores  temporary  results, since it may be  used  simul- 
taneously  by several virtual  processors.  In  particular, it should 
avoid modifying  itself. The  enforcement of access  permission 
by  descriptor  bits  further  constrains  the  situation. To prevent 
program A from  writing into  the shared math  routine, we  have 
also prohibited  the shared math  routine  from  writing  into it- 
self, since the descriptors do  not change when,  for  example, 
program A transfers control to the  math routine.?' The  math 
routine will find  that it can read but  not write into itself,  but 
that it can both read and  write into  the area of program A .  
Thus  program A might  allocate  an  area of its  own address 
range for  the  math  routine  to use  as temporary ~ torage .?~  

As for  the  third  implication,  the need for expansion, we 
could generalize our example to permit several distinct  shared 
items merely by increasing the  number of descriptor registers 
and  informing the supervisor  which  shared  objects  should be 
addressable by each  virtual  processor. However, there  are  two 
substantially  different  forms of this  generalization-capability 
systems  and access control list systems.  In  terms of the earlier 
discussion, capability  systems  are  ticket-oriented, while  access 
control list systems are list-oriented. Most real systems use a 
combination of these two  forms,  the capability  system for 
speed and  an access control list system for  the  human  inter- 
face.  Before we can pursue  these  generalizations,  and the 
fourth implication,  authorization,  more  groundwork  must 
be laid. 

In  Section 11, the development of protection  continues  with 
a series of successively more  sophisticated models. The initial 
model, of a  capability  system,  explores  the use  of encapsulated 
but  copyable  descriptors as tickets to provide  a  flexible 
authorization  scheme. In this  context we establish the general 
rule that  communication  external to the  computer  must pre- 
cede dynamic  authorization of sharing. The  limitations of 

example, permission to call as a subroutine, to use indirect addressing, 
"In some  systems, more  bits are used, separately  controlling, for 

or to store certain specialized processor registers. Such  an  extension  of 
the idea of  separately  controllable permissions is not important to  the 
present discussion. 

"Actually, this constraint has been  introduced by our assumption 
that descriptors must be statically associated with a virtual processor. 
With the  addition of protected subsystems, described later,  this con- 
straint is relaxed. 

"Of course, program A cannot  allocate  any  arbitrary set of addresses 
for  this purpose. The  specifications of the  math  routine would have to 
include  details about  what addresses it is programmed to use relative to 
the first  descriptor; program A must  expect  those addresses to be the 

wishes to use the shared math  routine, will have to reserve the same 
ones used when  it calls the math routine. Similarly, program E ,  if it 

addresses in its own area. Most systems that permit shared procedures 
use additional hardware to allow more relaxed communication conven- 
tions. For example,  a third descriptor register can be reserved to point 
to  an area used exclusively as a stack for  communication  and temporary 
storage by shared  procedures; each virtual processor would have a dis- 
tinct stack. Similar consideration  must be given to static (own) veri- 
ables. See, for example, Daley and Dennis 1431. 

copyable  descriptors-primarily  lack of accountability  for  their 
use-lead to analysis  of revocation  and the observation that 
revocation  requires  indirection. That observation  in turn leads 
to the  model of access control lists  embedded  in  indirect  ob- 
jects so as to provide  detailed control of authorization. 

The use  of  access control lists  leads to a discussion of con- 
trolling changes to authorizations,  there being at least two 
models of control  methods which  differ  in  their  susceptibility 
to abuse.  Additional control of authorization  changes is 
needed  when releasing sensitive data to a  borrowed  program, 
and  this  additional  control  implies  a  nonintuitive  constraint  on 
where data may  be  written  by the  borrowed program.  Finally, 
Section I1 explores  the  concept of implementing  arbitrary ab- 
stractions,  such  as  extended  types of objects, as programs  in 
separate  domains. 

11. DESCRIPTOR-BASED PROTECTION SYSTEMS 
A. Separation of Addressing and   P r~ tec t ion?~  

As mentioned  earlier,  descriptors have been introduced  here 
for the purpose of protecting  information,  although  they  are 
also used in  some  systems to organize addressing and storage 
allocation. For  the  present,  it is useful to separate  such  or- 
ganizational uses of descriptors  from  their  protective  use  by 
requiring that all memory accesses go  through  two levels of 
descriptors.  In  many  implementations, the two levels are 
actually merged into  one, and the same  descriptors serve both 
organizational  and protection purposes. 

Conceptually, we may achieve this separation  by enlarging 
the  function of the memory  system to provide  uniquely  identi- 
fied (and  thus  distinctly  addressed)  storage areas, commonly 
known as  segments. For each  segment  there  must  be  a dis- 
tinct addressing  descriptor,  and we  will consider the set of 
addressing descriptors to be  part of the  memory system,  as in 
Fig. 5.  Every collection of data  items  worthy of a  distinct 
name,  distinct  scope of existence, or distinct  protection would 
be placed in a  different  segment,  and  the  memory  system itself 
would be  addressed  with twocomponent addresses: a  unique 
segment  identifier (to be used as  a key by the memory  system 
to look up  the  appropriate  descriptor) and an offset  address 
that indicates  which  part of the segment is to be  read or 
written. All users of the  memory system  would use the same 
addressing descriptors,  and  these  descriptors  would have no 
permission bits-only  a base and  a  bound value. This scheme 
is functionally similar to that used in the Burroughs  B5700/ 
6700 or Honeywell Multics systems  in that  it provides  a  struc- 
tured addressing space  with  an opportunity  for  systematic  and 
automatic storage  allocation. 

The  unique  identifiers used to label  segments are an  essential 
cornerstone of this  organization.  They will be used by  the 
protection system to identify segments, so they must never be 
reused.  One way of implementing  unique  identifiers is to pro- 
vide a  hardware counter register that  operates as a  clock 

24 7- axtension of the discussion of  information protection  beyond 
multiple  descriptors  requires an understanding of desmiptor-based 
addressing techniques.  Although  subsection 11-A contains a brief re- 
view, the reader not previously familiar with descriptor-based architec- 
ture may fmd  the  treatment  too sketchy. References [37]  and 1441 
provide tutorial  treatments  of descriptor-based addressing, while the 
papers by Dennis [42]  and Fabry [45]  provide in-depth  technical dik 
cussion. A  broad discussion and case studies are given in [46]  and 
147). The  reader who f m L  this section moving too rapidly b invited 
to skip to Section 111. which  requires  fewer prerequisites. 

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore.  Restrictions apply.



SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1291 

mop relottng u n i q u e  
identifiers to 
oddressing 
descriptors \ 

\ 
h segmented  memory 

processor 

mcI3 R W unique  segment id unique  segment id base  bound 

protectlon descrlptor - 
addressing 

\ 
descriptoi 

v 
map entry 

Fig. 5. An organization  separating addressing from  protection  descrip 
tors, using a  segmented  memory.  The  address passed from  the pro- 
cessor t o  the memory  consists  of two parts:  a  unique  segment  identi- 
fier and an  offset. Program A is in control. (Compare with Fig. 
2(a).) In later figures the  map containing addressing descriptors will 
be  omitted for  clarity, but it is assumed to be present in the actual 
implementation of  a  segmented  memory. 

(counting,  say,  microseconds)  and is large enough never to 
overflow in the  lifetime of the  memory system. The value of 
the clock register at  the  time a  segment  is  created can be used 
as that segment's  unique  identifier.?' As long as the  memory 
system  remembers  anything,  the  time base of the clock register 
must not be changed. 

The  processor of Fig. 5 contains, as part of its  state,  protec- 
tion  descriptors similar to those of Figs. 1  and 2, with the 
addition of permissions,  as  in Fig. 4. All references by  the 
processor  are  constrained to be to segments  described  by  these 
protection descriptors.  The protection  descriptor itself no 
longer  contains  a base and  bound; instead the descriptor  con- 
tains  the  unique segment  identifier that  the  memory system 
requires as the first  part of its  two-part address for accessing 
that segment.  Thus, from  the  point of  view  of a  program 
stored  in  one of the segments of memory,  this  system is indis- 
tinguishable from  that of Fig. 2. Note in Fig. 5 that  although 
addressing descriptors  exist  for the segments  containing pro- 
gram B and  program S (the supervisor), they are not accessible 
to the processor since it has no protection descriptors for 
those two segments. It is useful to distinguish between the 
system  address space,  consisting of all the segments in the 
memory  system,  and the processor  address  space, consisting  of 
those  segments for which  protection  descriptors  exist. Since 
the addressing descriptors  are  part of the  .memory system, 
which is shared  by all processors, the system  address  space is 

system,  it may be a good idea to guard against the possibility that an 
"Since the unique identifier will be relied upon by the  protection 

accidental  hardware  error in manipulating  a  unique  identifier  results co- 
incidentally in access to  the wrong segment. One form of guard is to 
encode  the clock reading in some larger number of bits, using a  multiple- 

and to have the memory  system  check the coding of each  unique  identi- 
error  detecting  code, to use the encoded value as the unique  identifier, 

fier presented to it. 

universal. Any single processor  address space, on  the  other 
hand, is defined by the particular protection descriptors as- 
sociated  with the processor and  therefore is local. If the 
supervisor switches control of a  real  processor from  one virtual 
processor to another,  it would  first  reload the  protection de- 
scriptors; the processor  address space thus is different for dif- 
ferent  users, while the system  address space remains the same 
for all users. 

With the addressing function separated  architecturally  from 
the  protection  function, we may  now  examine the  two gen- 
eralized forms of protection  systems:  the  capability  system 
and  the access control list system. 

B. The  Capability System 
1 )  The  Concept of Capabilities: The  simplest  generalization 

is the capability  system suggested  by Dennis  and Van Horn [ 4 1 ] , 
and  first  partially  implemented on  an M.I.T.  PDP-1 computer 
1481 .26 There  are  many  different  detailed  implementations 
for capability  systems; we illustrate  with  a  specific  example. 
Recall that we introduced  the privileged state  bit to control 
who may load values into  the  protection descriptor registers. 
Another way to maintain the  integrity of these registers would 
be to allow any  program to load the  protection  descriptor 
registers, but  only  from  locations  in  memory  that previously 
have been  certified to contain  acceptable  protection  descriptor 
values. 

Suppose, for example, that every location  in  memory were 
tagged with  an  extra  bit. If the  bit  is OFF, the  word in that 
location is an  ordinary  data  or  instruction  word. If the  bit  is 
ON, the word is taken to contain  a value suitable  for  loading 
into a  protection  descriptor register. The  instruction  that 
loads  the  protection  descriptor register will operate  only if its 
operand  address  leads it  to a  location  in  memory  that has the 
tag  bit ON. To  complete  the scheme, we should  provide an in- 
struction  that  stores  the  contents of a  protection  descriptor 
register in  memory  and  turns  the  corresponding  tag  bit ON, 
and we must  arrange that all other  store  instructions  set  the 
tag bit OFF in  any  memory  location they write  into.  This 
gives us two  kinds of objects  stored  in  the  memory:  protection 
descriptor values and  ordinary  data values. There  are also two 
sets of instructions,  separate registers for manipulating the  two 
kinds of objects,  and,  effectively,  a wall that prevents values 
that  are subject to general computational  manipulation  from 
ever  being  used as protection descriptor values. This kind of 
scheme is a  particular  example of what is called a tagged 
architecture.?' 

This  particular tagged architecture is known as a capability 
system, one  that  lets  the user  place protection  descriptor 
values in  memory addresses that  are convenient to him. A 
memory word that  contains a protection  descriptor value (in 
our simple tagged system,  one that has its tag  bit ON) is known 
as a capability. 

16A detailed analysis of the resulting architectural  implications was 
made by Fabry and Yngve 1491.  The  capability  system is a close reh- 
tive of the codeword  organization of the Rice Research Computer [ S O ] ,  
but Dennis and Van Horn seem to be the  fvst  to have noticed the appli- 
cation of that organization to interuser  protection. 

"Tagged architectures were  invented for a variety of  applications 
other  than protection. The Burroughs B5700 and  its ancestors,  and the 

multibit tags to separately  identify instructions, descriptors, and several 
Rice Research Computer [ S O ] ,  are  examples  of  architectures that use 

different types of data. AU examples of tagged architecture seem to 
trace  back to suggestions made by J .  Iliffe. A thorough discussion of 
the concept is given by Feustel 1511. 
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Fig. 6. A simple  capability system. Program A is in  control of the 
proce%sor. Note that  there is no way  for the processor t o  address 
Smith’s  catalog or data  base Y. On the  other  hand,  data  base X 
could be accessed by loading  capability C, into a protection descrip- 
tor  register.  Capability C, is loadable  because it is stored  in a seg- 
ment that  can be reached  from a capability  already  loaded in protec- 
tion descriptor  register 2. Note also that the former function of the 
privileged state bit  has  been  accomplished  by  protecting  the  capa- 
bilities.  The  privileged state bit also has  other uses and will be  re- 
introduced  later. 

To see how  capabilities can be  used to generalize  our basic 
sharing  strategy,  suppose that each processor  has several (say, 
four)  protection  descriptor registers,  and that  program A is in 
control of a  processor, as in Fig. 6. (For clarity, this and 
future  fiiures  omit  the addressing descriptors of the  segmented 
memory.)  The  first  two  protection  descriptor  registers have 
already  been loaded with values permitting access to two seg- 
ments,  program A and  a  segment we have labeled “Catalog for 
Doe.”  In our  example,  this  latter segment  contains  two loca- 
tions  with tags indicating  that  they are capabilities, C1 and C2. 
Program A may  direct the  processor to load  the capability at 
location C2 into  one of the  protection  descriptor registers, and 
then  the processor may  address  the shared math  routine. 
Similarly,  either  program A or  the  shared  math  routine may 
direct the  loading of the  capability  at  location C1 into  a  pro- 
tection  descriptor  register,  after which the processor may 
address  the  segment  labeled  “Private  Data Base X.” By a 
similar chain of reasoning,  another processor starting  with a 
capability  for  the segment  labeled  “Catalog for  Smith” can 
address  both  the  shared  math  routine and the segment  “Private 
Data Base Y.” 

We can now  arrange  for  any desired static  pattern of sharing 
of segments. For  example,  for  each  user, we can provide  one 
segment for use as a  catalog  and place in that  catalog  a capa- 
bility for every segment  he is authorized to use. Each capa- 
bility  contains  separate  read  and  write permission bits, so that 
some  users  may receive capabilities that  permit reading and 
writing  some segment, while others receive capabilities per- 
mitting  only  reading  from  that  same  segment.  The  catalog seg- 
ment  actually might contain pairs: a character-string  name for 
some  segment  and the  associated  capability  that  permits 
addressing  that segment. A user  would  create a new segment 
by calling the supervisor. The  supervisor by convention  might 
set  some  protection  descriptor to contain  a  capability for the 

new segment.28  The user could then file his new segment by 
storing  this new capability  in his catalog  along  with  a  name  for 
the  segment.  Thus we have an  example of a  primitive  but 
usable filing system to go  with  the basic protection ~tructure .~’  

To complete  the  picture, we should provide a tie to some 
authentication mechanism.  Suppose that  the  system  responds 
to an authentication  request by creating  a new virtual  processor 
and  starting it  executing  in  a  supervisor  program  that  initially 
has  a  capability  for  a user identification  table, as in Fig. 7. If a 
user identifies himself  as “Doe”  and  supplies  a  password,  the 
supervisor program can look  up his identification  in the user 
identification  table.  It can verify the password  and  load into  a 
protection  descriptor  register  the  capability  for  the  catalog 
associated  with Doe’s entry in the user identification  table. 
Next,  it would clear the  remaining  capability  registers,  destroy- 
ing the capability for  the user identification  table,  and start 
running  some  program in Doe’s directory, say program A .  
Program A can extend  its  addressability to any  segment for 
which a  capability  exists in Doe’s catalog.  Formally,  after 
verifying the claimed identity of the user, the  authentication 
system  has allowed the virtual  processor to  enter Doe’s do- 
main, starting  in  procedure A .  

By providing  for  authentication we have actually  tied  to- 
gether  two  protection  systems: 1) an authentication  system 
that  controls access of users to named  catalog  capabilities,  and 
2) the general capability  system  that  controls access of the 
holder of a  catalog  capability to  other  objects  stored in the 
system. 

The  authentication  system associates the newly  created 
virtual  processor  with  the  principal  accountable  for  its  future 
activities.  Once  the  virtual  processor is started,  however,  the 
character-string  identifier  “Doe” is no  longer  used;  the associ- 
ated  catalog  capability is sufficient.  The  replacement of the 
character-string  form of the  principal identifier is possible be- 
cause the full range of accessible objects  for this user has al- 
ready  been  opened  up to him by virtue of his acquisition of 
his catalog  capability.  The  catalog  capability  becomes, in 
effect,  the  principal identifier. On the  other  hand,  some loss 
of accountability  has  occurred.  It  is  no longer quite so easy, 
by examining  the  registers of a  running  virtual  processor, to 
establish  who  is  accountable for  its activity. This lack of ac- 
countability will  have to be repaired  in  order to allow the 
virtual processor to negotiate  the  acquisition of new capabilities. 

With this  example of a  capability  system,  a  catalog is not  a 
special object. It is merely any  segment  in  which any program 
chooses to store  capabilities that are, by virtue of their tags, 
protected  unforgeable  objects. If in Fig. 7, program A ,  running 
under Doe’s control, creates a new object, it may choose to 
place the new capability  in  segment X in a  position  where  it 
can easily  be found  later. In  such  a case, segment X has be- 
come, in effect,  another catalog. To establish the full range of 
objects  that Doe may  address, it is necessary to examine  not 
only  the  initial  catalog  segment,  whose  capability is contained 

loading a protection descriptor  register with a capability  for the new 
la The construction of  a capability  for a newly created object requires 

segment. This  loading can be accomplished  either  by giving the super- 
visor  program the privilege of loading protection descriptor  registers 
from  untagged locations, or else by making  segment  creation a hardware- 
supported function that  includes  loading  the protection deacriptor 
r e p e r .  

’Our  model assumed that we are using a  “one-level”  storage  syatem 
that serves both as a repository  for  permanent  storage  and M the target 
for addrum referencea of the processor.  The  primitive  filing system 
bued on capabilltle8 is tho only one needed to remember  objecta 
perunently. 
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Fig. 7. A  capability system with provision for authentication. 

in the user identification  table,  but also all segments it con- 
tains  capabilities for, and all segments they  contain capabilities 
for,  etc. 

The scheme described so far admits  any desired static arrange- 
ment of accessing authorization.  It could be used in an appli- 
cation  for which  a simple, rarely changed, authorization  pattern 
is useful. For example,  a  company data base management 
system might have a relatively static  authorization  pattern, 
which changes only when major revisions are made to  the 
style of maintaining the  data base. We have not  yet provided, 
however, for  the possibility that Doe, upon creating  a new 
segment, might wish to authorize access to  it  for  Smith. Such 
a need would probably arise if the  computer system is used for 
the creation  and  editing of interoffice  memoranda  and letters 
or  for constructing programs. We shall call this  operation 
dynamic  authorization. The dynamic authorization of sharing 
is a topic  that must be examined quite carefully, since it ex- 
poses several subtle issues that are fundamental t o  sharing 
and protection. 

2) The  Dynamic  Authorization o f  Sharing: One might  pro- 
pose to  handle  dynamic authorization very simply by arrang- 
ing that Doe have a  capability to write into Smith’s catalog. 
Then Doe could store a copy of the capability for  the new seg- 
ment in Smith’s catalog. But this  approach has  a defect. 
Allowing Doe to  have a  capability to write into Smith’s catalog 
would enable Doe to overwrite  and destroy all of Smith’s 
capabilities. The inverse strategy of  giving Smith a  capability 
to  read Doe’s catalog would give Smith accesi to all of  Doe’s 
segments. A more  “secure”  approach to the problem is needed. 
To develop this  approach, we wiU consider a clumsy strategy 
with squaralaw  growth, and then refine it. 

If the possibility of sharing had been anticipated,  both Doe 
and Smith might initially have had  a  capability allowing read- 
ing and  writing  a communication segment used only to  pass 
messages and  capabilities between Doe  and Smith. Doe’s pro- 
gram deposits  the capability for his newly created  object in the 

communication segment for Smith, and Smith’s program can 
pick it  up  and use it  or catalog it  at Smith’s convenience. But 
that description oversimplifies one step. Both Doe’s and 
Smith’s programs somehow have to  locate  the capability for 
the common  communication segment. How do  they  know 
what to look  for? Consider the case  of the  sender, Doe’s pro- 
gram, f is t .  Presumably it  looks  in some trusted catalog for 
the name “Smith” and  finds the capability for  the communica- 
tion segment next  to Smith’s name. But how does Doe’s pro- 
gram know to look  for  the name “Smith”? The character-string 
name may be embedded  in  the program by Doe or  he may 
type  it  into his program as  it  runs, but  either way one thing  is 
crucial-that there be a secure path from Doe, who is authoriz- 
ing the passing  of the capability, to  the program, which is 
carrying it  out. Next, we should ask, where does Doe find out 
the character-string name “Smith” so that he  could type  it in 
or embed it in his program? Presumably, he learns Smith’s 
name via some path outside  the  computer. Perhaps  Smith 
shouts it  down the hall to him,” The  method of communica- 
tion is not  important,  but  the fact of the communication is. 
For dynamic  authorization  of sharing within  a  computer,  there 
must  be  some  previous  communication  from  the  recipient  to 
the  sender,  external  to  the  computer  system. Further, this re- 
verse external communication path must be sufficiently secure 
that  the sender is certain of the system-cataloged name of the 
intended  recipient. That name is, by definition, the identifier 
of the recipient’s principal within the  computer system. Thus 
the sender can be sure that  only programs run under  the ac- 
countability of that principal will have access to his new object. 

An analogous chain of reasoning applies to Smith’s program 
as the recipient of the capability  for the new object. Smith 
must leam  from Doe some piece of information sufficient that 
he can instruct his program to look  in  the correct communica- 
tion segment for  the capability which Doe is sending. Again, 

”Imagery inrpired by Lampson [ 30 1.  
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Doe’s principal  identifier  should  be the name used in Smith’s 
catalog of communication  segments, so Smith can be  certain 
that  only some  program run  under Doe’s accountability  could 
possibly  have sent  the  capability.  In  summary,  here is a  com- 
plete  protocol  for  dynamically  authorizing  sharing of a new 
object. 

Sender’s  part: 
1) Sender  learns receiver’s principal  identifier via a  com- 
munication  path  outside the system. 
2) Sender  transmits receiver’s principal  identifier to 
some  program  running inside the system  under the ac- 
countability of the sender. 
3) Sender’s program uses receiver’s principal  identifier 
to ensure that  only virtual  processors  operating  under 
the accountability of the receiver  will be able to obtain 
the capability being transmitted. 

1) Receiver learns sender’s principal  identifier, via a 
communication  path  outside  the  system. 
2) Receiver transmits sender’s principal  identifier to 
some  program  running inside the system  under the ac- 
countability of the receiver. 
3) Receiver’s program uses the sender’s principal  identi- 
fier to ensure that  only a  virtual  processor  operating 
under  the  accountability of the sender  could have sent 
the capability being  received. 

This protocol  provides  protection for  the  authorization 
changing  mechanism (copying of a  capability)  by  requiring an 
authority check  (comparison of a  principal  identifier found 
inside the system  with  authorization  information  transmitted 
from  outside).  Although  the analysis may seem somewhat 
strained, it is important because it always  applies,  even though 
parts of it may be implicit  or  hidden. We have described the 
protocol  in  terms of a  capability  system, but  the same protocol 
also applies  in access control list systems. 

Our analysis  of the  dynamics of authorizing  sharing  has  been 
in terms of private  communication  segments  between every 
pair of users, a  strategy  which would lead,  with N users, to 
some fl communication segments. To avoid this square-law 
growth,  one  might  prefer to use some  scheme that dynamically 
constructs  the  communication  paths also, such as having 
special hardware  or  a  protected  subsystem  that  implements  a 
single “mailbox  segment” for each user to receive  messages 
and capabilities  sent by all other users. Of course, the mecha- 
nism that  implements  the mailbox  segments  must  be  a  pro- 
tected,  reliable  mechanism,  since it must  infallibly  determine 
the principal  identifier of the  sender of a message and  label the 
message with  that identifier, so the receiver  can reliably carry 
out his step 3) of the  protocol. Similarly, as the sender’s 
agency, it must be able to associate the recipient’s principal 
identifier  with the recipient’s mailbox, so that  the sender’s 
intent in his step 3) of the  protocol is carried out correctly. 

3) Revocation and Control of Propagation: The capability 
system  has as its chief virtues its  inherent efficiency,  simplicity, 
and  flexibility.  Efficiency  comes  from the ease of testing the 
validity of a  proposed access:  if the accessor  can present  a 
capability, the  request is valid. The simplicity  comes  from the 
natural  correspondence  between the mechanical  properties of 
capabilities and  the  semantic  properties of addressing vari- 
ables. The semantics for dynamically changing addressability 
that  are  part of such modem languages as PL/I  and Algol 68 
fit naturally  into a  capability-based  framework  by using 
capabilities as address (pointer) variables. Straightforward 

Receiver’s  part: 

additions to  the capability  system  allow it gracefully to 
implement languages with  dynamic-type  extension [ 2 1 ] . Flexi- 
bility  comes from  the defining property of a  capability sys- 
tem:  the user  may decide  which of his addresses are to con- 
tain  capabilities.  The user can  develop  a  data structure  with  an 
arbitrary  pattern of access authorizations to his liking. 

On the  other  hand,  there  are several potential  problems  with 
the capability  system  as we  have sketched  it so far. If Doe  has 
a change  of heart-he  suddenly realizes that  there is confi- 
dential  information  in  the  segment  he  permitted  Smith to 
read-there is no way that  he can disable the  copy of the capa- 
bility that  Smith now has  stored away in  some unknown loca- 
tion. Unless  we provide  additional  control, his only  recourse 
is to destroy  the original segment,  an  action which may  be 
disruptive to  other users, still  trusted,  who also  have copies  of 
the  capability.  Thus revocation of  access is a  problem. 

A second,  related  property of a  capability  system is that 
Smith  may  now  make  copies of the capability  and  distribute 
them  to  other users, without  the permission or even the 
knowledge of Doe.  While in some cases, the  ability of a re- 
cipient to pass  access authorization  along  is  exactly  what  the 
original grantor  intended,  in  others it is  not. We have not pro- 
vided for  any  control of propagation. 

Finally,  the  only possible  way in which  Doe  could  make  a 
list of all users who  currently can reach his segment would be 
by  searching every  segment in  the system for copies of the 
necessary capability. That search  would  be  only the beginning, 
since  there  may  be  many paths  by which users could  reach 
those  capability copies.  Every such  path  must be found, a 
task that may  involve a  fair amount of computation  and  that 
also completely bypasses the  protection mechanisms. Thus 
review of access is a  problem.31 

To help  counter these  problems,  constraints on  the use  of 
capabilities have been  proposed or  implemented in  some sys- 
tems. For example,  a  bit  added to a  capability (the copy bit) 
may be  used to indicate  whether or  not  the capability  may be 
stored  in  a  segment. If one user gives another user access to a 
capability  with the  copy  bit OFF, then  the second user could 
not make  copies of the capability  he  has  borrowed. Propaga- 
tion would  be  prevented, at  the price of lost  flexibility. 

Alternatively,  some  segments  (perhaps  one  per  user)  may  be 
designated as capability-holding segments,  and  only  those seg- 
ments may  be targets of the  instructions  that  load  and  store 
descriptor registers. This scheme  may  reduce  drastically the 
effort involved in auditing  and  make  revocation possible,  since 
only  capability-holding  segments  need be examined.  (The 
CAP system [ 201 and  the Plessey 250 [53]  are organized in 
approximately this way, and  the Burroughs  B5000  family re- 
stricts  descriptor  storage to the virtual  processor  stack and a 
single table of outbound references [ 471 .) In systems that 
make  a programmer-visible distinction  between  short-term 
processor-addressable memory (addressed by LOAD and STORE 
instructions)  and  long-term  storage  (addressed  by GET and 
PUT subroutines), it is possible to restrict  capabilities so that 

31A fourth  problem, not directly  related to protection, is the 
“garbage collection” or “lost object” problem. If all copies of  some 

become inaccessible to everyone,  but the fact of  its inaccessibility is 
capability are overwritten, the object  that  capability  describes would 

hard to discover,  and it may  be  hard to recover the space it occupies. 

systematic in his use of capabilities  and  remember to destroy  the  object 
The  simplest solution is to  insist  that the creator of an object be 

before  discarding the last  capability copy. Since  most  computer oper- 
ating systems provide for systematic resource accounting, this  simple 
strategy is usually  adequate. See, for example, Robinson etui .  1521. 
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they may  be  stored only  in processor-addressable memory. 
This restriction  not only  reduces the  effort required for  audit- 
ing, but also limits the lifetime of a  capability to that of a 
virtual  processor. When the system shuts  down,  the  only 
memory of the system is in long-term  storage  and  all capabili- 
ties vanish.  Of course, the  next  time  the system starts  up, 
newly created  virtual  processors  need  some way (such  as ap- 
peal to an access control list system,  described in  the  next sub- 
section) to acquire the capabilities they need. 

A third  approach is to associate  a depth  counter with  each 
protection  descriptor register. The  depth  counter initially 
would have the value, say, of one, placed there by the super- 
visor. Whenever a  program  loads  a  descriptor register from a 
place in memory,  that  descriptor register receives a depth 
count  that is one greater than  the  depth  count of the descrip- 
tor register that  contained  the capability that  permitted  the 
loading. Any attempt  to increase  a depth  count  beyond,  say, 
three,  would  constitute  an  error,  and  the  processor would 
fault.  In  this way, the  depth  counters limit the  length of the 
chain by  which a  capability  may  propagate. Again, this  form 
of constraint  reduces  the  effort of auditing,  since  one  must 
trace  chains  back only a  fixed number of steps to get  a list of 
all potential accessors. (The M.I.T.  CTSS  used a  software 
version of this  scheme,  with  a  depth limit of two.) 

To gain more precise control of revocation, Redell [54] has 
proposed that  the basic capability  mechanism  be  extended to 
include  the possibility of forcing  a  capability to specify its 
target  indirectly  through  a  second  location  before  reaching  the 
actual  object of interest.  This  second  location would  be an 
independently  addressable  recognizable  object,  and  anyone 
with  an  appropriate  capability  for  it  could  destroy the indirect 
object, revoking  access to anyone else who  had  been given a 
capability for  that  indirect  object. By constructing  a  separate 
indirect  object  for each  different  principal  he  shared an object 
with,  the  owner of the  object could  maintain  the ability to re- 
voke  access independently  for each principal. The  indirect ob- 
jects would be  implemented  within  the  memory-mapping 
hardware (e.g., the addressing  descriptors of Fig. 5) both to 
allow  high-speed  bypassing if frequent  multiple  indirections oc- 
cur  and also to allow the user of a  capability to be  ignorant of 
the  existence of the i n d i r e ~ t i o n . ~ ~  Redell's indirect  objects  are 
closely related to the access controllers of the access control 
list system,  described in  the  next subsection. While  providing 
a  systematic  revocation  strategy (if their user develops  a  pro- 
tocol  for systematically using them),  the  indirect  objects pro- 
vide only slight help  for  the  problems of propagation  and 
auditing. 

The basic trouble being encountered is that an authorization- 
a  kind of binding-takes  place  any  time  a  capability is copied. 
Unless an  indirect  object is created for  the  copy,  there is no 
provision for reversing this binding. The  ability to make  a 
further  copy  (and  potentially a new authorization) is coupled to 
possession of a  capability  and is not  independently controllable. 
Restrictions  on  the  ability to copy, while helping to limit the 
number  or  kind of authorizations, also hamper  the  simplicity, 
flexibility,  and  uniformity of capabilities  as addresses. In par- 
ticular,  capabilities  are especially useful  as  a way of com- 
municating  exactly the necessary arguments  from  one pro- 

"In  early  plans for the HYDRA system 121 ], revocation was to be 

separately controlling penniadon to w them that way. This strategy, 
provided by allowing capabilities to be  used as indirect addresses  and by 

in contrast to Redell's, makes the fact of indirection known to the user 
and is also not as susceptible to speedup tricks. 

cedure to another.  In  this way, they encourage wide  use of 
procedures,  a  cornerstone of good  programming  practice. Re- 
strictions on copyability,  then,  inhibit  their  usefulness  in  the 
context of procedure calls, and that  runs  counter  to  the goal 
of providing base-level facilities that encourage  good program- 
ming practice.  This  dilemma  seems to present an opportunity 
for research.  At the present  level of understanding, the  most 
effective way of preserving some of the 'useful properties of 
capabilities is to limit  their  free  copyability to the  bottom- 
most  implementation  layer of a computer  system, where the 
lifetime  and  scope of the bindings can  be controlled.  The 
authorizations  implemented  by  the  capability  system  are  then 
systematically  maintained as an image of some higher level 
authorization  description, usually some  kind of an access con- 
trol list system,  which  provides for direct  and continuous con- 
trol of all permission  binding^.^' 

C. The  Access  Control  List  System 
I )  Access  Controllers: The usual strategy  for providing  re- 

versibility of bindings is to control when they occur-typically 
by delaying them  until  the last possible moment.  The access 
control list system  provides  exactly  such  a  delay  by  inserting 
an extra  authorization  check  at  the  latest possible point. 
Where the capability  system was  basically a  ticket-oriented 
strategy, the access control list  system is a list-oriented 
strategy. Again, there  are  many possible mechanizations,  and 
we must  choose  one for illustration. For ease of discussion, 
we will describe  a mechanism implemented  completely  in 
hardware  (perhaps by microprogramming),  although,  histori- 
cally, access control list systems have been  implemented  partly 
with  interpretive  software.  Our  initial  model will impose the 
extra  authorization  check  on every memory  reference, an  ap- 
proach  that is unlikely  in  practice but simpler to describe. 
Later we will show  how to couple an access control list system 
to a  capability  system,  a more  typical  realization  that  reduces 
the  number of extra  checks. 

The system of Fig. 5 identified protection  descriptors  as  a 
processor  mechanism  and addressing descriptors  as  a  memory 
mechanism. Suppose  that  the  memory mechanism  is further 
augmented as follows. Whenever a user requests that a seg- 
ment be created,  the  memory  system will actually  allocate two 
linked  storage areas. One of the storage  areas will be used to 
store  the  data of the segment as usual, and  the second will be 
treated  as  a special kind of object, which we will call an access 
Controller. An  access controller  contains  two  pieces of in- 
formation:  an addressing descriptor  for  the associated segment 
and  an access control list, as in Fig. 8. An  addressing descrip 
tor  for  the access controller itself is assigned a  unique  identifier 
and placed in the map used by the  memory system to locate 
objects. The access controller is to be  used as  a  kind of in- 
direct  address, as in Fig. 9. In  order to access a  segment, the 
processor must  supply  the  unique identifier of that segment's 
access controller.  Since  the access controller is protected, 
however,  there is no longer  any  need for these  unique  identi- 
fiers to be protected.  The  former  protection descriptor registers 
can  be replaced  with unprotected pointer  registers, which  can 
be loaded  from  any  addressable  location  with  arbitrary  bit 

"For example, in the Multics system [ 551, capabilities are recognized 

segments, and the supervisor domain never  gives out copies of capabili- 
by  the  hardware only if they are  placed in special capability-holding 

with each access control list a thread leading to every copy it makes of 
ties for those segments to other domains. The supervisor also Ilssociates 

a capability, so that revocation is possible. 
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addressing 
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Fig. 8. Conceptual model of an access controller. When a virtual  pro- 
cessor attempts to refer to the segment associated with the access 
controller, the memory system looks up the principal identifier in 
the access control list part.  If found, the permissions associated with 
that entry of the access control list, together with the addressing 
descriptor, are used to complete the access. 
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Fig. 9. A revision of Fig. 5, with the addition of an access controller 
as an indirect address to be used on all references by the processor to 
the memory. Since the access controller contains permission bits, 
they no longer need appear  in the processor registers, which have 
been renamed “pointer” registers. Note that the privileged state bit 
of the processor has been replaced with a principal identifier register. 

patterns.  (In  terms of  IBM System 370 and  Honeywell Multics, 
the  pointer registers contain segment  numbers from  a universal 
address space. The  segment  numbers lead to  the  segment 
addressing descriptors  stored  in  the access controller.) Of 
course,  only  bit  patterns  corresponding  to  the  unique  identifier 
of some segment’s access controller will work. A data refer- 
ence by the  processor  proceeds  in  the following steps,  keyed 
to Fig. 9. 

1)  The program encounters an instruction  that would  write 
in the segment described by  pointer register 3 at offset k. 

2) The  processor uses the  unique identifier found in pointer 
register. 3 to address access controller ACI. The  processor  at 
the same time  presents to  the memory  system  the user’s princi- 
pal identifier, a request to write,  and the  offset k. 

3) The  memory  system  searches  the access control list in 
AC, to see if this user’s principal  identifier is recorded  there. 

4) If the  principal  identifier is found,  the  memory  system 
examines  the  permission  bits associated with  that  entry  of  the 
access control list to see if writing  is  permitted. 

5 )  If writing  is  permitted,  the addressing descriptor of  seg- 
ment X, stored  in ACI, and  the original offset k are used to 
generate  a  write  request inside the  memory  system. 

We need  one  more  mechanism to make  this  system  work. 
The  set of processor registers  must be augmented  with  a new 
protected register that can contain  the  identifier of the princi- 
pal currently  accountable  for  the  activity of the virtual proces- 
sor, as shown in Fig. 9. (Without  that change, one  could  not 
implement  the  second  and  third  steps.) 

For  example, we may have an organization  like  that of 
Fig. 10,  which  implements  essentially the same pattern of 
sharing as did the  capability  system of Fig. 6. The crucial  dif- 
ference  between  these  two figures is that, in Fig. 10, all refer- 
ences to  data are made  indirectly via access controllers. Over- 
all, the  organization  differs in several ways  from the  pure capa- 
bility  system  described  before. 

1)  The decision to allow access to segment X has known, 
auditable  consequences. Doe cannot  make  a  copy of the 
addressing  descriptor of segment X since he  does  not have di- 
rect access to  it, eliminating  propagation of direct access. The 
pointer  to X’s access controller itself may be freely  copied  and 
passed to anyone,  but every use  of the  pointer  must be  via the 
access controller,  which  prevents access  by unauthorized 

2) The access control list directly  implements  the sender’s 
third  step  of  the  dynamic sharing protocol-verifying  that  the 
requester is authorized to use the object.  In the  capability 
system,  verification was done  once to decide if the first 
capability  copy  should be made;  after  that,  further  copying 
was unrestricted.  The access control list, on  the  other  hand, 
is consulted on every access. 

3) Revocation of  access has become manageable. A change 
to an access control list  removing a name  immediately pre- 
cludes all future  attempts  by  that user to use that  segment. 

4) The  question of “who  may access this  segment?” a p  
parently is answered  directly by examining  the access control 
list in the access controller  for  the segment. The qualifier 
“apparently”  applies because we have not  yet  postulated  any 
mechanism for  controlling  who  may  modify access control 
lists. 

5 )  AU unnecessary association  between  data  organization 
and  authorization has been  broken.  For  example,  although  a 
catalog  may be considered to “belong” to  a particular  user, the 
segments  appearing  in  that catalog can have different access 
control lists.  It  follows that  the  grouping of segments  for 
naming, searching, and archiving purposes  cag  be  independent 

“We should note that nothing prevents a program  running  under an 
authorized principal from copying the data of segment X into some 
other segment where other principals  might be authorized to read it. 

away” any form of access permission, for example, by writing into the 
In general, a program  running  under an authorized principal  may  “give 

segment whenever it receives a message from an unauthorized accom- 
plice. Partly because of this possibility, the importance of direct ac- 
countability of each principal~has been emphasized. 
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Fig.  10. A protection  system using access controllers  containing acceas control lists. In this  system, every segment has a single corresponding 
access controller  with  its own unique  identifier  for  addressing  purposes;  pointer  registers always contain  the  unique  identifiers of  access con- 
trollers.  Program A is in control  of  the processor,  and it has  already  acquired a pointer  to  the  library catalog. Since the access control list in 
the access controller for the  library catalog  contains Doe’s name, the processor can use the catalog to find  the  pointer for the shared math 
routine.  Since his name also appears  in  the access control list of the  math  routine,  the processor will then be able to use the  shared  math 
routine. 

of any  desired  grouping  for protection purposes. Thus, in 
Fig. 10,  a  library  catalog has been  introduced. 

It is also apparent  that  implementation,  especially  direct 
hardware  implementation, of the access control list system 
could be quite an undertaking. We will later  consider  some 
strategies to simplify  implementation  with  minimum  com- 
promise of functions,  but first it will be helpful to  introduce 
one  more  functional  property-protection  groups. 

2) Protection  Groups: Cases often arise  where it would be 
inconvenient to  list by name every individual  who is to have 
access to  a  particular  segment,  either  because  the  list would 
be awkwardly  long or because  the  list  would change frequently. 
To handle this situation,  most access control  list  systems 
implement  factoring  into protection  groups, which are  princi- 
pals that  may be used by more  than  one  user. If the name of a 
protection  group  appears  in an access control list, all users  who 
are  members of that  protection  group are to  be permitted 
access to  that segment. 

Methods of implementation of protection  groups vary widely. 
A simple way to  add them  to  the  model of Figs. 9 and 10 is to 
extend  the  “principal  holding” register of the processor so 
that  it  can  hold  two  (or  more) principal  identifiers  at  once, 
one  for  a  personal  principal  identifier  and  one  for  each  protec- 
tion  group of which the user is a  member. Fig. 10 shows  this 
extension in dashed lines. In  addition, we upgrade  the access 
control  list  checker so that  it searches for a  match  between 
any of the  principal  identifiers  and  any  entries of the access 
control list.”  Finally,  who is allowed to use  those  principals 

35 If there is more  than  one  match, and the  multiple access control list 
entries  specify  different access permissions, some  resolution  strategy is 
needed. For example, the INCLUSIVE- of the individually  specified 
access ~ ~ I ~ S S ~ O M  might be granted. 

that  represent  protection  group  identifiers  must also be  con- 
trolled  systematically. 

We might  imagine that  for  each  protection  group  there  is  a 
protection  group  list,  that is, a  list of the personal  principal 
identifiers of all users  authorized to use the  protection group’s 
principal  identifier. (This list is an example of an accm con- 
trol  list  that is protecting  an  object-a  principal  identifier- 
other  than  a segment.) When a  user logs in, he  can  specify  the 
set of principal  identifiers  he  proposes to  use. His right t o  use 
his personal  principal  identifier is authenticated,  for  example, 
by  a  password. His right to  use the remaining  principal  identi- 
fiers can  then  be  authenticated  by  looking  up  the now- 
authenticated  personal  identifier  on  each  named  protection 
group  list. If everything  checks,  a virtual processor  can  safely 
be created and started with the specified  list of principal 
identifiers3‘ 

3) Implemenration  Considerations: The  model of a  com- 
plete  protection  system as developed  in Fig. 10 is one  of  many 
possible  architectures,  most of which have essentially  identical 
functional  properties;  our  choices  among  alternatives have 
been guided more by pedagogical considerations  than by 
practical  implementation issues. There  are  at  least  three key 
areas  in which a  direct  implementation of Fig. 10 might  en- 
counter  practical  problems. 

1) As proposed, every reference to an  object  in  memory 
requires several steps:  reference to a  pointer  register;  indirect 

treated as a special case of a  capability, known IU an access key,  that 
)6 In some system (notably CAL TSS [ 17]), principal  identifiers are 

though this approach  appears to produce  the same effect LI protection 
can be copied about,  stored  anywhere, and passed on  to friends. Al- 

group, accountability  for  the use of  a  prindpal  identifier  no longer 
resdes in an  individual, since any holder  of a Ley can make further 
copies for his friends. 
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Fig. 11. Use of  “shadow” capability registers to speed up an accesa 

identifier is firat used, the shadow register is automatically loaded 
control list system. When a pointer  register containing a unique 

from the access controller to which the unique identifier refers. 
Later uses of that pointer register thm  do  not require  reference to 
the access contrdler. Storing of a pointer  register  means  storing of 
the unique identifier only; the shadow register is newr stored. 

reference  through an access controller  including  search of an 
access control  list;  and  finally, access to  the  object itself via 
addressing  descriptors.  Not  only  are  these  steps serial, but 
several memory  references are required, so fast  memory access 
would be needed. 

2) An access control  list  search  with  multiple  principal  iden- 
tifiers is likely to  require  a  complex  mechanism,  or  be  slow,  or 
both.  (This  tradeoff  between  performance  and  complexity 
contrasts with the  capability  system,  in which a single com- 
parison is always sufficient.) 

3)  Allocation of space for access control lists, which can 
change  in  length, can be a  formidable  implementation  prob- 
lem. (Compared to  a  capability  system,  the mechanics of 
changing authorization  in  an access control  list system are 
inherently  more  cumbersome.) 

The  fmt of these  problems is attacked by recognizing that 
the  purpose of the access control  list  is to  establish  authoriza- 
tion  rather  than to  mediate  every  detailed access. Mediation 
of access would be  handled  more  efficiently  by  a  capability 
system.  Suppose we provide  for  each  pointer  register a 
“shadow”  capability  register  that is invisible to the  virtual 
processor, as in Fig. 1 1. Whenever a  pointer  register  containing 
the  unique  identifier of an access controller is f m t  used,  the 
shadow register is loaded  with  a  capability  consisting of a  copy 
of the addressing  descriptor for  the segment  protected  by  the 
access controller,  together  with  a  copy of the  appropriate  set 
of permission bits  for this principal.” Subsequent  references 
via that  pointer register  can  proceed  directly using the  shadow 
register  rather than  indirectly  through  the access controller. 
One  implication is a  minor  change  in  the  revocability  proper- 
ties of an access control list:  changing  an access control  list 
does not  affect  the  capabilities already  loaded in shadow 
registers of running  processors.  (One  could  restore  complete 
revocability  by  clearing all shadow registers of all processors 
and restarting  any  current access control  list searches. The 
next  attempted use of a cleared  shadow  register  would  aut* 
matically  trigger its reloading  and a new access control  list 

check.)  The  result is a highly constrahed  but very fast  capabil- 
ity system  beneath  the access control  list  system.  The  detailed 
checking of access control falls on  the  capability  mechanism, 
which  on  individual  memory  references  exactly  enforces  the 
constraints  specified  by  the access control list system. 

The second and third  problems,  allocation  and  search of 
access control  lists,  appear to  require  more  compromise of 
functional  properties. One might,  for  example,  constrain all 
access control  lists to  contain,  say,  exactly five entries, to  
simplify  the  space  allocation  problem. One popular  implemen- 
tation  allows  only  three  entries on each access control list. 
The  first is filled in  with the  personal  principal  identifier of the 
user who  created  the  object  being  protected,  the  second  with 
the  principal  identifier of the (single)  protection  group to 
which he belongs, and the  third  with  the  principal  identifier of 
a universal protection  group of which all users  are  members. 
The individual access permissions for these  three  entries  are 
specified by the program creating  the segment.” 

A  completely  different way to provide an access control  list 
system is to implement  it  in  interpretive  software in the  path 
to  the secondary  storage  or file system.  Primary memory p r e  
tection  can  be  accomplished  with  either  base-and-bound 
registers,  or more generally  with a  capability  system  in which 
the  capabilities  cannot  be  copied into  the file system.  This a p  
proach  takes  the access control  list checking  mechanisms out 
of the heavily used primary  memory access path,  and  reduces 
the  pressure to compromise  its  functional  properties.  Such  a 
mixed  strategy,  while  more  complex,  typically  proves to be 
the most  practical  compromise.  For  example,  the Multics sys- 
tem [ 551 uses software-interpreted access control lists together 
with  hardware-interpreted  tables of descriptors.  Similarly,  the 
“guard f ie”  of the Burroughs B6700 Master Control Program 
is an  example ‘of an access controller  implemented  inter- 
pretively [ 57 ]. 

4) Authorify  to Change Access  Control  Lists: The access 
control  list  organization  brings  one  issue  into  focus:  control of 
who  may  modify  the access control  information.  In  the capa- 
bility  system,  the  corresponding  consideration is diffuse.  Any 
program having a  capability  may  make a copy  and  put  that 
copy  in  a  place  where  other  programs,  running  in  other  virtual 
processors,  can  make use (or  further copies) of it. The access 
control  list  system was devised to  provide more precise control 
of authority, so some mechanism of exerting  that  control is 
needed.  The goal of any  such  mechanism is to provide  within 
the  computer  an  authority  structure  that  models  the  authority 
structure of whatever  organization uses the  computer.  Two 
different  authority-controlling  policies,  with  subtly  different 
modeling  abilities, have been implemented  or  proposed. We 
name  these  two self  control and hierarchical control. 

The simplest  scheme is self  control. With this  scheme, we 
extend  our earlier  concept of access permission bits to  include 
not  just permission to read  and  write,  but also permission to  
modify the  acces  control list that  contains  the  permission 
bits.  Thus,  in Fig.  12, we have a slightly  more  elaborate  access 
controller, which by  itself controls who may make modifica- 
tions to  it.  Suppose  that  the  creation of a new segment is 
accompanied  by the creation of an access controller  that con- 
tains  one  initial  entry  in  its access control list-an  entry giving 
all permissions to  the principal  identifier  associated  with the 
creating  virtual  processor.  The  creator receives a  pointer  for 

“iWe have thua merged, for speed, the protection descriptor and  the [ 151 and UNIX [IS]. This idea seems to have originated in the Univer- 
*‘Variationr of  this strategy am implemented in software in TENEX 

addredsing descriptor. dty  of Cdifornia SDS-940 TSS [56]. 
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b o u n d  
addressing 
descriptor fo r  
this  segment 

accesm 

pr inc ipa l  pe rmis s ions  
i d e n t i f i e r s  

Fig. 12. The access controller  extended  for  selfcontained  control over 
modiflation of its access control list. In thia example, user Smith 
has  three  permissions: to read  and to write  into  the  associated seg- 
ment,  and  to  make  modifications  to  the access control  list of this 

though  he can read  and  write in the segment  described by this access 
access controller.  Jones  cannot  modify  the access control List, even 

controller. Doe is even more  constrained. 

the access controller he has  just  created,  and  then  can  adjust 
its access control list to  contain  any desired list of principal 
identifiers  and  permissions.jp 

Probably the chief objection is to  the  self-control  approachis 
that  it is so absolute:  there is no provision for graceful  changes 
of authority  not  anticipated  by  the  creator of an access control 
list. For  example,  in  a  commercial time-sharing  system, if a 
key member of a company’s financial  department is taken ill, 
there  may  be no way for his manager to authorize  temporary 
access to  a  stored budget file for  a  co-worker unless the  absent 
user  had the  foresight to  set his access control  lists  just  right. 
(Worse yet would be ‘the possibility of accidentally  producing 
an  object  for  which  its access controller  permits access to  no 
one-another  version of the garbage collection  problem.) To 
answer  these  objections,  the hierarchical control scheme is 
sometimes  used. 

To obtain  a  hierarchical  control  scheme,  whenever  a new 
object is created  the  creator  must  specify  some  previously 
existing access controller to regulate future changes to  the 
access control list in the access controller  for  the new object. 
The  representation of an access controller  must also be ex- 
panded to  contain  some  kind of pointer to  the access control- 
ler that  regulates  it  (for  example,  a  unique  identifier). In  addi- 
tion,  the  interpretation of the permission  bit  named “ACL- 
mod” is changed to  apply to  those access controllers  that 
hierarchically  are  immediately  below the access controller  con- 
taining the permission bit.  Then, as in Fig. 13, all of the access 
controllers of the system will be arranged in a  hierarchy,  or 
tree  structure,  branching  from the first access controller  in  the 
system, whose creation  must be handled  as  a  special case, since 
there is no previously  existing access controller to  regulate  it. 
The  hierarchical  arrangement is now  the  pattern of access con- 
trol, since a user  with  permission to modify access control 
lists may add his own  principal  identifier,  with  permission to  
modify access, to lower level access controllers, giving himself 
ability to  change access control lists still further  down  the 

39The mechanics of adjustment of the access control  list  require 
using a  special  “store”  instruction (or calling a supervisor entry in a 
software implementation)  that  interprets  its  addrw, M direct,  rather 
than  indirect,  but  still p e r f o r m s  the access control list  checks before 
performing  the  store. This specid  instruction  must also restrict  the 
range of a d d r a s ~ 6  it .Ilowr, so = to prevent  modifying  the  addresing 
dacriptor stored  in  the access controller. 

AC6 
i\ 

A C 4  I 

--7 / / 
segment  A  segment X segment  Y 

Fig. 13. Hierarchical  control of authority  to  modify access control 
lists. Each access controller  has  an  extra  field in addition to those of 

level  access controller.  Authority to access segments A ,  X, and Y is 
Fig. 12; the  extra field  contains  the  unique  identifier of some higher 

controUed by access controllers  AC, , AC, , and AC, , respectively. 

while  authority to  modify AC, is controlled by AC,.  Authority  to 
Authority to modify AC, and AC, is in turn  controlled by AC,, 

controller  in  the  system. In this  example,  the  authority  to  modify 
modify AC, and AC, is controlled by AC, , which is the f i t  access 

AC, is similar to  the self-control  scheme.  Note  that  segments S4, S5, 
and S6 may be  degenerate; AC,, AC,, and AC, may exist  solely to 
control  the  authority to modify  other access controllers.  The  mean- 
ing of the  backpointer,  say,  from AC, to AC,, is that if a user at- 
tempts to modify  the access control  list of AC,,  the  backpointer is 
followed,  leading to AC,. o n l y  if the user’s principal  identifier is 
found  in AC, (with  appropriate  permission) is the  modification to 
AC, permitted.  Segments A ,  X, and Y am arranged  in an  independent 
hierarchy of their own, with A superior to X and Y, by virtue of the 
pointer values P, and P, found  in segment A .  

hierarchy.  Permission to  modify access at  any one  node of the 
hierarchy  permits  the  holder  to grant himself access to  any- 
thing  in the entire  subtree based on  that node.40 

The  hierarchical control scheme might be used in  a  time- 
sharing  system as follows. The f m t  access controller  created is 
given an access control  list  naming  one  user,  a  system  adminis- 
trator. The  system  administrator  creates several access con- 
trollers  (for  example,  one  for  each  department  in his company) 
and  grants  permission to  modify access in  each  controller to 
the  department  administrator.  The  department  administrator 
can create  additional access controllers in a  tree  below  the  one 
for his department,  perhaps  for  subdepartments  or individual 
computer users in his department. These individual  users  can 
develop  any pattern of sharing they wish, through  the use of 
access control  lists  in access controllers,  for  the  segments  they 
create. In an  emergency,  however,  the  department  administra- 
tor can intervene  and  modify  any access control  list  in his 
department.  Similarly,  the  system  administrator  can  intervene 

.‘The simplest  way to  handle  the f i t  accm controller is to have it 
refer to itself.  This  approach  provides self control  at  one  point in the 
system;  the  difficulty of providing  for unantidpated chmges in author- 
ity is red and mwt  be countered by  careful planning by the  system 
administrator. 
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in case a department  administrator  makes  a  mistake  or is un- 
available? 

The hierarchical  system  in our  example is subject to  the 
objection  that  the system  administrator  and  department ad- 
ministrators are too powerful;  any  hierarchical  arrangement 
inevitably  leads to concentration of authority  at  the higher 
levels of the hierarchy. A hierarchical  arrangement of authority 
actually  corresponds fairly well to  the way many  organizations 
operate,  but  the hierarchical control  method of modeling the 
organization  has  one severe drawback:  the use and possible 
abuse of higher level authority is completely  unchecked. In 
most  societal  organizations,  higher level authority exists, but 
there are  also checks  on it.  For  example, a savine bank 
manager may  be  able to authorize  a  withdrawal  despite  a  lost 
passbook, but  only  after advertising its loss in  the  newspaper. 
A creditor  may remove money  from  a  debtor’s  bank  account, 
but  only with  a court order. A manager may  open  an  em- 
ployee’s locked file cabinet,  but (in some  organizations)  only 
after  temporarily  obtaining  the  key  from  a  security  office, an 
action which  leaves a  record  in the  form of a  logbook  entry. 
A policeman  may  search your  house,  but  the search is illegal 
unless he first obtained  a  warrant. In each case, the  authority 
to perform the  operation  exists,  but  the use of the  authority is 
coupled  with  checks  and balances  designed to prevent  abuse of 
the  authority. In brief, the hierarchical  control  scheme pro- 
vides for exercise of authority  but, as sketched so far,  has no 
provision for  preventing  abuse of that  authority. 

One  strategy  that  has  been suggested in various forms [58], 
1591 is to add a field to an  access controller, which we may 
call the prescript field. Whenever an  attempt is made to 
modify  an access control list  (either  by  a special store  instruc- 
tion  or  by a call to a  supervisor entry, depending on  the im- 
plementation),  the access-modifying  permission  of the higher 
level access controller  regulating  the access control list is 
checked as always.  If the permission  exists, the prescript field 
of the access control list that is about  to be  modified is 
examined,  and  some  action,  depending  on  the value found, is 
automatically triggered. The following list suggests some 
possible actions  that might  be triggered by  the prescript value, 
and some  external policies that can be  modeled  with the 
prescript  scheme. 

1) No action. 
2) Identifier of principal  making change is logged (the 

3) Change is delayed one day  (“cooling-off”  period). 
4) Change is delayed until some other principal attempts  the 

same  change (“buddy” system). 
5 )  Change is delayed until signal is received from  some 

specific (systemdesignated)  principal  (“court  order”). 

“audit  trail”). 

The goal of all of the policies (and  the prescript  mechanism  in 
general) is to ensure that  some  independent  judgment  moder- 
ates  otherwise  unfettered use  of authority. 

The  notion of a  prescript, while apparently  essential to a 
protection  system  intended to  model  typical real authority 
structures,  has not been  very well  developed in existing or 

proposed computer systems. The  particular  prescript mecha- 
nism  we  have  used for  illustration of the  concept can  model 
easily only  a small  range of policies. One  could,  for  example, 
arrange that a  prescript  be  invoked on every  access to some 
segment,  rather  than  just  on  changes  in  the  authority  structure. 
One  could  implement more  complex policies by use  of pro- 
tected  subsystems,  a general  escape mechanism  described 
briefly  in  a later section. 
5) Discretionary and Nondiscretionary  Controls: Our dis- 

cussion  of authorization  and  authority  structures  has so far 
rested on an unstated  assumption:  the  principal  that  creates  a 
file or  other  object  in a computer system has unquestioned 
authority  to  authorize access to it  by  other principals.  In the 
description of the self-control  scheme, for example, it was 
suggested that a  newly  created  object begins its  existence  with 
one  entry in its access control list, giving all permissions to its 
creator. 

We may  characterize this control  pattern as discretionary4’ 
implying that  the individual  user  may, at his own discretion, 
determine  who is authorized to access the  objects  he creates. 
In a  variety of situations,  discretionary  control  may  not be 
acceptable  and  must be  limited  or  prohibited.  For example, 
the manager of a department developing  a new product line 
may  want to “compartmentalize” his department’s  use of the 
company  computer system to ensure that only  those em- 
ployees  with  a  need to know have  access to information  about 
the new product.  The  manager  thus desires to apply  the 
principle of least privilege. Similarly, the marketing manager 
may wish to compartmentalize all use  of the company com- 
puter  for calculating product  prices, since  pricing policy  may 
be sensitive. Either manager  may  consider it not  acceptable 
that  any individual  employee  within his department can 
abridge the compartmentalization decision  merely by chang- 
ing  an  access control list on  an object  he  creates.  The manager 
has a  need to limit the use of discretionary  controls  by his em- 
ployees. Any limits  he  imposes on authorization  are  controls 
that  are  out of the hands of his employees,  and are  viewed by 
them as nondiscretionary. Similar constraints  are  imposed  in 
military  security  applications,  in  which not  only isolated com- 
partments are  required,  but also nested sensitivity  levels (e.g., 
top secret,  secret,  and  confidential)  that  must be modeled in 
the  authorization mechanics of the  computer system.  Non- 
discretionary  controls  may need to be  imposed in  addition to 
or instead of discretionary  controls. For example, the depart- 
ment manager  may be  prepared to allow his employees to ad- 
just their access control lists  any way they wish, within the 
constraint  that  no  one  outside  the  department is ever  given 
access. In  that case, both  nondiscretionary  and discretionary 
controls  apply. 

The key  reason for  interest in  nondiscretionary  controls is 
not so much the  threat of malicious  insubordination as the 
need to safely use complex  and  sophisticated  programs  created 
by suppliers  who are not  under  the manager’s control. A con- 
tract  software  house  may  provide  an APL interpreter  or a fast 
file sorting program.  If the supplied  program is to be  useful, it 
must  be given  access to  the  data it is to manipulate or  interpret. 
But unless the borrowed  program  has  been  completely  audited, 

“A variation is the use of the segments controlled by access control- there is no way to be Sure that it does  not misuse the  data 

segments below. This variation, if carried to the extreme, maps 
lers  higher  in the hierarchical authority structure as catalogs for the (for example, by making an illicit copy) or expose the data 

together the authority control hierarchy  and the cataloguing hierarchy. either  accidentally or intentionally.  One way to prevent  this 
Some mechanical simplifications can be made, but try@ to make  dual kind of security  violation  would be to forbid  the use of bar- 
use of a single hierarchy  may  lead to cataloguing strategigl inappropriate 
for the data brwr, or else to proanwar to &tort the desired authority 
structure. The Multicr mystem [ 581, for example, use8 thia d t i o a  “A term suggested by R. Schell [60 ] .  
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rowed programs, but  for  most organizations the  requirement 
that all programs be locally  written (or even thoroughly 
audited) would be an  unbearable  economic  burden.  The 
alternative is confinement of the  borrowed  program, a  term 
introduced by Lampson [6 11. That is, the  borrowed program 
should  run in a  domain  containing  the necessary data,  but 
should be  constrained so that  it  cannot  authorize sharing of 
anything  found  or  created  in  that  domain  with  other  domains. 

Complete  elimination of discretionary  controls is  easy to 
accomplish. For example, if self-controlling  access controllers 
are being used, one could  arrange that  the  initial value for  the 
access control list of all newly  created  objects not give 
“ACL-mod”  permission to  the creating  principal (under which 
the  borrowed  program is running).  Then the borrowed  pro- 
gram could  not release information  by  copying it into an  object 
that  it creates  and then adjusting the access control list on 
that  object.  If,  in  addition, all previously existing  objects  in 
the  domain of the  borrowed program do  not permit  that 
principal to modify  the access control list, the  borrowed 
program  would have no discretionary control  at all and  the 
borrower would  have complete  control. A similar modification 
to the hierarchical control system  can also  be  designed. 

It is harder to arrange for  the  coexistence of discretionary 
and  nondiscretionary  controls.  Nondiscretionary  controls  may 
be  implemented,  for  example,  with  a  second access control 
list system  operating  in  parallel  with  the  first  discretionary 
control  system, but using a  different  authority  control  pattern. 
Access to an  object would be  permitted  only if both access 
control list  systems agreed. Such an approach, using a fully 
general  access control  list  for  nondiscretionary  controls, may 
be more  elaborate  than necessary. The  few designs that have 
appeared so far have taken  advantage of a perceived property 
of some  applications of nondiscretionary  controls:  the  desired 
patterns usually arerelatively  simple,  such as “divide the activi- 
ties of this  system into six totally  isolated  compartments.”  It 
is then practical to provide  a simplified  access control list 
system to operate  in  parallel  with  the  discretionary  control 
machinery. 

An interesting  requirement  for  a  nondiscretionary  control 
system that  implements isolated compartments arises whenever 
a  principal is authorized to access two  or  more  compartments 
simultaneously,  and some  data  objects  may  be labeled as being 
simultaneously  in two  or  more  compartments (e.g.,  pricing 
data  for a new product  may be  labeled  as  requiring access to 
the “pricing policy” compartment as well as the “new product 
line”  compartment).  In  such  a case it would seem reasonable 
that,  before  permitting  reading of data  from an object,  the 
control mechanics  should  require that  the  set of compartments 
of the  object being referenced  be  a  subset of the  compartments 
to which the accessor is authorized. However, a more  stringent 
interpretation is required  for  permission to write, if borrowed 
programs  are to be confined. Confiement requires that  the 
virtual  processor  be  constrained to write  only into objects  that 
have a compartment set identical to that of the virtual p r e  
cessor itself. If such  a  restriction  were  not  enforced,  a mali- 
cious  borrowed  program  could,  upon  reading  data  labeled  for 
both  the “pricing  policy”  and the “new product line”  com- 
partments,  make  a  copy of part of it in a  segment  labeled  only 
“pricing policy,”  thereby  compromising the “new product 
line”  compartment  boundary. A similar set of restrictions on 
writing can  be  expressed for sensitivity levels; a  complete  and 
systematic analysis in the military  security  context was 
developed by Weissman [ 141. He suggested that  the problem 

be solved by automatically  labeling  any  written  object  with 
the  compartment labels  needed to permit  writing,  a  strategy  he 
named the “high water  mark.” As an alternative,  the  strategy 
suggested by Bell and LaPadula [ 621 declared that  attempts  to 
write into  objects  with  too few compartment labels are  errors 
that cause the program to  stop.43  Both cases  recognize that 
writing into  objects  that do  not have the necessary compart- 
ment labels  represents  potential  “declassification” of sensitive 
information. Declassification should  occur  only  after  human 
judgment  has  been  interposed to establish that  the particular 
information to be  written is not sensitive. Developing a sys- 
tematic way to interpose  such  human  judgments is a research 
topic. 

Complete  confmement of a  program  in  a  shared  system is 
very difficult,  or  perhaps impossible, to accomplish,  since the 
program  may be able to signal to  other users by  strategies  more 
subtle  than  writing  into shared  segments. For example, the 
program  may  intentionally vary its paging rate  in a way  users 
outside  the  compartment can  observe, or it may  simply stop, 
causing its  user to go  back to the original author  for help, 
thereby revealing the  fact  that it stopped. D. Edwards charac- 
terized  this  problem  with the phrase “banging on  the walls.” 
Lampson [611,  Rotenberg  [591,  and  Fenton 1641  have  ex- 
plored  this  problem in  some  depth. 

D. Protecting  Objects  Other Than Segments 
So far, it has been  useful to frame  our discussion of protec- 

tion  in  terms of protecting  segments, which  basically are 
arbitrary-sized units of memory  with no internal  structure. 
Capabilities and access control lists  can protect  other kinds of 
objects also. In Fig. 9, access controllers themselves  were 
treated as system-implemented  objects,  and in Fig. 13 they 
were protected  by  other access controllers. It is appropriate to 
protect  many  other kinds of objects provided by  the hardware 
and  software of computer systems. To  protect an object  other 
than a  segment, one  must first  establish  what  kinds of  opera- 
tions can be  performed  on  the  object, and then  work  out an 
appropriate  set of pelmissions for  those  operations. For a  data 
segment,  the  separately  controllable  operations we  have  used 
in  our examples  are  those of reading  and  writing the contents. 

For an example of a  different kind of system-implemented 
object,  suppose that  the processor is augmented  with  instruc- 
tions  that  manipulate  the  contents of a  segment as a first-in, 
first-out  queue.  These  instructions  might  interpret the first 
few words of the segment  as  pointers or  counters,  and  the 
remainder as a  storage area for  items placed in  the queue. One 
might  provide two special instructions,  “enqueue”  and 
“dequeue,”  which  add to  and remove from  the  queue. Typi- 
cally, both of these  operations would  need to both read and 
write  various  parts of the segment being  used as a  queue. 

As  described so far, the  enqueue  and  dequeue  instructions 
would  indiscriminately treat any  segment as a  queue, given 
only  that  the program issuing the  instruction  had  loaded  a 
capability  permitting  reading  and  writing  the  segment.  One 
could  not  set  up a  segment so that some users could  only en- 
queue messages, and  not  be able to dequeue-or even directly 
read-messages left  by others.  Such  a  distinction  between 

suggested 88 a way of monitoring the trustworthincsa, as contrasted to 
“The dual strategy of maintaining a “low water mark”  ha8 been 

the  contamination level, of a computation. The  Multics temporary ring 
&tor  maintain8 ruch a low water  mark on indirect addrwa evalua- 
tion [63]. 
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TABLE I 
TYPICAL  SYSTEM-PROVIDED PROTECTED OBJECTS 

Object 
Typical Separately Permittable 

Operations 

Data  segment 

Access controller 

FIFO message queue 

READ data  from the segment 
WRITE data into the segment 
Use any  capability found  in  the 

Use any READ capability found in 

WRITE a capability into  the segment 
 LAD access control list 
Modify  names  appearing on an 

access  control list 
Modify permissions in access 

control list entries 
Destroy object protected by this 

access controller 
Enqueue a message 
Dequeue a message 
Examine queue contents without 

segment 

the segment 

dequeueing 
Input/Output device READ data 

W R I T E  data 
Issue devicecontrol commands 

Removable  recording medium READ data 
(e.g., magnetic tape reel) WRITE over data 

WRITE data in new area 

queues and other segments can be made by introducing  the 
concept of type in the  protection system. 

Consider, for example, the capability  system in Fig. 6. 
Suppose we add to a  capability  an extra field, which we  will 
name the Qpe  field. This field will have the value 1 if the 
object described by  the capability  is an ordinary  segment, and 
the value 2 if the object is to be considered a  queue. The 
protection descriptor registers are also expanded to contain a 
type field. We add to the processor the knowledge of which 
types are suitable as operands for each instruction. Thus the 
special instructions for  manipulating  queues  require that  the 
operand  capability have type field 2, while all other instruc- 
tions require an operand  capability  with type field 1. Further, 
the  interpretation of the permission bits can be  different  for 
the  queue  type and the segment type.  For  the  queue  type, 
one might use the first  permission  bit t o  control use of the 
enqueue  instruction and the second permission bit for  the de- 
queue  instruction. Finally, we should extend  the “create” 
operation to permit  specification of the  type of object being 
created. 

Clearly, one could extend  the  notion of type  beyond seg- 
ments and queues; any  data  structure could be similarly 
distinguished and protected from misuse. Further,  input and 
output streams attached to  interactive terminals, printers, and 
the like  could be considered  distinct types with their own 
repertoire of separately permitted operations. The  concept of 
type extension is not restricted to capability  systems; in an 
access control list system one could place the  type field in the 
access controller and  require that  the processor present t o  the 
memory, along with each operand address, an indication of the 
type and permission bits  required for  the  operation being 
performed. Table I lists some  typical  system-implemented 
objects  and the kinds of operations one might selectively 
permit. This table  could be  extended to include other  objects 
that are basically interpreted data structures, such as accounts 
or catalogs. 

Finally,  one  may wish to extend dynamically the range of 
objects protected. Such  a goal might be reached by making 
the  type field large enough to  contain an additional  unique 
identifier,  and allowing for software interpretation of the 
access to  typed objects. This observation brings us t o  the 
subject of user-programmed controls  on sharing and the  imple 
mentation of protected objects  and protected subsystems. We 
shall not  attempt  to examine this  topic in depth,  but  rather 
only  enough to learn  what  problems  are encountered. 

E .  Protected  Objects  and  Domains 

Both  the capability  system  and the access control list  system 
allow controlled sharing of the objects  implemented by  the 
system. Several common  patterns of use can be independently 
controlled, such as reading, writing, or running as a program. 
While it is a great improvement over “all-or-nothing” sharing, 
this sort of controlled sharing has two  important limitations. 

The first limitation is that only those access restrictions  pro- 
vided by the  standard system facilities can be enforced. It is 
easy to  imagine many cases where the  standard  controls are 
not sufficient. For example,  an instructor who maintains his 
course grade records in a  segment on an interactive  system 
may wish to allow each student to read his own grades to 
verify correct  recording of each assignment, but  not  the grades 
of other  students, and to  allow any  student t o  examine the 
histogram of the class grades for each assignment. Implement- 
ing  such controls within systems of the sort discussed in  the 
last  few  sections would be awkward, requiring at least the 
creation of a separate  segment for each student and for  the 
distributions.  If, in  addition,  the  instructor wishes an assistant 
to  enter new grades, but wants to guarantee that each grade 
entered  cannot  be changed later  without  the instructor’s spe- 
cific approval, we have a situation  that is beyond the ability of 
the mechanisms so far described. 

The mechanisms described so far  cannot handle  this situation 
because the manipulations we wish to perform on a grade or a 
set of grades are not  fundamental operations  of the base-level 
system.  In essence, we  wish to dynamically defiie a  new type, 
the grade record,  and provide a  set of programs that interpre- 
tively implement the operations  appropriate for  this new 
t ~ p e . 4 ~  

The second limitation concerns users who borrow programs 
constructed  by  other users. Execution of a  borrowed program 
in  the borrower’s domain  can  present  a real danger to  the 
borrower, for  the borrowed program can exercise all the 
capabilities in  the domain of the  borrower.  Thus  a user must 
have a certain  amount of faith in  the provider of a program 
before  he  executes the program in his own domain. 

The key to removing these limitations is the  notion of a pro- 
tected  subsystem. A protected subsystem is a  collection of 
program and data segments that is  “encapsulated” so that 
other executing programs cannot read or write the program 
and data segments and cannot disrupt the  intended  operation 
of the  component programs, but can invoke the programs by 
calling designated entry points. The encapsulated data seg- 
ments are the protected  objects. Programs in a protected sub- 
system can act as caretakers for  the  protected objects  and 
interpretively enforce arbitrarily  complex  controls on access to 
them. Programs outside  the  protected subsystem  are allowed 
to manipulate the  protected objects only  by invoking the care 

the clars concept of Simula 67 [65]. 
44 This notion  of a dynamically defmed type is an enforced version of 

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore.  Restrictions apply.



SALTZER AND SCHROEDER:  PROTECTION OF COMPUTER  INFORMATION 1303 
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~ n v o k e  this prwram 
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Fig. 14. A protected subsystem to implement the gradekeeping system 
described in the text. P, , which can  be invoked by all students in the 
subject, is progammed  to return the d e r ’ s  grade for a particular 

which can be invoked by the teaching assistants for the subject, is 
assignment or the distribution of all grades for an assignment. P,, 

programmed to allow the addition of  new grades to the record but to 
prevent  changing a grade once it is entered. P, , which can  be invoked 

any data in the grade record. 
only by the instructor, is programmed to read or write on request 

taker programs. Algorithms in these  caretaker  programs may 
perform  any  appropriate  operation,  possibly  depending on  the 
circumstances  of  invocation,  and may even record  each access 
request  in  some way in  some  protected  objects.  For  example, 
the  protected  subsystem  shown  in Fig. 14 implements  the 
grade  keeping  system discussed above.  Clearly,  any access 
constraints  that can be specified in an  algorithm can be  imple- 
mented  in  this  fashion. Giving users the ability to  construct 
protected  subsystems  out  of  their own program  and  data seg- 
ments allows users to provide  arbitrary  controls  on  sharing. 

If programs  inside a  protected  subsystem can invoke  pro- 
grams in  another  protected  subsystem  without  compromising 
the  security of the  first  subsystem,  then we can  plug  together 
multiple  protected  subsystems to  perform  a  computation. We 
also find a way around  the  borrowed program problem.  The 
normal  domain of a  user is one  example of a  protected  sub- 
system.  The user arranges  for  programs  borrowed  from other 
users to execute  outside  of  this  “home”  protected  subsystem. 
In  this  way,  the  borrowed  programs  can be invoked  without 
giving them access to  all the  programs and data of the bor- 
rower. If the  borrowed  program is malicious or  malfunctions, 
the damage it can do is limited.  The  lending  user  could also 
encapsulate  the  lent  program  complex in a  protected  sub- 
system  of  its  own  and thus  insulate  it  from  the  programs  of 
the  b~rrower.~’  

‘5EncapsuIation of a borrowed program in a protected subsystem is 
done with a different goal than confmement of a borrowed program 
within a compartment. Encapsulation may be uaed to limit the access a 

to allow 8 borrowed program to  have  accem to data, but ensure that 
barowed program has to the borrower’s data. Confinement h intended 

the program m o t  release the information. The two threats from bor- 
rowed programs that are countered by encapsulation and conffnement 

D. Edwards [sal. 
M frequently combined under the name ‘‘Trojan Home,” suggested by 

The  notion of protected  subsystems,  then,  provides  mutual 
protection  for  multiple  program  complexes  cooperating  in  the 
same computation  and  removes  two  limitations  of facilities 
providing simple  controlled  sharing.  It is clear from  the d e  
scription of protected  subsystems  that  each  must  operate in 
its  own  domain.  Implementing  protected  subsystems  requires 
mechanisms that allow the  association of more  than  one 
domain  with a  computation  and also requires means for chang- 
ing  from  one  protection  domain to  another as control passes 
from  one  protected  subsystem to another.  The design must 
ensure  that  one  protected  subsystem  cannot  interfere in any 
way with  the  correct  operation of another  subsystem involved 
in the same computation. 

We note  in passing that  the supervisor in most  computer sys- 
tems is an  example of a  protected  subsystem. If general 
facilities are  provided  for  supporting  user-constructed p r e  
tected  subsystems,  then  these  mechanisms  can be applied to 
protect  the  supervisor  from user programs as  well. Thus  the 
protection  mechanisms  are  protecting  their own implementa- 
tion.  The  resulting  uniformity is consistent  with  the design 
principle of economy of mechanism. 

In  order to implement  protected  subsystems,  then,  there 
must be a way of associating  multiple  domains  with a single 
computation.  One way would  be to use a  separate  virtual 
processor,  each  with its own  domain,  for  each  protected sub- 
system,  a  notion  proposed  by  Dennis  and Van Horn [ 41 I and 
discussed by  Lampson [ 301. A  computation involving multi- 
ple protected  subsystems  would  require  multiple  cooperating 
virtual processors. The  invocation  of  one  protected  subsystem 
by another,  and  the  communication of any  response,  would be 
done using the  interprocessor  communication  facilities of the 
system [671. An implementation using multiple  virtual  pro- 
cessors,  though  conceptually  straightforward,  tends to be awk- 
ward and  inefficient  in  practice.  Furthermore,  it  tends to  
obscure  important  features of the  required mechanisms. 
Unless there is an  inherent  reason  for  the  protected  subsystems 
in  a  computation to be expressed as asynchronous  activities,  a 
single virtual  processor  implementation seems more  natural. 
Such  an  implementation  would  require  the  association of 
multiple  domains  with  a single virtual  processor, a  strategy 
proposed  by LeClerc (681, [ 691 and  explored in detail  by 
Lampson [ 19 1, Schroeder [ 701, Needham [ 201,  Sturgis [ 171 , 
Jones [ 7 1 ] , and  Rotenberg [ 591 . In  this case, communication 
among  protected  subsystems  could be via interprocedure call 
and  return  operations. 

The essence of changing domains is, in  access  control list 
terms, to change  principal  identifiers; in capability  terms  it is 
to  acquire  the  set of capabilities  of  the new domain.  In  both 
cases, it is also essential that  the  virtual  processor begin execu- 
tion at some  agreed-to  starting  point  in  the new domain. 

Let us consider  first  an access control list implementation. 
Suppose we extend  the possible permissions on  a  segment, as 
recorded  in  an access controller, to include ENTER permission, 
and  add  one  more  field to  an access controller,  the domain 
identifier, which is the  principal  identifier  of  the  domain to  be 
entered.  The meaning of ENTER permission on  a segment is 
that  a  virtual processor having only  that  permission may use 
(the first address  in) that segment  only as the  target of a GO 
TO or CALL instruction.  Further,  upon  executing  a GO TO or 
CALL instruction,  the  processor will automatically  pick  up  the 
domain  identifier  field in the access controller  and use it as 
the  principal  identifier  in  transactions  with  the  memory 
system. 
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We now have a  controlled  domain entry facility.  A user 
wishing to  provide a protected subsystem can do so by setting 
the access control lists of all  objects that are to  be  internal 
parts of the system to  contain  one of his own  principal  identi- 
fiers. He also adds to  the access control list of the initial 
procedure of his subsystem ENTER permission for any  other 
principals who are allowed to  use his protected subsystem. 

In  a  capability  system,  a similar addition produces protected 
subsystems. The permission field of a  capability is extended to 
include ENTER permission, and when a  capability is used as the 
target of a GO TO or a CALL instruction,  control is passed to  
the procedure in the segment pointed to by  the capability. 
Simultaneous with passing control  to  the procedure, the 
processor switches on  the READ permission bit of the capa- 
bility, thereby making available to  the virtual processor a new 
domain-all those objects that can be reached starting from 
capabilities found  in  the procedure. 

Two mechanisms introduced earlier can now be seen to be 
special cases of the general domain entry. In the initial dis- 
cussion of the capability  system, we noted  that  the  authentica- 
tion  system starts a new user by allowing a  virtual processor to 
enter  that user’s domain at a  controlled  starting  point. We 
could use the domain entry mechanism to  accomplish this 
result as follows. A system program is “listening” to all cur- 
rently unused  terminals  or  system  ports. When a user walks up 
to a  terminal  and attempts to  use it,  the system program cre- 
ates  a new virtual processor and has that processor ENTER the 
domain named by  the prospective user. The  entry  point 
would be  to a program, perhaps supplied by  the user himself, 
which authenticates his identity before  doing any  other com- 
putation. Because a protected subsystem has been used, the 
program that  monitors  the unused terminals  does not have 
access to  the  data in the  protected subsystem (in  contrast  with 
the system of Fig. 7), a situation in better accord with  the 
principle of least privilege. Instead,  it  has an  enter capability 
for every domain that is intended to  be entered  from a  termi- 
nal, but  that capability leads only to  a program that  demands 
authentication. 

We have sketched only  the bare essentials of the mechanism 
required to provide domain switching. The full mechanics of a 
practical  system that implements protected objects  and sub- 
systems are beyond the scope of this tutorial,  but  it is useful 
to sketch quickly the considerations  those mechanisms must 
handle. 

1) The principle of “separation of privilege” is basic to  the 
idea that  the  internal  structure of some data objects is acces- 
sible t o  virtual processor A ,  but  only when the virtual pro- 
cessor is executing in program B. If,  for  example, the protec- 
tion system  requires possession of two capabilities before it 
allows access to the  internal  contents of some  objects, then 
the program responsible for  maintenance of the objects  can 
hold one of the capabilities while the user of the program can 
hold the  other. Morris [ 721 has described an elegant semantics 
for separation of  privilege in which the first capability is 
known as a seal. In  terms of the earlier disCussion of types, 
the  type field of a protected  object contains  a seal that is 
unique to  the  protected subsystem; access to  the  internal 
structure of an  object can be achieved only  by presenting the 
original seal capability as well as the capability for  the object 
itself. This idea apparently was suggested by H. Sturgis. The 
HYDRA and CAL systems  illustrate two  different implemen- 
tations of this principle. 

2)  The switching of protection domains by a  virtual pro- 
cessor should be carefully  coordinated  with the mechanisms 
that provide for  dynamic activation  records  and static (own) 
Tariable storage, since both  the activation  records  and the 
static  storage of one  protection domain  must be distinct from 
that of another. (Using a  multiple  virtual processor imple- 
mentation provides a  neat automatic  solution to these 
problems.) 

3) The passing of arguments  between  domains  must be 
carefully  controlled to  ensure that  the called domain will be 
able to  access its arguments without violating its own protec- 
tion intentions. Calls by value represent no special problem, 
but other  forms of argument  reference that require access to 
the original argument are harder. One argument that must be 
especially controlled is the  one  that indicates how to return to  
the calling domain.  Schroeder 1701 explored  argument pass- 
ing in  depth  from  the access control list point of view, while 
Jones [71 I explored the same topic in the capability 
framework. 

The reader  interested in learning about  the mechanics of 
protected objects and subsystems in detail is referred to  the 
literature  mentioned above and in  the Suggestions for  Further 
Reading. This area is in a state of rapid  development,  and 
several ideas have been tried  out experimentally, but  there is 
not  yet  much agreement on which mechanisms are funda- 
mentaL For  this reason, the subject is best explored by case 
study. 

111. THE STATE OF THE ART 

A.  Implementations of Protection  Mechanisms 
Until  quite recently, the  protection of computer-stored  in- 

formation has been given relatively low  priority by both  the 
major computer manufacturers and a  majority of their custom- 
ers. Although  research time-sharing systems using base and 
bound registers appeared  as  early as 1960 and Burroughs mar- 
keted a descriptor-based system in  1961, those early features 
were directed  more  toward  preventing  accidents than  toward 
providing absolute interuser protection. Thus in the design of 
the IBM System/360, which appeared in 1964  [73],  the only 
protection mechanisms were a privileged state and  a protection 
key  scheme that prevented  writing in those blocks of memory 
allocated to  other users. Although the  360 appears to be  the 
first  system in which  hardware protection was also applied to  
the 1 / 0  channels, the early IBM software used these  mecha- 
nisms only to  the minimum extent necessary to  allow accident- 
free  multiprogramming.  Not until  1970 did “fetch  protect” 
(the ability to prevent one user from reading primary  memory 
allocated to  another user)  become  a  standard feature of the 
IBM architecture  [74].  Recently, descriptor-based architec- 
tures,  which can be a basis for  the  more sophisticated protec- 
tion mechanisms described in Section 11, have become common 
in commercially marketed  systems  and in most  manufacturers’ 
plans for  forthcoming  product lines. Examples of commercially 
available descriptor-based systems are the IBM System/370 
models that  support virtual  memory, the Univac (formerly 
RCA) System 7, the Honeywell 6180,  the  Control Data  Corpo- 
ration Star-100, the Burroughs B5700/6700,  the Hitachi 
8800, the Digital Equipment  Corporation PDP-11/45, and  the 
Plessey System 250. On  the  other hand, exploitation  of  such 
features  for  controlled sharing of information is still the excep- 
tion  rather  than  the rule. Users with a  need for  security  find 
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that  they must improvise or use brute  force  techniques  such as 
complete dedication of a  system to  a single task at a time 
[75]. The  Department of Defense guide for safeguarding 
classified information  stored  in  computers provides a  good 
example of such  brute force techniques [ 761 . 

In  the decade  between 1964 and 1974, several protection 
architectures were implemented as research and development 
projects,  usually starting  with a computer  that provided only 
a privileged mode,  adding  minor  hardware  features  and inter- 
preting with software the desired protection architecture. 
Among these were M.I.T.’s  CTSS which, in 196  1, implemented 
user authentication  with all-or-nothing sharing and,  in  1965, 
added  shared files with permission lists 1121. In 1967,  the 
ADEPT system of the System Development Corporation im- 
plemented in software on an IBM System/360 a  model of the 
U.S. military  security  system,  complete with clearance levels, 
compartments, need-to-know, and centralized authority con- 
trol [ 141. At about  the same time, the IBM Cambridge 
Scientific  Center released an  operating  system  named  CP/67, 
later marketed under  the name VM/370, that used descriptor- 
based hardware to implement  virtual System/360  computers 
using a single System/360 Model 67 [ 111. In 1969,  the Uni- 
versity of California (at Berkeley) CAL system  implemented  a 
software-interpreted  capability  system on a Control Data 6400 
computer [ 171. Also in  1969,  the Multics system,  a joint 
project of  M.I.T. and  Honeywell,  implemented in software and 
hardware  a  complete  descriptor-based access control list system 
with hierarchical control of authorization  on a  Honeywell 645 
computer system [26],  [77]. Based on  the plans for Multics, 
the Hitachi Central Research Laboratory implemented  a sim- 
plified descriptor-based  system with hardware-implemented 
ordered  domains (rings of protection)  on  the HITAC 5020E 
computer  in  1968  [78]. In 1970,  the Berkeley Computer 
Corporation also implemented rings of protection in the BCC 
500 computer [ 191.  In  1973, a  hardware version of the idea 
of rings of protection  together  with  automatic argument ad- 
dress validation was implemented  for Multics in  the Honeywell 
6 180 [631.  At  about  the same time,  the Plessey Corporation 
announced a telephone switching computer  system,  the 
Plessey 250 [ 531, based on a  capability architecture. 

Current experimentation  with new protection  architectures 
is represented by  the CAP system being built at Cambridge 
University [20] and the HYDRA system being built at 
Carnegie-Mellon University [ 2  1  ] . Recent  research reports  by 
Schroeder [ 701,  Rotenberg [59],  Spier e l  al. [79],  and 
Redell [54] propose new architectures that appear  practical 
to implement. 

B. Current  Research  Directions 
Experimentation  with  different  protection  architectures has 

been receiving less attention recently.  Instead, the  trend has 
been to  concentrate in the following five areas: 1) certification 
of  the correctness of protection system designs and implemen- 
tations, 2) invulnerability to single faults, 3) consttaints  on use 
of information  after release, 4)  encipherment of information 
with  secret  keys, and 5 )  improved authentication mechanisms. 
These five areas  are discussed in turn below. 

A  research  problem attracting  much  attention  today is how 
to  certify  the correctness of the design and implementation of 
hardware and software protection  mechanisms  There are 
actually several subproblems in  this area. 

a) One must have a precise model of the  protection goals of a 

system against which to measure the design and implementa- 
tion. When the goal is complete isolation of independent 
users, the model is straightforward  and the mechanisms of the 
virtual machine are relatively easy to  match  with  it. When 
controlled sharing of information is desired, however, the 
model is much less clear and the  attempt  to clarify it  generates 
many unsuspected questions of policy. Even attempts to  
model  the  welldocumented military security  system have led 
to surprisingly complex formulations and have exposed  for- 
midable implementation problems [ 141,  [62]. 

b) Given a precise model of the  protection goals of a  system 
and  a  working implementation of that system, the  next chal- 
lenge is to verify somehow that  the presented implementation 
actually  does  what it claims. Since protection  functions are 
usually a  kind of negative specification,  testing by sample 
cases provides almost no  information.  One proposed  approach 
uses proofs of  correctness to establish  formally that a  system 
is implemented  correctly. Most work in  this area consists of 
attempts  to  extend  methods of proving assertions about pro- 
grams to  cover the  constructs typically encountered  in  operat- 
ing systems [ 521. 

c) Most current systems  present the user with an intricate 
interface  for specifying his protection needs. The result is that 
the user has trouble figuring out how to make the specification 
and verifying that  he requested the right thing. User interfaces 
that more closely match  the mental  models  people have of 
information  protection are needed. 

d) In most operating  systems, an unreasonably large quan- 
tity of “system”  software runs  without  protection constraints. 
The reasons are many:  fancied higher efficiency,  historical ac- 
cident,  misunderstood design, and inadequate hardware sup- 
port.  The usual result is that  the essential mechanisms that 
implement protection are  thoroughly tangled with a much 
larger body of mechanisms, making certification impossibly 
complex.  In any case, a  minimum  set of  protected supervisor 
functions-a protected kernel-has not  yet been established for 
a full-scale modem operating  system. Groups  at M.I.T. [80] 
and  at Mitre [8 1 I ,  [821  are working in this area. 

Most modern operating  systems are vulnerable in  their reac- 
tion to  hardware failures. Failures that cause the system to 
misbehave are usually easy to  detect  and,  with experience, 
candidates for  automatic recovery. Far more  serious are 
failures that result in an  undetected disabling of the  protection 
mechanisms. Since routine use  of the system may not include 
attempts to  access things that should not be accessible, failures 
in access-checking circuitry may go unnoticed indefinitely. 
There is a challenging and probably solvable research  problem 
involved in guaranteeing that  protection mechanisms are in- 
vulnerable in the face of all  single hardware failures. Molho 
[83] explored this  topic in the IBM System  360/Model 50 
computer and made several suggestions for  its improvement. 
Fabry  [841 has described an experimental  “complete isola- 
tion”  system in which all operating  system decisions that 
could  affect protection are  duplicated by  independent hard- 
ware and  software. 

Another area of research  concerns  constraining the use to 
which  information may be  put  after  its release to an executing 
program. In Section I, we described such constraints as a 
fifth level of desired function.  For example, one might wish 
to  “tag” a file with a notation that any program reading that 
file is to be restricted  forever after  from printing output  on 
remote terminals located outside  the  headquarters building. 
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For  this  restriction to be  complete,  it  should  propagate  with 
all  results  created  by  the  program  and  into  other files it writes. 
Information  use  restrictions  such  as  these  are  common  in legal 
agreements (as in the agreement  between a  taxpayer  and  a  tax 
return preparing  service)  and the  problem is to  identify  cor- 
responding  mechanisms for  computer  systems  that could  help 
enforce  (or  detect  violations of) such  agreements.  Rotenberg 
explored  this  topic  in  depth  [591  and  proposed  a  “privacy 
restriction processor’’ to  aid  enforcement. 

A potentially  powerful  technique  for  protecting  information 
is to  encipher  it using a key known  only to  authorized acces- 
sors of the  information.  (Thus  encipherment is basically a 
ticket-riented  system.)  One  research  problem is how to  com- 
municate  the  keys  to  authorized users.  If this  communication 
is done  inside the  computer  system,  schemes  for  protecting 
the  keys must be devised. Strategies  for  securing  multinode 
computer  communication  networks using encipherment  are  a 
topic of  current  research;  Branstad has summarized the  state 
of the art [401.  Another  research  problem is development of 
encipherment  techniques  (sometimes called privacy  trans- 
formations)  for  random access to data. Most well-understood 
enciphering  techniques operate  sequentially  on long bit  streams 
(as  found  in  point-to-point  communications,  for  example). 
Techniques  for  enciphering  and  deciphering  small,  randomly 
selected  groups  of  bits  such as a single word or  byte of a file 
have been proposed,  but  finding  simple  and  fast  techniques 
that also  require  much  effort to cryptanalyze  (that is, with 
high work  factors) is still a  subject  for research. A block 
enciphering  system based on  a scheme suggested by Feistel was 
developed  at the IBM  T. J. Watson Research  Laboratory  by 
Smith,  Notz, and Osseck [ 381.  One  special  difficulty in this 
area is that research in  encipherment  encounters  the  practice 
of military  classification.  Since World  War  11, only  three 
papers  with  significant  contributions have appeared  in  the  open 
literature  [27],  [39],  [85] ; other papers have only  updated, 
reexplained,  or  rearranged  concepts  published  many  years 
earlier. 

Finally,  spurred  by  the  need.  for  better  credit  and  check- 
cashing authentication, considerable  research  and  development 
effort is going into  better  authentication mechanisms. Many 
of these  strategies  are based on  attempts  to measure  some 
combination of personal  attributes,  such as the  dynamics of a 
handwritten  signature  or  the  rhythm of keyboard  typing. 
Others  are  directed  toward  developing  machine-readable  iden- 
tification  cards  that are hard to  duplicate. 

Work  in progress is not well represented by published  litera- 
ture.  The reader  interested in further  information  on  some of 
the  current  research  projects  mentioned may find  useful the 
proceedings  of two panel  sessions at  the  1974  National  Com- 
puter  Conference  [861,  [871,  a  recent  workshop  [881,  and  a 
survey  paper [ 89 I . 

C. Concluding Remarks 
In reviewing the  extent  to which  protection  mechanisms  are 

systematically  understood  (which  is  not  a large extent)  and 
the  current  state of the art, one  cannot  help  but draw a parallel 
between  current  protection  inventions  and  the f i t  mass- 
produced  computers of the 1950’s. At that  time, by virtue  of 
experience  and  strongly  developed  intuition,  designers had 
confidence  that  the  architectures being designed were com- 
plete  enough to be useful. And it  turned  out  that  they were. 
Even so, it was quickly  established that matching a problem 
statement t o  the architecture-programming-was a major ef- 

fort whose magnitude was quite  sensitive to  the exact  architec- 
ture.  In  a  parallel  way,  matching  a  set of protection goals to  a 
particular  protection  architecture  by  setting  the  bits and loca- 
tions of access control lists or capabilities  or  by devising pro- 
tected  subsystems is a  matter  of  programming  the  architecture. 
Following the parallel,  it is not surprising that users of the 
current  rust  crop of protection  mechanisms have found  them 
relatively clumsy to program and  not  especially well matched 
to  the users’  image of the  problem  to be  solved,  even though 
the  mechanisms may be sufficient. As in the case  of all pro- 
gramming  systems, it wil l  be necessary  for  protection  systems 
to be used and  analyzed  and for  their users to propose dif- 
ferent,  better views  of the  necessary and sufficient  semantics 
to support  information  protection. 
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The Role of Rain  in  Satellite  Communications 

Abtrrrct-The most fundamental obstacle encountered in design of 
satellite communication systems at frequencies above 10 GHz is attenua- 
tion by rain. ‘zhe m i c r o w e  power radiated toward an earth station, 
being limited by factors such as available  primary power and size of 
antennr on the satellite, is insufticient, with present technology, to 
memnne the large attenuation produced by intense rain cells on the 
earthapace path. me d t a n t  loss of signal makes for unreliable 
trmanission. In what follows, methods of meunrrement of this atten- 
uation at vuious trequencies and a technique ded path diversity that 
substantially improves the reliability are presented. Other degradations 
produced by rain, such as depolarization, inkderence, mcrease in 
earthstation noise, and deterioration of earth-station antenna perfor- 
mance, pe also discussed. 

I 
I. INTRODUCTION 

N EARLY EXPERIMENTS using  microwaves for broad- 
band transmission  via satellite, it was quickly recognized 
that rain influenced  performance of the system. For 

example,  in  the Telstar  experiment [ 11,  in which 4 G H z  
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s igna ls  from  the satellite were  received with sensitive maser 
amplifiers [ 21 , it was found  that  the level of  noise increased 
significantly when it was  raining in  the vicinity of the receiving 
station. This increase  stemmed  primarily  from two sources: 
blackbody  radiation  from the  raindrops  in  the  sky [ 31, and 
emission and  reflection from  water  layers  that formed on  the 
radomes used to protect  the earth-station  antennas [4 ] .  It 
was  also  observed that  interfering signals could enter  such 
systems  by way  of scattering  from the  raindrops [ 5 1 . We now 
know  that al l  of these  effects  can be explained  by  theories  of 
electromagnetic wave interaction  with  liquid  water  in  its 
various  forms. All of these  theories  rely  upon  knowledge of 
the basic  microwave properties of liquid  water,  first  studied 
in  depth  by  Saxton [61. Best estimates [61, [71 of the real 
(refractive)  and  imaginary (dissipative) components of the 
refractive  index of water  are  shown  in Fig. 1 for  the wave- 
length  range  1 mm to 10 cm.  The  corresponding  frequency 
scale, 300 to 3 GHz, is shown on  the upper abscissa. The 
curves are  a  typical  lossdispersion pair representing  a reso- 
nance  in the liquid  water at a wavelength of about 1  cm (30 

Authorized licensed use limited to: Penn State University. Downloaded on January 7, 2009 at 15:48 from IEEE Xplore.  Restrictions apply.


