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INTRODUCTION
Most software that has been built and released typically 
comes with a set of defects—implementation bugs and de-
sign flaws. To date, there has been a larger focus on find-
ing implementation bugs rather than on identifying flaws. 

In 2014, the IEEE Computer Society, the leading association 
for computing professionals, launched a cybersecurity ini-
tiative with the aim of expanding and escalating its ongo-
ing involvement in the field of cybersecurity. The first step 
for the initiative was to launch the IEEE Computer Society 
Center for Secure Design. The Center intends to shift some 
of the focus in security from finding bugs to identifying 
common design flaws in the hope that software architects 
can learn from others’ mistakes. To achieve this goal, the 
Center brought people together from different organiza-
tions at a workshop in early 2014. 

At the workshop, participants discussed the types of flaws 
they either identified in their own internal design reviews, 
or that were available from external data. They arrived 
at a list they felt were the top security design flaws. Many 
of the flaws that made the list have been well known for 
decades, but continue to persist. In this document is the 
result of that discussion—and how to avoid the top 10 
security flaws. 
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MISSION STATEMENT
The IEEE Computer Society’s Center for Secure Design (CSD) will gather software 
security expertise from industry, academia, and government. The CSD provides 
guidance on:

• Recognizing software system designs that are likely vulnerable to compromise.
• Designing and building software systems with strong, identifiable security 

properties.

The CSD is part of the IEEE Computer Society’s larger cybersecurity initiative, 
launched in 2014.

http://www.computer.org
www.ieee.org
http://cybersecurity.ieee.org/
http://cybersecurity.ieee.org/
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PREAMBLE
The goal of a secure design is to enable 
a system that supports and enforces 
the necessary authentication, autho-
rization, confidentiality, data integ-
rity, accountability, availability, and 
non-repudiation requirements, even 
when the system is under attack.

While a system may always have 
implementation defects or “bugs,” we 
have found that the security of many 
systems is breached due to design 
flaws or “flaws.” We believe that if 
organizations design secure systems, 
which avoid such flaws, they can 
significantly reduce the number and 
impact of security breaches.

While bugs and flaws are both differ-
ent types of defects, we believe there 
has been quite a bit more focus on 
common bug types than there has 
been on secure design and the avoid-
ance of flaws. Before we discuss our 
contribution in this document, we 
briefly discuss the differences be-
tween bugs and flaws.

Both bugs and flaws are types of 
defects. A defect may lie dormant in 
software for years only to surface 

in a fielded system with major con-
sequences. A bug is an implemen-
tation-level software problem. Bugs 
may exist in code but never be exe-
cuted. A flaw, by contrast, is a prob-
lem at a deeper level. Flaws are often 
much more subtle than simply an off-
by-one error in an array reference or 
use of an incorrect system call. A flaw 
might be instantiated in software 
code, but it is the result of a mistake 
or oversight at the design level. For 
example, a number of classic flaws 
exist in error-handling and recovery 
systems that fail in an insecure or 
inefficient fashion.

In this document, a group of software 
security professionals have contrib-
uted both real-world data and ex-
pertise to identify some of the most 
significant design flaws that have led 
to security breaches over the past 
several years. The list of issues pre-
sented here is focused entirely on the 
most widely and frequently occurring 
design flaws as compiled from data 
provided by the member organiza-
tions of the IEEE Computer Society 
Center for Secure Design (CSD).
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EARN OR GIVE,  
BUT NEVER ASSUME, TRUST
Software systems comprising more than just a 
single monolithic component rely on the compo-
sition and cooperation of two or more software 
tiers or components to successfully accomplish 
their purpose. These designs often depend on 
the correct functioning of the existing parts. 
They will be inherently insecure if any of those 
parts are run in a potentially hostile environ-
ment, such as a user’s desktop computer, an un-
managed device, or a runtime or sandbox that 
can be tampered with by an attacker.

Offloading security functions from server to 
client exposes those functions to a much less 
trustworthy environment, which is one of the 
most common causes of security failures predi-
cated on misplaced trust.

Designs that place authorization, access control, 
enforcement of security policy, or embedded 
sensitive data in client software thinking that 
it won’t be discovered, modified, or exposed 
by clever users or malicious attackers are in-
herently weak. Such designs will often lead to 
compromises.

Classic examples of software where trust is 
misplaced include a web browser or a thick- 
client application, but there are many more 
examples of client software. They include appli-
cations running on a mobile device, or embed-
ded software that might be found in modern 

automobiles, pacemakers, gaming systems, or 
home appliances. Even calls into your APIs from 
business partners could be considered client 
software in some sense.

When untrusted clients send data to your sys-
tem or perform a computation on its behalf, the 
data sent must be assumed to be compromised 
until proven otherwise. In some cases you may 
be able to guarantee that the client is, indeed, 
who it attests it is, or that the business logic it 
contains has not been altered or circumvented, 
or that external factors have not influenced 
the integrity of the computations it performed. 
But these situations are not the rule, and these 
underlying assumptions can change when new 
vulnerabilities are discovered. It is safer in the 
long run to design a software system under the 
assumption that components running on any 
platform whose integrity can’t be attested are 
inherently not trustable, and are therefore un-
suitable for performing security sensitive tasks.

If, nonetheless, security operations must be off-
loaded to components running on an untrusted 
platform, the design should impose extreme 
caution on how the computation and its output 
are treated.

Common weaknesses related to client trust 
reside in various parts of the system, but 
tend to share a sensibility. A designer might 

EARN OR GIVE
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(incorrectly) assume that server APIs will al-
ways be called in the same order every time. 
He or she might believe that the user interface 
is always able to restrict what the user is able 
to send to the server. He could try to build the 
business logic solely on the client side, or at-
tempt to actually store a secret in the client. 
And, of course, a designer can run into danger 
by thinking that any intellectual property (IP) 
sent to the client can be protected through tech-
nical means. 

Though security-aware development strategies 
cannot eliminate all these problems (or even 
resolve conflicts in goals for the software being 
developed), there are useful ways to minimize 
the potential risks. For example, some orga-
nizations will claim a real business need to 
store intellectual property or other sensitive 
material on the client. The first consideration 
is to confirm that sensitive material really does 
need to be stored on the client. When it truly is 
necessary to do so, various binary protection 
mechanisms can delay the leaking of sensitive 
material. Possible techniques to consider in-
clude obfuscation or anti-debugging (although 
the strength of these protections vary widely, 
so designers should understand the level of 
protection actually achieved with each tool or 
technique). Subject matter experts should be 

consulted if the system requires a client com-
ponent with a level of protection that cannot be 
trivially compromised.  

If IP or sensitive material must be stored or sent 
to the client, the system should be designed 
to be able to cope with potential compromise. 
For instance, the same shared secret or other 
cryptographic material shouldn’t be used on all 
the clients. Make the validity of what is offload-
ed to the client limited in time, set expiration 
dates for data stored in the client, watermark 
IP, and double-check client computations that 
are security sensitive. On a related note, design 
your system to work in a limited fashion even 
when one or many clients have been completely 
compromised.

Finally, make sure all data received from an 
untrusted client are properly validated before 
processing. Follow the guidance described in the 
“Define an Approach that Ensures All Data Are 
Explicitly Validated” section.

When designing your systems, be sure to con-
sider the context where code will be executed, 
where data will go, and where data entering 
your system comes from. Failing to consider 
these things will expose you to vulnerabilities 
associated with trusting components that have 
not earned that trust.

Make sure all data received from 
an untrusted client are properly 
validated before processing.



112014

USE AN AUTHENTICATION 
MECHANISM THAT CANNOT BE 
BYPASSED OR TAMPERED WITH
Authentication is the act of validating an en-
tity’s identity. One goal of a secure design is to 
prevent an entity (user, attacker, or in general a 
“principal”) from gaining access to a system or 
service without first authenticating. Once a user 
has been authenticated, a securely designed sys-
tem should also prevent that user from chang-
ing identity without re-authentication. 

Authentication techniques require one or more 
factors such as: something you know (e.g., a 
password), something you are (e.g., biometrics 
such as fingerprints), or something you have 
(e.g., a smartphone). Multi-factor (sometimes 
referred to as N-factor) authentication refers 
to the technique of requiring multiple distinct 
factors to prove your identity. Authentication 
via a cookie stored on a browser client may be 
sufficient for some resources; stronger forms 
of authentication (e.g., a two-factor method) 
should be used for more sensitive functions, 
such as resetting a password. 

In general, a system should consider the 
strength of the authentication a user has 
provided before taking action. Note also that 
authentication encompasses more than just 
human-computer interaction; often, in large 
distributed systems, machines (and/or pro-
grams running on those machines) authenticate 
themselves to other machines. 

The ability to bypass an authentication mech-
anism can result in an unauthorized entity 
having access to a system or service that it 
shouldn’t. For example, a system that has an 

authentication mechanism, but allows a user to 
access the service by navigating directly to an 
“obscure” URL (such as a URL that is not direct-
ly linked to in a user interface, or that is simply 
otherwise “unknown” because a developer has 
not widely published it) within the service with-
out also requiring an authentication credential, 
is vulnerable to authentication bypass.

The use of authentication techniques that 
don’t fall into the category of something you 
know, something you are, or something you 
have may also allow users to access a system 
or service they shouldn’t. System designers 
should beware of authentication techniques 
that depend on assumptions about sole pos-
session of resources that may actually be 
shared. For example, authentication mech-
anisms that identify a user by their IP ad-
dress wouldn’t be useful if the addresses were 
shared among different users at different 
times; for instance, via an address-sharing/
configuration protocol such as DHCP.

Even when IP addresses are tied to particular 
devices, authentication based on device ad-
dresses is not a substitute for user authenti-
cation, as IP addresses can be spoofed and are 
not necessarily associated with specific users 
for a long time. As another concrete illustra-
tion, authentication mechanisms that rely on 
a computer’s MAC address, which can easily be 
changed or spoofed, can result in unauthorized 
access if the device assumed to be identified 
with that individual is lost or stolen.

USE AN AUTHEN
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Typically, the act of authentication results in the 
creation of a token, capability (as often referred 
to in operating systems literature), or ticket 
representing a principal that is used throughout 
the system or service. If such tokens (or creden-
tials) are deterministically derived from easy-
to-obtain information, such as a user name, 
then it becomes possible to forge identities, 
allowing users to impersonate other users.

Credentials must not be easy to forge. Upon 
successful authentication, the user may be pro-
vided with an authentication credential, token, 
or ticket, which can be provided back to the 
system so that the user does not need to be re- 
authenticated for every request or transaction 
made via the system. At the same time, if it is 
possible for an attacker to forge the authentica-
tion credential, token, or ticket, the attacker can 
bypass the authentication mechanism. System 
designers can reuse time-tested authentication 
mechanisms such as Kerberos instead of build-
ing a new one. Alternatively, system designers 
are encouraged to use cryptography correctly 
(see the corresponding “Using Cryptography 
Correctly” section later in this document) in 
constructing authentication credentials, tokens, 
and tickets.

If an authentication system does not limit the 
lifetime of an authentication interaction, then 
it may inadvertently grant access to a user to 
whom it should not. For example, imagine a user 
who logs into a public terminal and then walks 
away without logging out (which should termi-
nate the session). A second user using the public 
terminal might now be able to use the system 
or service as the first user. A properly designed 
authentication system may automatically log 
the user out after a period of inactivity.

Authentication system designs should automati-
cally provide a mechanism requiring re-authen-
tication after a period of inactivity or prior to 
critical operations. As an example, upon receiv-
ing a transaction request to conduct certain 
sensitive actions such as changing a password, 
or transferring funds to another financial insti-
tution, a system could ask the user to re-enter 

their existing password again to confirm their 
transaction request, even though the user may 
already be authenticated. 

The design of a system’s re-authentication 
scheme, and when and how often to ask a user 
to re-enter their password, needs to be mind-
ful of not only security, but also usability and 
convenience. Asking users to frequently re-enter 
their password can be damaging to security, as 
it trains people’s muscle memory to enter their 
password every time they see a prompt and sets 
them up as easy phishing targets.

By far the most common authentication mech-
anism remains the password. Using passwords 
requires that the system or service have a 
mechanism to associate a given password with 
a particular user. If this information is not prop-
erly stored, it may be possible for agents other 
than the user to obtain access to them. Storing 
such information securely is non-trivial, and 
the reader is referred to the use of an applied 
cryptography expert as noted in the “Using 
Cryptography Correctly” section for guidance. 
Just as it is advisable to reuse tried and tested 
cryptographic algorithms, it is also advisable to 
re-use already built and tested password man-
agement systems instead of building new ones.

It’s preferable to have a single method, compo-
nent, or system responsible for authenticating 
users. Such a single mechanism can serve as a 
logical “choke point” that cannot be bypassed. 
Much as in code reuse, once a single mechanism 
has been determined to be correct, it makes 
sense to leverage it for all authentication. 

To summarize, authentication mechanisms are 
critical to secure designs. They can be suscep-
tible to various forms of tampering and may 
potentially be bypassed if not designed correct-
ly. We recommend that a single authentication 
mechanism leverage one or more factors as per 
an application’s requirements, that it serve as a 
“choke point” to avoid potential bypass, and that 
authentication credentials have limited life-
times, be unforgeable, and be stored so that if 
the stored form is stolen, they cannot easily be 
used by the thief to pose as legitimate users.
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AUTHORIZE AFTER  
YOU AUTHENTICATE
While it is extremely important to assess a us-
er’s identity prior to allowing them to use some 
systems or conduct certain actions, knowing the 
user’s identity may not be sufficient before de-
ciding to allow or disallow the user to perform 
certain actions. For instance, once an automatic 
teller machine (ATM) authenticates a user via 
something they have (a debit card), and some-
thing they know (a PIN), that does not necessar-
ily mean that user is allowed to withdraw an 
arbitrary amount of cash from their account. 
Most users may be authorized to withdraw up 
to a certain limit per day, or to conduct certain 
actions (view balance) but not others (transfer 
funds outside the bank) from the ATM.

Authorization should be conducted as an explic-
it check, and as necessary even after an initial 
authentication has been completed. Authoriza-
tion depends not only on the privileges associ-
ated with an authenticated user, but also on the 
context of the request. The time of the request 
and the location of the requesting user may 
both need to be taken into account. 

Sometimes a user’s authorization for a system 
or service needs to be revoked, for example, 
when an employee leaves a company. If the 
authorization mechanism fails to allow for such 
revocation, the system is vulnerable to abuse 

by authenticated users exercising out-of-date 
authorizations.

For particularly sensitive operations, authoriza-
tion may need to invoke authentication. Although 
authorization begins only after authentication 
has occurred, this requirement is not circular. 
Authentication is not binary— users may be re-
quired to present minimal (such as a password) or 
more substantial (e.g. biometric or token-based) 
evidence of their identity, and authentication in 
most systems is not continuous— a user may 
authenticate, but walk away from the device or 
hand it to someone else. Hence authorization of a 
specially sensitive operation (for example, trans-
ferring a sum of money larger than a designated 
threshhold) may require a re-authentication or 
a higher level of authentication. Some policies re-
quire two people to authorize critical transactions 
(“two-person rule”). In such cases, it is important 
to assure that the two individuals are indeed 
distinct; authentication by password is insufficient 
for this purpose.

Finally, just as a common infrastructure (e.g., 
system library or back end) should be responsi-
ble for authenticating users, so too should com-
mon infrastructure be re-used for conducting 
authorization checks.

AUTHORIZE AFTER
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STRICTLY SEPARATE DATA  
AND CONTROL INSTRUCTIONS, 
AND NEVER PROCESS CONTROL 
INSTRUCTIONS RECEIVED  
FROM UNTRUSTED SOURCES
Co-mingling data and control instructions in 
a single entity, especially a string, can lead to 
injection vulnerabilities. Lack of strict sepa-
ration between data and code often leads to 
untrusted data controlling the execution flow 
of a software system. This is a general prob-
lem that manifests itself at several abstraction 
layers, from low-level machine instructions and 
hardware support to high-level virtual machine 
interpreters and application programming 
interfaces (APIs) that consume domain-specific 
language expressions.

“At lower layers, lack of strict segregation be-
tween data and control instructions can mani-
fest itself in memory-corruption vulnerabilities, 
which in turn may permit attacker-controlled 
modifications of control flow or direct execution 
of attacker-controlled data as machine or byte-
code instructions.”

At higher levels, co-mingling of control and data 
often occurs in the context of runtime inter-
pretation of both domain-specific and general- 
purpose programming languages. In many lan-
guages, control instructions and data are often 
segregated using in-band syntactic constructs, 
such as quoting and escaping. If software as-
sembles a string in a parseable language by 

combining untrusted data with trusted control 
instructions, injection vulnerabilities arise if 
the untrusted data are insufficiently validated 
or escaped. In that situation, an attacker may 
be able to supply data crafted such that when 
the resulting expression is processed, parts of 
the data are parsed and interpreted as control 
(rather than uninterpreted data, as intend-
ed). Experience has shown that use of injec-
tion-prone APIs incurs significant risk that in-
jection vulnerabilities will indeed be introduced. 
Examples of such vulnerabilities include SQL 
query injection, cross-site JavaScript injection, 
and shell command injection.

At lower levels, software platforms can utilize 
hardware capabilities to enforce separation of 
code and data. For example, memory access 
permissions can be used to mark memory that 
contains only data as non-executable and to 
mark memory where code is stored as execut-
able, but immutable, at runtime. Modern oper-
ating systems take advantage of such hardware 
features to implement security mechanisms 
that harden the entire software stack against 
multiple forms of attack. Software designs that 
ignore the principle of strict separation between 
data and code, or that blur the line that dis-
tinguishes one from the other, are inherently 

STRICTLY SEPARATE
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less secure because they undermine or directly 
invalidate low-level security mechanisms.

When designing languages, compilers, virtual 
machines, parsers and related pieces of infra-
structure, consider control-flow integrity and 
segregation of control and potentially untrusted 
data as important design goals. 

When designing APIs (both general-purpose or 
public interfaces as well as those that are do-
main- or application-specific), avoid exposing 
methods or endpoints that consume strings in 
languages that embed both control and data. 
Prefer instead to expose, for example, methods 
or endpoints that consume structured types 
that impose strict segregation between data 
and control information.

When designing applications that rely on exist-
ing APIs, avoid APIs that mingle data and con-
trol information in their parameters, especially 
when those parameters are strings. If there is 
no choice in underlying APIs (for example, if the 
use of a relational database requires interfacing 
through a SQL query API), it is often desirable 
to encapsulate the injection-prone interface 
and expose its functionality to application code 
through a higher-level API that enforces strict 
segregation between control statements and 
potentially untrusted data.

A design that relies on the ability to transform 
data into code should take special care to vali-
date the data as fully as possible and to strictly 
constrain the set of computations that can be 
performed using data as an input language. 
Specific areas of concern include the eval func-
tion, query languages, and exposed reflection.

Eval. Many interpreted languages (such as Py-
thon, Ruby, and JavaScript) have an eval func-
tion that consumes a string consisting of syntax 
in that language and invokes the language’s 
interpreter on the string. Use of a language’s 
eval facility can permit the implementation of 
very powerful features with little code, and is 

therefore tempting. It is also very dangerous. 
If attackers can influence even part of a string 
that is evaluated and that substring is not ap-
propriately validated or encoded, they can often 
execute arbitrary code as a result. 

Query languages. Ensuring that appropriate 
validation or escaping is consistently applied in 
all code that interfaces with the query API is a 
difficult and error-prone process; implementing 
that functionality repeatedly increases the risk 
of injection vulnerabilities. Use or develop an 
API that mediates between application code and 
raw query-language based interfaces (such as 
SQL, LDAP) and exposes a safer API. Avoid code 
that constructs queries based on ad-hoc string 
concatenation of fixed query stanzas with po-
tentially untrusted data.

Exposed reflection. Many programming lan-
guages provide facilities that allow programs 
to reflectively inspect and manipulate objects, 
as well as to invoke methods on objects. Use 
of reflection can be very powerful, and often 
permits the implementation of complex features 
using minimal code. For example, implementa-
tions of object serializers and deserializers used 
to marshal and unmarshal in-memory objects 
into and from a serialized form for persistence 
or network transfer can often be implemented 
very effectively using reflection.

However, as with eval, use of reflection can be 
a risky design choice. Unless inputs processed 
with reflection are very carefully controlled, 
bugs can arise that may permit the attacker to 
execute arbitrary code in the receiving process. 
It is often preferable to consider alternative, 
safer designs. For example, consider a design 
based on code-generation: a code-generated, 
reflection-free object serializer/deserializer is 
restricted to behaviors allowed by the explicitly 
generated code. This code is in turn generated 
at build/compile-time, where the code-genera-
tion process cannot be influenced by malicious 
inputs.
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DEFINE AN APPROACH  
THAT ENSURES ALL DATA  
ARE EXPLICITLY VALIDATED
Software systems and components commonly 
make assumptions about data they operate on. 
It is important to explicitly ensure that such as-
sumptions hold: vulnerabilities frequently arise 
from implicit assumptions about data, which 
can be exploited if an attacker can subvert and 
invalidate these assumptions.

As such, it is important to design software sys-
tems to ensure that comprehensive data valida-
tion actually takes place and that all assump-
tions about data have been validated when they 
are used.

It is furthermore desirable to design software to 
make it feasible for a security reviewer to effec-
tively and efficiently reason about and verify 
the correctness and comprehensiveness of data 
validation. Designing for verifiability should 
take into account that code typically evolves 
over time, resulting in the risk that gaps in data 
validation are introduced in later stages of the 
software life-cycle. 

Design or use centralized validation mecha-
nisms to ensure that all data entering a system 
(from the outside) or major component (from 
another component of the same system) are 
appropriately validated. For example:

• It is desirable for web applications to utilize a 
mechanism (such as a request filter or inter-
ceptor facility provided by the underlying web 
application framework) to centrally intercept 
all incoming requests, and to apply basic in-
put validation to all request parameters.

• Implementations of communication proto-
cols might centrally validate all fields of all 
received protocol messages before any actu-
al processing takes place.

• Systems consuming complex data formats 
(such as XML documents, image file for-
mats, or word processing file formats) might 
perform parsing, syntactic validation, and 
semantic validation of input files in a dedi-
cated validation module whose output is a 
validated internal object representation of 
the input document. Parsers and validators 
must themselves be designed to robustly 
cope with potentially malicious or mal-
formed inputs.

Transform data into a canonical form, before 
performing actual syntactic or semantic vali-
dation. This ensures that validation cannot be 
bypassed by supplying inputs that are encoded 
in a transport encoding, or in a possibly invalid 
non-canonical form. 

DEFINE AN APPROA
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Use common libraries of validation primitives, 
such as predicates that recognize well-formed 
email addresses, URLs, and so forth. This en-
sures that all validation of different instances 
of the same type of data applies consistent 
validation semantics. Consistent use of com-
mon validation predicates can also increase the 
fidelity of static analysis. Validation should be 
based on a whitelisting approach, rather than 
blacklisting.

Input validation requirements are often 
state-dependent. For instance, in a stateful pro-
tocol, the set of valid values of a particular pro-
tocol message field (and hence the corresponding 
validation requirements) may depend on the pro-
tocol’s state. In such scenarios, it can be benefi-
cial to design the protocol implementation’s input 
validation component to be itself state-aware.

Explicitly re-validate assumptions “nearby” 
code that relies on them. For example, the entry 
points of a web application’s business-logic layer 
should explicitly re-state, and check as precon-
ditions, all assumptions that it relies on. Liberal 
use of precondition checks in the entry points 
of software modules and components is highly 
recommended. Such precondition checks should 
never fail during execution of the deployed 
application, assuming the higher layers of the 
application have correctly validated external 
inputs. And as such, it is unnecessary for the 
business-logic layer to produce friendly error 
messages should such a precondition fail. Nev-
ertheless, re-validation of data supplied to the 
business-logic layer provides two benefits:

• It protects against vulnerabilities that arise 
from insufficient input validation in a high-
er layer (since the developer of the higher 
layer may not have a full understanding of 
all the requirements and assumptions of the 
lower layer), or from additional data-flows 
that were not considered during the initial 
security design (e.g., a data-load job that 
calls the business layer with data read from 
a file format used to exchange information 

between affiliated organizations, and which 
does not perform the same level of data 
validation as the web front end, based on the 
possibly invalid assumption that such files 
are “trusted”).

• It permits local reasoning about the cor-
rectness of a component; since assumptions 
are explicitly checked and stated, a human 
reviewer or static analysis tool can truly as-
sume the assumptions actually hold, without 
having to consider all (possibly very com-
plex) data flows into the component.

Use implementation-language-level types to 
capture assumptions about data validity. For 
example, an application that receives as an input 
a date and time in string representation should 
validate that this input indeed consists of a well-
formed string representation of a date and time 
(for example, in ISO 8601 format). It is desirable 
to implement validation by parsing the input 
into a typed representation (such as a “date 
and time” type provided in many programming 
language’s standard libraries), and to use that 
typed representation (and not the original input 
string) throughout the program. Downstream 
components are then relieved from having to 
consider the possibility that a provided value 
(such as a date) is syntactically invalid, and can 
focus on only checking additional preconditions 
that are not supported by the type’s contract 
(e.g., that a date is not in the future).

Various problems arise from failure to address 
this security design principle.

• Injection vulnerabilities can arise if un-
trusted data are used without validation in 
certain contexts, such as APIs and platform 
features that process and interpret strings 
with certain semantics. For example:

• Using an externally controlled string as a 
component of a file path can lead to path 
traversal vulnerabilities, unless the appli-
cation validates that the input represents 
a single path component (and, in particu-
lar, does not contain path separators).
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• If an externally controlled string is used 
in a context in a HTML document where 
it will be interpreted as a URL, a Cross-
Site Scripting (XSS) vulnerability can 
arise unless it has been validated that 
the string represents a well-formed URL 
with a benign scheme (such as http:/
https:, and, in particular, not javascript:, 
vbscript:, data:, or others).

• It is generally preferable to perform data 
validation relevant to the prevention of 
injection vulnerabilities in the implemen-
tation of the API that is subject to injection 
vulnerabilities, or in a wrapper API in case 
the underlying API cannot be modified. See 
also “Strictly Separate Data and Control 
Instructions, and Never Process Control In-
structions Received from Untrusted Sources” 
section.

• Attempting to validate data that are not 
in canonical form can allow validation to 
be bypassed. For example, it is difficult to 
validate that an input string represents a 
single path component (free of path separa-
tor characters) unless the input has been 
fully decoded (with respect to transport 
encodings) and has been validated to be in a 
canonical character encoding—otherwise, 
it might be possible for an attacker to sneak 
a path separator past the input validation 
by representing it in an encoded form (for 
example, %-encoding commonly used in web 
applications), or in the form of a non-ca-
nonical character encoding (for example, a 
non-canonical UTF-8 encoding). 

• In applications implemented in non-memory 

safe languages such as C, failing to care-
fully validate external inputs can result in 
memory corruption vulnerabilities such as 
buffer overflows, unbounded memory reads, 
null-terminated string issues, and so on.

• Accepting inputs from untrusted sources 
without enforcement of an upper bound on 
data size can result in resource exhaustion.

• In general, aside from memory corruption 
and resource exhaustion issues, data that 
are not validated cause security issues 
primarily when they are used in a way that 
influences control flow. Data that are simply 
being copied around (e.g., received from an 
external input, then stored in a database, 
and later displayed in UI) are generally 
harmless. Problems arise if the application 
inspects the data and makes control flow de-
cisions based on the data’s value. This most 
immediately applies to data that are used 
in contexts where they are interpreted as 
instructions or control, leading to injection 
vulnerabilities as discussed earlier.  
 
More generally however, control-flow depen-
dencies on untrusted, non-validated data 
can lead to state corruption vulnerabilities, 
or execution of state transitions that the 
programmer did not intend or consider. Typi-
cally, security vulnerabilities in this category 
are highly domain- and application-specific, 
and hence are difficult to reason about and 
detect by general-purpose tools. Careful, 
state-dependent validation of inputs can go 
a long way toward mitigating this risk.

Typically, security vulnerabilities 
in this category are highly domain-
and application-specific.
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USE CRYPTOGRAPHY CORRECTLY
Cryptography is one of the most important tools 
for building secure systems. Through the proper 
use of cryptography, one can ensure the confi-
dentiality of data, protect data from unautho-
rized modification, and authenticate the source 
of data. Cryptography can also enable many oth-
er security goals as well. Cryptography, however, 
is not a panacea. Getting cryptography right is 
extremely hard. We list common pitfalls. 

• Rolling your own cryptographic algorithms 
or implementations. Designing a cryp-
tographic algorithm (including protocols and 
modes) requires significant and rare mathe-
matical skills and training, and even trained 
mathematicians sometimes produce algo-
rithms that have subtle problems. There are 
also numerous subtleties with implementing 
cryptographic algorithms. For example, the 
order of operations involved when exponen-
tiating a number—something common in 
cryptographic operations—can leak secret 

information to attackers. Standard algo-
rithms and libraries are preferable.

• Misuse of libraries and algorithms. Even 
when using strong libraries, do not assume 
that just using the libraries will be suffi-
cient. There have been numerous instances 
in which standard libraries were used, but 
the developers using the libraries made 
incorrect assumptions about how to use 
the library routines. In other situations, 
developers don’t choose the right algorithm 
or use the algorithm incorrectly. For exam-
ple, an encryption scheme may protect the 
confidentiality of data, but may not pro-
tect against malicious modifications to the 
data. As another example, if an algorithm 
requires an initialization vector (IV), then 
choosing an IV with certain properties may 
be required for the algorithm to work se-
curely. Understanding the nuances of algo-
rithm and library usage is a core skill for 
applied cryptographers. 

USE CRYPTOGRAPH
CORRECTLY
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• Poor key management. When everything 
else is done correctly, the security of the 
cryptographic system still hinges on the pro-
tection of the cryptographic keys. Key man-
agement mistakes are common, and include 
hard-coding keys into software (often ob-
served in embedded devices and application 
software), failure to allow for the revocation 
and/or rotation of keys, use of cryptographic 
keys that are weak (such as keys that are 
too short or that are predictable), and weak 
key distribution mechanisms.

• Randomness that is not random. Confusion 
between statistical randomness and cryp-
tographic randomness is common. Cryp-
tographic operations require random num-
bers that have strong security properties. In 
addition to obtaining numbers with strong 
cryptographic randomness properties, care 
must be taken not to re-use the random 
numbers.

• Failure to centralize cryptography. Numer-
ous situations have been observed in which 
different teams within an organization each 
implemented their own cryptographic rou-
tines. Cryptographic algorithms often don’t 

interact nicely. Best practices indicate get-
ting it “right” once and reusing the compo-
nent elsewhere.

• Failure to allow for algorithm adaptation 
and evolution. For more on this, please see 
“Design for changes in the security proper-
ties of components beyond your control” in 
the “Be Flexible When Considering Future 
Changes to Objects and Actors” section.

Cryptography is so hard to get right that it 
always makes sense to work with an expert if 
you can. Note that expertise in applied cryptog-
raphy is not the same as being a mathemati-
cian and having a mathematical understanding 
of cryptography. At the highest level, make use 
of proven algorithms and libraries, but realize 
that just the use of such things does not guar-
antee security—it is easy to accidentally misuse 
these things. Have a cryptography expert work 
with your designers to provide an API abstrac-
tion around a strong library, so that your devel-
opers are not making decisions on algorithms 
and cipher modes, and so that if you need to 
change algorithms behind that abstraction 
layer, you can.

Cryptographic algorithms 
often don’t interact nicely.
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IDENTIFY SENSITIVE  
DATA AND HOW THEY  
SHOULD BE HANDLED
Data are critical to organizations and to users. 
One of the first tasks that systems designers 
must do is identify sensitive data and determine 
how to protect it appropriately. Many deployed 
systems over the years have failed to protect 
data appropriately. This can happen when de-
signers fail to identify data as sensitive, or when 
designers do not identify all the ways in which 
data could be manipulated or exposed. 

Data sensitivity is context-sensitive. It depends 
on many factors, including regulation (which is 
often mandatory), company policy, contractu-
al obligations, and user expectation. Note that 
sensitive data are not always user-generated 
input. Rather, they include data computed from 
scratch, data coming from external sensors (for 
example, geolocation and accelerometer data 
on mobile devices), cryptographic material, and 
Personally Identifiable Information (PII). Creat-
ing a policy that explicitly identifies different 
levels of classification is the first step in han-
dling data appropriately.

It is important to factor all relevant consid-
erations into the design of a data sensitivity 
policy. For example, there are numerous reg-
ulations that system designers must consider, 
ultimately creating a unified approach that con-
sistently addresses them all. A number of exam-
ples may help to flesh this out: various jurisdic-
tions impose regulations on how personal data 
should be handled (such as medical records); the 
EU Data Protection Directive differs from the 
regulations in the United States; and PCI com-
pliance issues, though not regulatory, directly 
affect data protection requirements.

Not all data protection requirements are the 

same. For some data, confidentiality is critical. 
Examples include financial records and corpo-
rate intellectual property. For data on which 
business continuity or life depends (for example, 
medical data), availability is critical. In other 
cases, integrity is most important. Spoofing or 
substituting data to cause a system to misbe-
have intentionally are examples of failures to 
ensure data integrity. Do not conflate confiden-
tiality alone with data protection.

Technical data sensitivity controls that a de-
signer might consider include access control 
mechanisms (including file protection mecha-
nisms, memory protection mechanisms, and 
database protection mechanisms), cryptogra-
phy to preserve data confidentiality or integrity, 
and redundancy and backups to preserve data 
availability.

Data sets do not exist only at rest, but in tran-
sit between components within a single system 
and between organizations. As data sets tran-
sit between systems, they may cross multiple 
trust boundaries. Identifying these boundaries 
and rectifying them with data protection poli-
cies is an essential design activity. Trust is just 
as tricky as data sensitivity, and the notion of 
trust enclaves is likely to dominate security 
conversations in the next decade. 

Policy requirements and data sensitivity can 
change over time as the business climate 
evolves, as regulatory regimes change, as sys-
tems become increasingly interconnected, and 
as new data sources are incorporated into a 
system. Regularly revisiting and revising data 
protection policies and their design implications 
is essential.
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ALWAYS CONSIDER THE USERS
Almost every software system in existence 
today interacts in one way or another with 
human beings. The users of a software system 
range from those in charge of fielding, config-
uring, and maintaining it operationally to those 
who actually use it for its intended purpose, the 
system’s end users.

The security stance of a software system is 
inextricably linked to what its users do with it. It 
is therefore very important that all security-re-
lated mechanisms are designed in a manner 
that makes it easy to deploy, configure, use, and 
update the system securely. Remember, secu-
rity is not a feature that can simply be added 
to a software system, but rather a property 
emerging from how the system was built and is 
operated. 

The way each user interacts with software is 
dictated not only by the design and implemen-
tation decisions of its creators but also by the 
cognitive abilities and cultural background of 
its users. Consequently, it is important that 
software designers and architects consider how 
the physical abilities, cultural biases, habits, 
and idiosyncrasies of the intended users of the 
system will impact its overall security stance. It 
is also a truism that during the life of any mod-
erately useful system, a few users will discover 
capabilities that are outside the intentions of 
the system’s designers and builders. Some of 
those capabilities may very well have significant 
security implications.

Usability and user experience considerations 
are often the most important factors ensuring 
that software systems operate in a secure man-
ner. Designing systems that can be configured 
and used in a secure manner with easy-to-use, 
intuitive interfaces and sufficiently expressive, 
but not excessive, security controls is crucial. 

However, it is dangerous to assume that every 
intended user of the system will be interested 
in security—or will even be well-meaning. The 
challenge to designers and architects lies in 
creating designs that facilitate secure configu-
ration and use by those interested in doing so, 
designs that motivate and incentivize secure 
use among those not particularly interested in 
software security, and designs that prevent or 
mitigate abuse from those who intend to weak-
en or compromise the system. 

Failing to address this design principle can lead 
to a number of problems:

• Privilege escalation may result from a fail-
ure to implement an authorization model 
that is sufficiently tied to the authenticated 
entity (user) in all cases. Escalation failures 
may also occur when higher-privileged func-
tions are not protected by the authorization 
model and where assumptions about inac-
cessibility are incorrect. 

• A particular failure of appropriate autho-
rization can allow a breach of the intended 
authorization and isolation between users 

ALWAYS CONSIDER T
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such that one user may access another us-
er’s data.

• When designers don’t “remember the user” 
in their software design, inadvertent disclo-
sures by the user may take place. If it is diffi-
cult to understand the authorization model, 
or difficult to understand the configuration 
for visibility of data, then the user’s data are 
likely to be unintentionally disclosed.

• Default configurations that are “open” (that 
is, default configurations that allow access 
to the system or data while the system is 
being configured or on the first run) assume 
that the first user is sophisticated enough 
to understand that other protections must 
be in place while the system is configured. 
Assumptions about the sophistication or 
security knowledge of users are bound to be 
incorrect some percentage of the time. This 
is particularly true at the startup and ini-
tialization of the system.

• If the security configuration is difficult or 
non-intuitive, the result will be an inability 
to configure the product to conform to the 
required security policy.

• Designers sometimes fail to account for the 
fact that authenticated and properly autho-
rized users can also be attackers! This design 
error is a failure to distrust the user, result-
ing in authorized users having opportunities 
to misuse the system.

• When security is too hard to set up for a 
large population of the system’s users, it will 
never be configured, or it will not be config-
ured properly. This is especially dangerous 
where the system’s defaults are “open” or 
insecure. For example, if there are too many 
clicks required for the user to get from the 
main page or screen to a security control 
panel, users are unlikely to persist through 
the labyrinth of clicks.

• Failure to consider the needs of program-
mers who must code to an API will cause the 
intended automation patterns to be missed. 
Programmers are a class of users who also 
require that the interface they consume be 
intuitive enough to guide them to correct 
usage patterns. Because a misunderstand-
ing of an API occurs within the program 
that uses it, problems may not be readily 
apparent (appearing perhaps only obliquely, 
within log files of the ongoing activity), and 
the debugging of the problem difficult; this 
failure can be one of the most difficult to 
find and fix. Additionally, if the API must be 
changed, many if not all consumers of the 
API may be forced into further changes, thus 
spreading the original failure throughout 
the ecosystem.

• Failure to consider the possibility of “collat-
eral damage” that can occur from included 
or embedded software or data in the user 
interface may cause an inadvertent or un-
intentional leaks of personal data. Consider 
the capture of a bystander in a personal 
photo taken in a public place. Even if that 
passerby is not a user of software, the by-
stander’s privacy may be compromised if 
that image is posted online later.

• Failure to consider the user’s data during 
setup, use, and revocation/termination may 
cause unintended data to be gathered and 
stored against the users’ wishes, or may hold 
onto data that should have been removed 
completely after the user has stopped using 
the service and closed his or her account. 
For example, when a user decides to stop 
using the system, is the private data easy for 
the user to destroy?

• Failure to consider the many different class-
es of users (blind users, language proficien-
cy, children, people with different mental 
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capabilities, etc.) will exclude those classes of 
users from the software -- or, alternatively, 
make the software too difficult to use effec-
tively. Most importantly, when designing the 
security of the system, failure to consider 
how security is set up and used from the 
perspective of users with different capabil-
ities and understandings typically causes 
those users to set up and make inappropri-
ate use of the software’s security.

Stepping back, our biggest recommendation is 
the following: Always consider the users, and 
any other stakeholders, in the design and eval-
uation of systems. There are numerous factors 
to consider, and there are often trade-offs; for 
example, improving the system with respect to 
one user value (such as privacy or usability) can 
negatively affect another user value (like ease of 
accessing the relevant information). 

In addition to the general recommendations 
given above, there are numerous artifacts de-
signers can consider in order to address specific 
problems mentioned earlier. The decision wheth-
er to implement these specific recommendations 
will, however, depend on the system in question. 
For example, in some cases we recommend not 
putting security-relevant decisions in the hands 
of all users, as they may not possess the knowl-
edge or context to evaluate those decisions. 
Similarly, because users may not know how to 
explore or choose between a variety of options, 
we recommend making the easiest and most 
common usage scenario also secure—a notion 
often referred to as “secure by default.” When 
users do desire to change security settings, we 
suggest making it as easy as possible for them 
to find the relevant settings. 

Often there is value in allowing users to test dif-
ferent security and privacy settings and see the 

results in order to understand the impact of the 
changes (for example, on social networks, good 
interfaces allow users to see their privacy-set-
tings changes from the perspective of other 
users). 

On the other hand, it might be preferable not to 
give the user a choice at all; or example if a de-
fault secure choice does not have any material 
disadvantage over any other; if the choice is in 
a domain that the user is unlikely to be able to 
reason about; or if one user’s choice may sig-
nificantly affect the system’s or the other user’s 
state, including security.

Designers must also consider the implications 
of user fatigue (for example, the implications 
of having a user click “OK” every time an appli-
cation needs a specific permission) and try to 
design a system that avoids user fatigue while 
also providing the desired level of security and 
privacy to the user. 

The field of user-focused security is rich with 
tensions. As a trivial example, so-called “se-
cure” password selection strategies are also well 
known to lead to passwords that are hard for 
users to remember. A more complex example 
of these inherent tensions would be the need 
to make security simple enough for typical 
users while also giving sophisticated or admin-
istrative users the control that they require. 
We encourage designers to also consider other 
resources on designing security systems with 
stakeholders in mind.

By fully considering all the relevant stakehold-
ers, designers have the opportunity to create 
systems that are both secure and usable, sys-
tems that will see adoption, and systems that 
will be compatible with the values of users and 
other people impacted by them.
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UNDERSTAND HOW 
INTEGRATING EXTERNAL 
COMPONENTS CHANGES  
YOUR ATTACK SURFACE
It is unlikely that you will develop a new system 
without using external pieces of software. In fact, 
when adding functionality to an existing system, 
developers often make use of existing compo-
nents to provide some or all of that new function-
ality. In this context, external components refer 
to software “not written here,” such as:

• Software procured as off-the-shelf compo-
nents, platforms, and applications

• Third-party open source or proprietary 
libraries

• Widgets and gadgets added or loaded at run-
time as part of a web project

• Access to some functionality provided by the 
component that you plan to take advantage 
of (such as accessing a web service that pro-
vides federated authentication)

• Software developed by a different team 
within your organization

• Software that your team developed at a pre-
vious point in time (perhaps at a time when 
the security stance was not as mature as it 
is now)

These components may be included as binaries, 
libraries, and source code, or they may exist 
simply as APIs.

It is a common adage of software security that 
whenever possible, functionality should be 
achieved by the reuse of tried-and-true pieces 
of previously tested and validated software, 
instead of developing from scratch every time. 
The important distinction is that the software 
being newly included has actually been tried 
as well as tested and found to stand up to your 
current standards of software security. The 
decision to use-rather-than-build means that 
the software as a whole inherits the security 
weaknesses, security limitations, maintenance 
responsibility, and the threat model of whatever 
you are including. This inheritance can amount 
to a deficit of security, which must be solved, 
mitigated, or accounted for when the system is 
finished. The system’s “threat model” is a repre-
sentation of the security posture of the system 
when all possible threats are taken into consid-
eration, their mitigations established, and the 
vulnerabilities identified.

UNDERSTAND HOW
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Make sure you allocate time in your software 
development methodology to consider the secu-
rity impact on your system when including an 
external component:

• How does the external component change 
the threat model of the entire system? Does 
it add to the attack surface? Does it modify 
entry points in the system that had already 
been considered in its own threat model?

• Were new features, capabilities, or interfaces 
added even though you are not using them? 
Can those unused features be disabled?

• Does the external component being included 
also include other external components with 
their own security weaknesses?

• Have you obtained the external component 
from a known, trusted source?

• Does the external component provide secu-
rity documentation that may help you better 
understand its threat model and the securi-
ty implications of its configuration?

You must assume that incoming external 
components are not to be trusted until appro-
priate security controls have been applied, in 
order to align the component’s attack surface 
and security policy with ones that meet your 
requirements.

Examples of potential security issues with 
third-party components include the following:

• Loading a library with known vulnerabilities 
(CWE, CVE, etc.)

• Including a library with extra features that 
entail security risks

• Reusing a library—yours or a third 
party’s— that no longer meets current soft-
ware security standards

• Using a third-party service and hoping 
thereby to pass responsibility of security to 
that service

• Configuration mistakes in the security of a 
library—e.g, secure defaults

• Library making outbound requests to the 
maker’s site or to some partner of theirs

• Library receiving inbound requests from 
some external source

• A single external component including other 
components, causing multiple levels of inclu-
sion (“recursion”)

• Including pieces of functionality that offer 
unknown interfaces into the system—for ex-
ample, a CLI for configuration of an included 
daemon, a panel or admin mode for a Web 
component, a hardcoded set of credentials 
for an authentication/authorization module, 
a debugging interface or backdoor, or the 
like.

At a minimum, consider the following:

• Isolate external components as much as 
your required functionality permits; use 
containers, sandboxes, and drop privileges 
before entering uncontrolled code.

• When possible, configure external compo-
nents to enable only the functionality you 
intend to use.

• If you include functionality that you do not 
intend to use, you must consider how that 
included functionality changes your secu-
rity posture (attack surface, inherited debt, 
threats, etc.), and therefore increases the 
security you must implement to account for 
the change.

• If you cannot configure the security prop-
erties of the component to align with your 
security goals, find another library, or docu-
ment that you are accepting the risk and in-
form relevant stakeholders of your decision.

• Likewise, if the element to be included can-
not realize your security objectives, find a 
different element, or document that you 
are accepting the risk and inform relevant 
stakeholders of your decision.

• Validate the provenance and integrity 
of the external component by means of 
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cryptographically trusted hashes and sig-
natures, code signing artifacts, and ver-
ification of the downloaded source. If no 
integrity mechanism is available, consider 
maintaining a local mirror of the library’s 
source. Understand the risk of dynamically 
including components such as JavaScript 
from external sources. If the external host is 
compromised you may be including attack-
er-controlled JavaScript.

• Identify and follow sources that track or 
publish security-related information regard-
ing the external components you consume: 
bug repositories, security-focused mailing 
lists, CVE databases, and so forth.

• Make sure that the development team mem-
bers charged with responding to security 
events are aware of all external components 
used so those can be included in their threat 
intelligence collection efforts.

• Maintain an up-to-date list of consumed ex-
ternal components and at a pre-established 
cadence verify that it matches the versions 
included in your product, as well as that 
those are the latest known-secure versions 
available for each external component.

• Maintain a healthy distrust of external 
components:

• Whenever possible, authenticate the data-
flow between your system and external 
components.

• Consider all data coming from an external 
component to be tainted, until proven valid 
(see “Define an approach that ensures all 
data are explicitly validated” for additional 
information).

• Be sure to understand and verify the default 
configuration of the external component. 
For example, if you are including an external 
crypto library, understand what values are 
used by default unless you change them; for 
example, sources of entropy, algorithms, and 
key lengths. When consuming an external 

component such as a Web server, under-
stand its defaults concerning admin modes, 
ports where the processes will be listening, 
and assumptions concerning how it interfac-
es with the operating system and with your 
own software.

• Document everything. If you change a de-
fault, make sure that there is documentation 
as to why the decision was made to change 
it. If you include an external component, cre-
ate documentation around the process used 
to choose the component, the provenance 
of the component, the verification it went 
through, and most importantly any securi-
ty-relevant assumption made about it. This 
will make it easier to move forward when 
versions change, or when you consider the 
use of an alternative external component. 
When changing the build defaults of exter-
nal components, configuration options for 
deployment, or source code, automate the 
procedure using your version control system 
or a patch file (numerous tools, including 
make, sed, and patch, are available for this 
task depending on your environment). Then 
include the automated procedure in your 
build workflow—bring in the pristine com-
ponent, apply your modifications, and use it 
for your build. The automation will help to 
maintain consistency between builds, and 
some tools include calling modes or execut-
ables that validate their own configurations; 
leverage those into your process as well to 
know when your modifications need adjust-
ment due to a version change in the external 
component or some other similar event.

• Design for flexibility. Sometimes an external 
component becomes too risky, or its devel-
opment is abandoned, or the functionality 
it offers is surpassed by another external 
component. For those cases, you will want to 
design your system so that external compo-
nents can be easily replaced.
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BE FLEXIBLE WHEN 
CONSIDERING FUTURE CHANGES 
TO OBJECTS AND ACTORS 
Software security must be designed for change, 
rather than being fragile, brittle, and static. 
During the design and development processes, 
the goal is to meet a set of functional and secu-
rity requirements. However, software, the en-
vironments running software, and threats and 
attacks against software all change over time. 
Even when security is considered during design, 
or a framework being used was built correctly 
to permit runtime changes in a controlled and 
secure manner, designers still need to consider 
the security implications of future changes to 
objects and actors.

Designers need to understand how change influ-
ences security considerations under many cir-
cumstances. There will be changes at runtime, 
in the form of configuration changes, enabling 
and disabling of features, and sometimes dy-
namic loading of objects. The need for security 
consideration will appear during testing, since 
all possible variations of states will need to be 
verified to guarantee that they uphold the se-
curity posture of the system (among, of course, 
other tested behavior). There will be changes 
at deployment when permissions, access con-
trol and other security-related activities and 

decisions need to take place. The addition of 
continuous integration processes creates a re-
quirement for security flexibility, as changes to 
systems are pushed automatically and at ever 
shorter periodicity.

Meanwhile, entropy increases in every way pos-
sible. Threats change over time. Embedded com-
ponents (that is, components that are not easily 
reachable) will inevitably be found to be vulner-
able to attacks, researchers will discover new 
ways to break into systems, and proprietary 
code will reveal itself to contain vulnerabili-
ties. Any deployed system can eventually come 
under attack and potentially be compromised. 
And, because threats change over time, even a 
deployed system that has resisted attacks for a 
long time may eventually succumb to an attack 
and be compromised. 

Like threats, the environment and conditions 
under which the system exists will also change. 
It is a different proposition to maintain secu-
rity for a system with 10 users than 10 million 
users —not at all a simple matter of linear scale. 
A system that works well in a given configura-
tion might find itself exposed to new threats 
by virtue of changes to that environment; for 

BE FLEXIBLE WHEN
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example, the addition of a mobile interface to a 
legacy system. 

For these reasons, secure design keeps flexibility 
in mind.

Design for secure updates. It is easier to up-
grade small pieces of a system than huge blobs. 
Doing so ensures that the security implications 
of the upgrade are well understood and con-
trolled. For example, a database engine upgrade 
may involve new access control defaults or re-
writes of the controls such that previously tight 
permissions loosen, or create new default users 
that need to be disabled. If the update happens 
with the same change operation performed on 
the web server, the amount of change and ad-
justment to a dynamic, already-configured sys-
tem may be overwhelming to track and assure.

Have the system being upgraded verify the 
integrity and provenance of upgrade packages; 
make use of code signing and signed mani-
fests to ensure that the system only consumes 
patches and updates of trusted origin. This is a 
non-trivial design consideration, as there are 
many details in process and implementation 
that may break if poorly thought out before-
hand. Finally, consider the maintenance burden 
placed on administrative personnel. As com-
plexity increases, there is an increasing likeli-
hood of making mistakes.

Design for security properties changing over 
time; for example, when code is updated. If the 
system ran in a small environment yesterday, 

and local users and password storage were suf-
ficient, tomorrow the system may be changed to 
make use of an alternate identity management 
solution. In that case, the migration of previous 
users (and/or the correct coexistence of the 
local and remote users) would need to happen 
in a way that does not compromise security; for 
example, there should be consideration of user 
ID collisions such as when a remote and a local 
user have the same username.

Design with the ability to isolate or toggle func-
tionality. It should be possible to turn off com-
promised parts of the system, or to turn on per-
formance-affecting mitigations, should the need 
arise. Not every vulnerability identified can be 
readily mitigated within a safe time period, and 
mission-critical systems cannot simply be taken 
offline until their vulnerabilities are addressed.  
For example, in certain environments a stateful 
firewall may impact performance overall, and 
so it is turned off – until a vulnerability that 
may be stopped by turning it on is identified, in 
which case it becomes worthwhile to bear the 
performance cost by turning the firewall on 
until a proper patch can be developed, tested, 
and applied.

Design for changes to objects intended to be 
kept secret. History has shown us that secrets 
such as encryption keys and passwords get 
compromised. Keeping secrets safe is a hard 
problem, and one should be prepared to have 
secrets replaced at any time and at all levels of 
the system. This includes several aspects: 
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• A secure way for users to change their own 
passwords, including disallowing the change 
until the old password has been successfully 
presented by the user. 

• Carefully considering any kind of “password 
recovery” mechanism. It is better to give the 
forgetful user a way to reset their password 
after verification via a parallel mechanism 
(like email) than to provide the password in 
clear text, which can be subverted or com-
promised in any number of ways.

• A secure and efficient way to replace certif-
icates, SSH keys, and other keys or authen-
tication material that systems use, provid-
ing clear and explicit logs of those events 
(without including the secrets in any form!) 
in a forensically verifiable way (for example, 
external log servers and checksums).

• Understanding how the key change affects 
data stored at rest. For example, if data are 
encrypted on a file system or in a database 
and an administrator needs to change the 
encryption key, is it better to decrypt all data 
using the current key and re-encrypt that 
data with the new key, or to maintain ver-
sions of encrypted data and encryption keys?

Design for changes in the security properties of 
components beyond your control. Tech marches 
on. A cipher that was considered secure yester-
day may be found to be less secure today, either 
by the discovery of an active attack against it 
or by improvements in hardware and software 
able to defeat that security control. In the same 
way, an external component’s security proper-
ties or related characteristics may change over 

time, as when an Open Source project is aban-
doned and its code not actively maintained, or 
when its license changes, forcing users to aban-
don it.

In these cases it is important to design “agility,” 
the capability to change layers and algorithms 
as needed, into the system. Good examples 
include Java’s capability to change crypto 
providers without recompilation of classes, and 
Apache’s capability of specifying a list of ciphers 
it is willing to negotiate with a client. Many 
hours of development and much grief over 
security flaws have been avoided due to these 
capabilities. Good design allows for intermediate 
layers of abstraction between code and import-
ed external APIs, so that developers can change 
components providing needed functionality 
without changing much of the code. 

Design for changes to entitlements. Systems are 
sometimes designed in which support staffers 
have privileged access to certain parts of the 
system in order to perform their job. However, 
the support staff’s access to various system 
components likely changes over time. Individu-
als leave the organization, job functions change, 
they go on extended leaves or sabbaticals, 
system functionality changes, and so on. The 
system must have a way to revoke access to ar-
eas when a user no longer has a need to access 
them. This revocation of access should be part 
of an existing auditing mechanism in which ac-
cess to critical system components is regularly 
reviewed to confirm that those individuals with 
access still require that level of access.

And because threats change over 
time, even a deployed system that 
has resisted attacks for a long time 
may eventually succumb to an 
attack and be compromised.
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GET INVOLVED
As stated in the mission statement, the IEEE Computer Society Center for Secure Design 
will provide guidance on:

• Recognizing software system designs that are likely vulnerable to compromise.
• Designing and building software systems with strong, identifiable security properties.

This document is just one of the practical artifacts that the Center for Secure Design 
will deliver.

Interested in keeping up with Center for Secure De-
sign activities? Follow @ieeecsd on Twitter, catch up 
with us via cybersecurity.ieee.org, or contact Kathy 
Clark-Fisher, Manager, New Initiative Development 
(kclark-fisher@computer.org).

About IEEE Computer Society
IEEE Computer Society is the world’s leading computing membership organization and 
the trusted information and career-development source for a global workforce of tech-
nology leaders. The Computer Society provides a wide range of forums for top minds 
to come together, including technical conferences, publications, and a comprehensive 
digital library, unique training webinars, professional training, and the TechLeader 
Training Partner Program to help organizations increase their staff’s technical knowl-
edge and expertise. To find out more about the community for technology leaders, visit 
http://www.computer.org.

GET INVOLVED
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