
AVOIDING THE
TOP 10

SOFTWARE
SECURITY

DESIGN FLAWS
Iván Arce, Kathleen Clark-Fisher, Neil Daswani, Jim DelGrosso, Danny Dhillon,

Christoph Kern, Tadayoshi Kohno, Carl Landwehr, Gary McGraw, Brook Schoenfield,
Margo Seltzer, Diomidis Spinellis, Izar Tarandach, and Jacob West

http://www.computer.org
www.ieee.org
http://cybersecurity.ieee.org/
http://cybersecurity.ieee.org/

2

CONTENTS

2014

Introduction ... 5

Mission Statement .. 6

Preamble ... 7

Earn or Give, but Never Assume, Trust ... 9

Use an Authentication Mechanism that Cannot be Bypassed or Tampered With 11

Authorize after You Authenticate ... 13

Strictly Separate Data and Control Instructions, and Never Process Control Instructions
Received from Untrusted Sources ... 14

Define an Approach that Ensures all Data are Explicitly Validated ... 16

Use Cryptography Correctly ... 19

Identify Sensitive Data and How They Should Be Handled .. 21

Always Consider the Users ..22

Understand How Integrating External Components Changes Your Attack Surface................25

Be Flexible When Considering Future Changes to Objects and Actors ..28

Get Involved .. 31

32014

IEEE Computer Society Center for Secure Design Participants
Iván Arce, Sadosky Foundation

Neil Daswani, Twitter

Jim DelGrosso, Cigital

Danny Dhillon, RSA

Christoph Kern, Google

Tadayoshi Kohno, University of Washington

Carl Landwehr, George Washington University

Gary McGraw, Cigital

Brook Schoenfield, McAfee, Part of Intel Security Group

Margo Seltzer, Harvard University

Diomidis Spinellis, Athens University of Economics and Business

Izar Tarandach, EMC

Jacob West, HP

Staff
Kathleen Clark-Fisher, Manager, New Initiative Development

Jennie Zhu-Mai, Designer

42014

Public Access Encouraged
Because the authors, contributors, and publisher are eager to engage the broader community in
open discussion, analysis, and debate regarding a vital issue of common interest, this document
is distributed under a Creative Commons BY-SA license. The full legal language of the BY-SA
license is available here: http://creativecommons.org/licenses/by-sa/3.0/legalcode.

Under this license, you are free to both share (copy and redistribute the material in any medium
or format) and adapt (remix, transform, and build upon the material for any purpose) the
content of this document, as long as you comply with the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may use any reasonable citation format, but the attribution may not
suggest that the authors or publisher has a relationship with you or endorses you or your use.

“ShareAlike” — If you remix, transform, or build upon the material, you must distribute your
contributions under the same BY-SA license as the original. That means you may not add any
restrictions beyond those stated in the license, or apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

Please note that no warranties are given regarding the content of this document. This license
may not give you all of the permissions necessary for a specific intended use.

About the IEEE Computer Society
The IEEE Computer Society is the world’s leading computing membership organization and
the trusted information and career-development source for a global workforce of technology
leaders. The Computer Society provides a wide range of forums for top minds to come together,
including technical conferences, publications, and a comprehensive digital library, unique
training webinars, professional training, and the TechLeader Training Partner Program to help
organizations increase their staff’s technical knowledge and expertise. To find out more about
the community for technology leaders, visit http://www.computer.org.

Published by the IEEE Computer Society.

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.computer.org

52014

INTRODUCTION
Most software that has been built and released typically
comes with a set of defects—implementation bugs and de-
sign flaws. To date, there has been a larger focus on find-
ing implementation bugs rather than on identifying flaws.

In 2014, the IEEE Computer Society, the leading association
for computing professionals, launched a cybersecurity ini-
tiative with the aim of expanding and escalating its ongo-
ing involvement in the field of cybersecurity. The first step
for the initiative was to launch the IEEE Computer Society
Center for Secure Design. The Center intends to shift some
of the focus in security from finding bugs to identifying
common design flaws in the hope that software architects
can learn from others’ mistakes. To achieve this goal, the
Center brought people together from different organiza-
tions at a workshop in early 2014.

At the workshop, participants discussed the types of flaws
they either identified in their own internal design reviews,
or that were available from external data. They arrived
at a list they felt were the top security design flaws. Many
of the flaws that made the list have been well known for
decades, but continue to persist. In this document is the
result of that discussion—and how to avoid the top 10
security flaws.

62014

MISSION STATEMENT
The IEEE Computer Society’s Center for Secure Design (CSD) will gather software
security expertise from industry, academia, and government. The CSD provides
guidance on:

• Recognizing software system designs that are likely vulnerable to compromise.
• Designing and building software systems with strong, identifiable security

properties.

The CSD is part of the IEEE Computer Society’s larger cybersecurity initiative,
launched in 2014.

http://www.computer.org
www.ieee.org
http://cybersecurity.ieee.org/
http://cybersecurity.ieee.org/

72014

PREAMBLE
The goal of a secure design is to enable
a system that supports and enforces
the necessary authentication, autho-
rization, confidentiality, data integ-
rity, accountability, availability, and
non-repudiation requirements, even
when the system is under attack.

While a system may always have
implementation defects or “bugs,” we
have found that the security of many
systems is breached due to design
flaws or “flaws.” We believe that if
organizations design secure systems,
which avoid such flaws, they can
significantly reduce the number and
impact of security breaches.

While bugs and flaws are both differ-
ent types of defects, we believe there
has been quite a bit more focus on
common bug types than there has
been on secure design and the avoid-
ance of flaws. Before we discuss our
contribution in this document, we
briefly discuss the differences be-
tween bugs and flaws.

Both bugs and flaws are types of
defects. A defect may lie dormant in
software for years only to surface

in a fielded system with major con-
sequences. A bug is an implemen-
tation-level software problem. Bugs
may exist in code but never be exe-
cuted. A flaw, by contrast, is a prob-
lem at a deeper level. Flaws are often
much more subtle than simply an off-
by-one error in an array reference or
use of an incorrect system call. A flaw
might be instantiated in software
code, but it is the result of a mistake
or oversight at the design level. For
example, a number of classic flaws
exist in error-handling and recovery
systems that fail in an insecure or
inefficient fashion.

In this document, a group of software
security professionals have contrib-
uted both real-world data and ex-
pertise to identify some of the most
significant design flaws that have led
to security breaches over the past
several years. The list of issues pre-
sented here is focused entirely on the
most widely and frequently occurring
design flaws as compiled from data
provided by the member organiza-
tions of the IEEE Computer Society
Center for Secure Design (CSD).

2014 8

92014

EARN OR GIVE,
BUT NEVER ASSUME, TRUST
Software systems comprising more than just a
single monolithic component rely on the compo-
sition and cooperation of two or more software
tiers or components to successfully accomplish
their purpose. These designs often depend on
the correct functioning of the existing parts.
They will be inherently insecure if any of those
parts are run in a potentially hostile environ-
ment, such as a user’s desktop computer, an un-
managed device, or a runtime or sandbox that
can be tampered with by an attacker.

Offloading security functions from server to
client exposes those functions to a much less
trustworthy environment, which is one of the
most common causes of security failures predi-
cated on misplaced trust.

Designs that place authorization, access control,
enforcement of security policy, or embedded
sensitive data in client software thinking that
it won’t be discovered, modified, or exposed
by clever users or malicious attackers are in-
herently weak. Such designs will often lead to
compromises.

Classic examples of software where trust is
misplaced include a web browser or a thick-
client application, but there are many more
examples of client software. They include appli-
cations running on a mobile device, or embed-
ded software that might be found in modern

automobiles, pacemakers, gaming systems, or
home appliances. Even calls into your APIs from
business partners could be considered client
software in some sense.

When untrusted clients send data to your sys-
tem or perform a computation on its behalf, the
data sent must be assumed to be compromised
until proven otherwise. In some cases you may
be able to guarantee that the client is, indeed,
who it attests it is, or that the business logic it
contains has not been altered or circumvented,
or that external factors have not influenced
the integrity of the computations it performed.
But these situations are not the rule, and these
underlying assumptions can change when new
vulnerabilities are discovered. It is safer in the
long run to design a software system under the
assumption that components running on any
platform whose integrity can’t be attested are
inherently not trustable, and are therefore un-
suitable for performing security sensitive tasks.

If, nonetheless, security operations must be off-
loaded to components running on an untrusted
platform, the design should impose extreme
caution on how the computation and its output
are treated.

Common weaknesses related to client trust
reside in various parts of the system, but
tend to share a sensibility. A designer might

EARN OR GIVE

102014

(incorrectly) assume that server APIs will al-
ways be called in the same order every time.
He or she might believe that the user interface
is always able to restrict what the user is able
to send to the server. He could try to build the
business logic solely on the client side, or at-
tempt to actually store a secret in the client.
And, of course, a designer can run into danger
by thinking that any intellectual property (IP)
sent to the client can be protected through tech-
nical means.

Though security-aware development strategies
cannot eliminate all these problems (or even
resolve conflicts in goals for the software being
developed), there are useful ways to minimize
the potential risks. For example, some orga-
nizations will claim a real business need to
store intellectual property or other sensitive
material on the client. The first consideration
is to confirm that sensitive material really does
need to be stored on the client. When it truly is
necessary to do so, various binary protection
mechanisms can delay the leaking of sensitive
material. Possible techniques to consider in-
clude obfuscation or anti-debugging (although
the strength of these protections vary widely,
so designers should understand the level of
protection actually achieved with each tool or
technique). Subject matter experts should be

consulted if the system requires a client com-
ponent with a level of protection that cannot be
trivially compromised.

If IP or sensitive material must be stored or sent
to the client, the system should be designed
to be able to cope with potential compromise.
For instance, the same shared secret or other
cryptographic material shouldn’t be used on all
the clients. Make the validity of what is offload-
ed to the client limited in time, set expiration
dates for data stored in the client, watermark
IP, and double-check client computations that
are security sensitive. On a related note, design
your system to work in a limited fashion even
when one or many clients have been completely
compromised.

Finally, make sure all data received from an
untrusted client are properly validated before
processing. Follow the guidance described in the
“Define an Approach that Ensures All Data Are
Explicitly Validated” section.

When designing your systems, be sure to con-
sider the context where code will be executed,
where data will go, and where data entering
your system comes from. Failing to consider
these things will expose you to vulnerabilities
associated with trusting components that have
not earned that trust.

Make sure all data received from
an untrusted client are properly
validated before processing.

112014

USE AN AUTHENTICATION
MECHANISM THAT CANNOT BE
BYPASSED OR TAMPERED WITH
Authentication is the act of validating an en-
tity’s identity. One goal of a secure design is to
prevent an entity (user, attacker, or in general a
“principal”) from gaining access to a system or
service without first authenticating. Once a user
has been authenticated, a securely designed sys-
tem should also prevent that user from chang-
ing identity without re-authentication.

Authentication techniques require one or more
factors such as: something you know (e.g., a
password), something you are (e.g., biometrics
such as fingerprints), or something you have
(e.g., a smartphone). Multi-factor (sometimes
referred to as N-factor) authentication refers
to the technique of requiring multiple distinct
factors to prove your identity. Authentication
via a cookie stored on a browser client may be
sufficient for some resources; stronger forms
of authentication (e.g., a two-factor method)
should be used for more sensitive functions,
such as resetting a password.

In general, a system should consider the
strength of the authentication a user has
provided before taking action. Note also that
authentication encompasses more than just
human-computer interaction; often, in large
distributed systems, machines (and/or pro-
grams running on those machines) authenticate
themselves to other machines.

The ability to bypass an authentication mech-
anism can result in an unauthorized entity
having access to a system or service that it
shouldn’t. For example, a system that has an

authentication mechanism, but allows a user to
access the service by navigating directly to an
“obscure” URL (such as a URL that is not direct-
ly linked to in a user interface, or that is simply
otherwise “unknown” because a developer has
not widely published it) within the service with-
out also requiring an authentication credential,
is vulnerable to authentication bypass.

The use of authentication techniques that
don’t fall into the category of something you
know, something you are, or something you
have may also allow users to access a system
or service they shouldn’t. System designers
should beware of authentication techniques
that depend on assumptions about sole pos-
session of resources that may actually be
shared. For example, authentication mech-
anisms that identify a user by their IP ad-
dress wouldn’t be useful if the addresses were
shared among different users at different
times; for instance, via an address-sharing/
configuration protocol such as DHCP.

Even when IP addresses are tied to particular
devices, authentication based on device ad-
dresses is not a substitute for user authenti-
cation, as IP addresses can be spoofed and are
not necessarily associated with specific users
for a long time. As another concrete illustra-
tion, authentication mechanisms that rely on
a computer’s MAC address, which can easily be
changed or spoofed, can result in unauthorized
access if the device assumed to be identified
with that individual is lost or stolen.

USE AN AUTHEN

122014

Typically, the act of authentication results in the
creation of a token, capability (as often referred
to in operating systems literature), or ticket
representing a principal that is used throughout
the system or service. If such tokens (or creden-
tials) are deterministically derived from easy-
to-obtain information, such as a user name,
then it becomes possible to forge identities,
allowing users to impersonate other users.

Credentials must not be easy to forge. Upon
successful authentication, the user may be pro-
vided with an authentication credential, token,
or ticket, which can be provided back to the
system so that the user does not need to be re-
authenticated for every request or transaction
made via the system. At the same time, if it is
possible for an attacker to forge the authentica-
tion credential, token, or ticket, the attacker can
bypass the authentication mechanism. System
designers can reuse time-tested authentication
mechanisms such as Kerberos instead of build-
ing a new one. Alternatively, system designers
are encouraged to use cryptography correctly
(see the corresponding “Using Cryptography
Correctly” section later in this document) in
constructing authentication credentials, tokens,
and tickets.

If an authentication system does not limit the
lifetime of an authentication interaction, then
it may inadvertently grant access to a user to
whom it should not. For example, imagine a user
who logs into a public terminal and then walks
away without logging out (which should termi-
nate the session). A second user using the public
terminal might now be able to use the system
or service as the first user. A properly designed
authentication system may automatically log
the user out after a period of inactivity.

Authentication system designs should automati-
cally provide a mechanism requiring re-authen-
tication after a period of inactivity or prior to
critical operations. As an example, upon receiv-
ing a transaction request to conduct certain
sensitive actions such as changing a password,
or transferring funds to another financial insti-
tution, a system could ask the user to re-enter

their existing password again to confirm their
transaction request, even though the user may
already be authenticated.

The design of a system’s re-authentication
scheme, and when and how often to ask a user
to re-enter their password, needs to be mind-
ful of not only security, but also usability and
convenience. Asking users to frequently re-enter
their password can be damaging to security, as
it trains people’s muscle memory to enter their
password every time they see a prompt and sets
them up as easy phishing targets.

By far the most common authentication mech-
anism remains the password. Using passwords
requires that the system or service have a
mechanism to associate a given password with
a particular user. If this information is not prop-
erly stored, it may be possible for agents other
than the user to obtain access to them. Storing
such information securely is non-trivial, and
the reader is referred to the use of an applied
cryptography expert as noted in the “Using
Cryptography Correctly” section for guidance.
Just as it is advisable to reuse tried and tested
cryptographic algorithms, it is also advisable to
re-use already built and tested password man-
agement systems instead of building new ones.

It’s preferable to have a single method, compo-
nent, or system responsible for authenticating
users. Such a single mechanism can serve as a
logical “choke point” that cannot be bypassed.
Much as in code reuse, once a single mechanism
has been determined to be correct, it makes
sense to leverage it for all authentication.

To summarize, authentication mechanisms are
critical to secure designs. They can be suscep-
tible to various forms of tampering and may
potentially be bypassed if not designed correct-
ly. We recommend that a single authentication
mechanism leverage one or more factors as per
an application’s requirements, that it serve as a
“choke point” to avoid potential bypass, and that
authentication credentials have limited life-
times, be unforgeable, and be stored so that if
the stored form is stolen, they cannot easily be
used by the thief to pose as legitimate users.

132014

AUTHORIZE AFTER
YOU AUTHENTICATE
While it is extremely important to assess a us-
er’s identity prior to allowing them to use some
systems or conduct certain actions, knowing the
user’s identity may not be sufficient before de-
ciding to allow or disallow the user to perform
certain actions. For instance, once an automatic
teller machine (ATM) authenticates a user via
something they have (a debit card), and some-
thing they know (a PIN), that does not necessar-
ily mean that user is allowed to withdraw an
arbitrary amount of cash from their account.
Most users may be authorized to withdraw up
to a certain limit per day, or to conduct certain
actions (view balance) but not others (transfer
funds outside the bank) from the ATM.

Authorization should be conducted as an explic-
it check, and as necessary even after an initial
authentication has been completed. Authoriza-
tion depends not only on the privileges associ-
ated with an authenticated user, but also on the
context of the request. The time of the request
and the location of the requesting user may
both need to be taken into account.

Sometimes a user’s authorization for a system
or service needs to be revoked, for example,
when an employee leaves a company. If the
authorization mechanism fails to allow for such
revocation, the system is vulnerable to abuse

by authenticated users exercising out-of-date
authorizations.

For particularly sensitive operations, authoriza-
tion may need to invoke authentication. Although
authorization begins only after authentication
has occurred, this requirement is not circular.
Authentication is not binary— users may be re-
quired to present minimal (such as a password) or
more substantial (e.g. biometric or token-based)
evidence of their identity, and authentication in
most systems is not continuous— a user may
authenticate, but walk away from the device or
hand it to someone else. Hence authorization of a
specially sensitive operation (for example, trans-
ferring a sum of money larger than a designated
threshhold) may require a re-authentication or
a higher level of authentication. Some policies re-
quire two people to authorize critical transactions
(“two-person rule”). In such cases, it is important
to assure that the two individuals are indeed
distinct; authentication by password is insufficient
for this purpose.

Finally, just as a common infrastructure (e.g.,
system library or back end) should be responsi-
ble for authenticating users, so too should com-
mon infrastructure be re-used for conducting
authorization checks.

AUTHORIZE AFTER

142014

STRICTLY SEPARATE DATA
AND CONTROL INSTRUCTIONS,
AND NEVER PROCESS CONTROL
INSTRUCTIONS RECEIVED
FROM UNTRUSTED SOURCES
Co-mingling data and control instructions in
a single entity, especially a string, can lead to
injection vulnerabilities. Lack of strict sepa-
ration between data and code often leads to
untrusted data controlling the execution flow
of a software system. This is a general prob-
lem that manifests itself at several abstraction
layers, from low-level machine instructions and
hardware support to high-level virtual machine
interpreters and application programming
interfaces (APIs) that consume domain-specific
language expressions.

“At lower layers, lack of strict segregation be-
tween data and control instructions can mani-
fest itself in memory-corruption vulnerabilities,
which in turn may permit attacker-controlled
modifications of control flow or direct execution
of attacker-controlled data as machine or byte-
code instructions.”

At higher levels, co-mingling of control and data
often occurs in the context of runtime inter-
pretation of both domain-specific and general-
purpose programming languages. In many lan-
guages, control instructions and data are often
segregated using in-band syntactic constructs,
such as quoting and escaping. If software as-
sembles a string in a parseable language by

combining untrusted data with trusted control
instructions, injection vulnerabilities arise if
the untrusted data are insufficiently validated
or escaped. In that situation, an attacker may
be able to supply data crafted such that when
the resulting expression is processed, parts of
the data are parsed and interpreted as control
(rather than uninterpreted data, as intend-
ed). Experience has shown that use of injec-
tion-prone APIs incurs significant risk that in-
jection vulnerabilities will indeed be introduced.
Examples of such vulnerabilities include SQL
query injection, cross-site JavaScript injection,
and shell command injection.

At lower levels, software platforms can utilize
hardware capabilities to enforce separation of
code and data. For example, memory access
permissions can be used to mark memory that
contains only data as non-executable and to
mark memory where code is stored as execut-
able, but immutable, at runtime. Modern oper-
ating systems take advantage of such hardware
features to implement security mechanisms
that harden the entire software stack against
multiple forms of attack. Software designs that
ignore the principle of strict separation between
data and code, or that blur the line that dis-
tinguishes one from the other, are inherently

STRICTLY SEPARATE

152014

less secure because they undermine or directly
invalidate low-level security mechanisms.

When designing languages, compilers, virtual
machines, parsers and related pieces of infra-
structure, consider control-flow integrity and
segregation of control and potentially untrusted
data as important design goals.

When designing APIs (both general-purpose or
public interfaces as well as those that are do-
main- or application-specific), avoid exposing
methods or endpoints that consume strings in
languages that embed both control and data.
Prefer instead to expose, for example, methods
or endpoints that consume structured types
that impose strict segregation between data
and control information.

When designing applications that rely on exist-
ing APIs, avoid APIs that mingle data and con-
trol information in their parameters, especially
when those parameters are strings. If there is
no choice in underlying APIs (for example, if the
use of a relational database requires interfacing
through a SQL query API), it is often desirable
to encapsulate the injection-prone interface
and expose its functionality to application code
through a higher-level API that enforces strict
segregation between control statements and
potentially untrusted data.

A design that relies on the ability to transform
data into code should take special care to vali-
date the data as fully as possible and to strictly
constrain the set of computations that can be
performed using data as an input language.
Specific areas of concern include the eval func-
tion, query languages, and exposed reflection.

Eval. Many interpreted languages (such as Py-
thon, Ruby, and JavaScript) have an eval func-
tion that consumes a string consisting of syntax
in that language and invokes the language’s
interpreter on the string. Use of a language’s
eval facility can permit the implementation of
very powerful features with little code, and is

therefore tempting. It is also very dangerous.
If attackers can influence even part of a string
that is evaluated and that substring is not ap-
propriately validated or encoded, they can often
execute arbitrary code as a result.

Query languages. Ensuring that appropriate
validation or escaping is consistently applied in
all code that interfaces with the query API is a
difficult and error-prone process; implementing
that functionality repeatedly increases the risk
of injection vulnerabilities. Use or develop an
API that mediates between application code and
raw query-language based interfaces (such as
SQL, LDAP) and exposes a safer API. Avoid code
that constructs queries based on ad-hoc string
concatenation of fixed query stanzas with po-
tentially untrusted data.

Exposed reflection. Many programming lan-
guages provide facilities that allow programs
to reflectively inspect and manipulate objects,
as well as to invoke methods on objects. Use
of reflection can be very powerful, and often
permits the implementation of complex features
using minimal code. For example, implementa-
tions of object serializers and deserializers used
to marshal and unmarshal in-memory objects
into and from a serialized form for persistence
or network transfer can often be implemented
very effectively using reflection.

However, as with eval, use of reflection can be
a risky design choice. Unless inputs processed
with reflection are very carefully controlled,
bugs can arise that may permit the attacker to
execute arbitrary code in the receiving process.
It is often preferable to consider alternative,
safer designs. For example, consider a design
based on code-generation: a code-generated,
reflection-free object serializer/deserializer is
restricted to behaviors allowed by the explicitly
generated code. This code is in turn generated
at build/compile-time, where the code-genera-
tion process cannot be influenced by malicious
inputs.

162014

DEFINE AN APPROACH
THAT ENSURES ALL DATA
ARE EXPLICITLY VALIDATED
Software systems and components commonly
make assumptions about data they operate on.
It is important to explicitly ensure that such as-
sumptions hold: vulnerabilities frequently arise
from implicit assumptions about data, which
can be exploited if an attacker can subvert and
invalidate these assumptions.

As such, it is important to design software sys-
tems to ensure that comprehensive data valida-
tion actually takes place and that all assump-
tions about data have been validated when they
are used.

It is furthermore desirable to design software to
make it feasible for a security reviewer to effec-
tively and efficiently reason about and verify
the correctness and comprehensiveness of data
validation. Designing for verifiability should
take into account that code typically evolves
over time, resulting in the risk that gaps in data
validation are introduced in later stages of the
software life-cycle.

Design or use centralized validation mecha-
nisms to ensure that all data entering a system
(from the outside) or major component (from
another component of the same system) are
appropriately validated. For example:

• It is desirable for web applications to utilize a
mechanism (such as a request filter or inter-
ceptor facility provided by the underlying web
application framework) to centrally intercept
all incoming requests, and to apply basic in-
put validation to all request parameters.

• Implementations of communication proto-
cols might centrally validate all fields of all
received protocol messages before any actu-
al processing takes place.

• Systems consuming complex data formats
(such as XML documents, image file for-
mats, or word processing file formats) might
perform parsing, syntactic validation, and
semantic validation of input files in a dedi-
cated validation module whose output is a
validated internal object representation of
the input document. Parsers and validators
must themselves be designed to robustly
cope with potentially malicious or mal-
formed inputs.

Transform data into a canonical form, before
performing actual syntactic or semantic vali-
dation. This ensures that validation cannot be
bypassed by supplying inputs that are encoded
in a transport encoding, or in a possibly invalid
non-canonical form.

DEFINE AN APPROA

172014

Use common libraries of validation primitives,
such as predicates that recognize well-formed
email addresses, URLs, and so forth. This en-
sures that all validation of different instances
of the same type of data applies consistent
validation semantics. Consistent use of com-
mon validation predicates can also increase the
fidelity of static analysis. Validation should be
based on a whitelisting approach, rather than
blacklisting.

Input validation requirements are often
state-dependent. For instance, in a stateful pro-
tocol, the set of valid values of a particular pro-
tocol message field (and hence the corresponding
validation requirements) may depend on the pro-
tocol’s state. In such scenarios, it can be benefi-
cial to design the protocol implementation’s input
validation component to be itself state-aware.

Explicitly re-validate assumptions “nearby”
code that relies on them. For example, the entry
points of a web application’s business-logic layer
should explicitly re-state, and check as precon-
ditions, all assumptions that it relies on. Liberal
use of precondition checks in the entry points
of software modules and components is highly
recommended. Such precondition checks should
never fail during execution of the deployed
application, assuming the higher layers of the
application have correctly validated external
inputs. And as such, it is unnecessary for the
business-logic layer to produce friendly error
messages should such a precondition fail. Nev-
ertheless, re-validation of data supplied to the
business-logic layer provides two benefits:

• It protects against vulnerabilities that arise
from insufficient input validation in a high-
er layer (since the developer of the higher
layer may not have a full understanding of
all the requirements and assumptions of the
lower layer), or from additional data-flows
that were not considered during the initial
security design (e.g., a data-load job that
calls the business layer with data read from
a file format used to exchange information

between affiliated organizations, and which
does not perform the same level of data
validation as the web front end, based on the
possibly invalid assumption that such files
are “trusted”).

• It permits local reasoning about the cor-
rectness of a component; since assumptions
are explicitly checked and stated, a human
reviewer or static analysis tool can truly as-
sume the assumptions actually hold, without
having to consider all (possibly very com-
plex) data flows into the component.

Use implementation-language-level types to
capture assumptions about data validity. For
example, an application that receives as an input
a date and time in string representation should
validate that this input indeed consists of a well-
formed string representation of a date and time
(for example, in ISO 8601 format). It is desirable
to implement validation by parsing the input
into a typed representation (such as a “date
and time” type provided in many programming
language’s standard libraries), and to use that
typed representation (and not the original input
string) throughout the program. Downstream
components are then relieved from having to
consider the possibility that a provided value
(such as a date) is syntactically invalid, and can
focus on only checking additional preconditions
that are not supported by the type’s contract
(e.g., that a date is not in the future).

Various problems arise from failure to address
this security design principle.

• Injection vulnerabilities can arise if un-
trusted data are used without validation in
certain contexts, such as APIs and platform
features that process and interpret strings
with certain semantics. For example:

• Using an externally controlled string as a
component of a file path can lead to path
traversal vulnerabilities, unless the appli-
cation validates that the input represents
a single path component (and, in particu-
lar, does not contain path separators).

182014

• If an externally controlled string is used
in a context in a HTML document where
it will be interpreted as a URL, a Cross-
Site Scripting (XSS) vulnerability can
arise unless it has been validated that
the string represents a well-formed URL
with a benign scheme (such as http:/
https:, and, in particular, not javascript:,
vbscript:, data:, or others).

• It is generally preferable to perform data
validation relevant to the prevention of
injection vulnerabilities in the implemen-
tation of the API that is subject to injection
vulnerabilities, or in a wrapper API in case
the underlying API cannot be modified. See
also “Strictly Separate Data and Control
Instructions, and Never Process Control In-
structions Received from Untrusted Sources”
section.

• Attempting to validate data that are not
in canonical form can allow validation to
be bypassed. For example, it is difficult to
validate that an input string represents a
single path component (free of path separa-
tor characters) unless the input has been
fully decoded (with respect to transport
encodings) and has been validated to be in a
canonical character encoding—otherwise,
it might be possible for an attacker to sneak
a path separator past the input validation
by representing it in an encoded form (for
example, %-encoding commonly used in web
applications), or in the form of a non-ca-
nonical character encoding (for example, a
non-canonical UTF-8 encoding).

• In applications implemented in non-memory

safe languages such as C, failing to care-
fully validate external inputs can result in
memory corruption vulnerabilities such as
buffer overflows, unbounded memory reads,
null-terminated string issues, and so on.

• Accepting inputs from untrusted sources
without enforcement of an upper bound on
data size can result in resource exhaustion.

• In general, aside from memory corruption
and resource exhaustion issues, data that
are not validated cause security issues
primarily when they are used in a way that
influences control flow. Data that are simply
being copied around (e.g., received from an
external input, then stored in a database,
and later displayed in UI) are generally
harmless. Problems arise if the application
inspects the data and makes control flow de-
cisions based on the data’s value. This most
immediately applies to data that are used
in contexts where they are interpreted as
instructions or control, leading to injection
vulnerabilities as discussed earlier.

More generally however, control-flow depen-
dencies on untrusted, non-validated data
can lead to state corruption vulnerabilities,
or execution of state transitions that the
programmer did not intend or consider. Typi-
cally, security vulnerabilities in this category
are highly domain- and application-specific,
and hence are difficult to reason about and
detect by general-purpose tools. Careful,
state-dependent validation of inputs can go
a long way toward mitigating this risk.

Typically, security vulnerabilities
in this category are highly domain-
and application-specific.

192014

USE CRYPTOGRAPHY CORRECTLY
Cryptography is one of the most important tools
for building secure systems. Through the proper
use of cryptography, one can ensure the confi-
dentiality of data, protect data from unautho-
rized modification, and authenticate the source
of data. Cryptography can also enable many oth-
er security goals as well. Cryptography, however,
is not a panacea. Getting cryptography right is
extremely hard. We list common pitfalls.

• Rolling your own cryptographic algorithms
or implementations. Designing a cryp-
tographic algorithm (including protocols and
modes) requires significant and rare mathe-
matical skills and training, and even trained
mathematicians sometimes produce algo-
rithms that have subtle problems. There are
also numerous subtleties with implementing
cryptographic algorithms. For example, the
order of operations involved when exponen-
tiating a number—something common in
cryptographic operations—can leak secret

information to attackers. Standard algo-
rithms and libraries are preferable.

• Misuse of libraries and algorithms. Even
when using strong libraries, do not assume
that just using the libraries will be suffi-
cient. There have been numerous instances
in which standard libraries were used, but
the developers using the libraries made
incorrect assumptions about how to use
the library routines. In other situations,
developers don’t choose the right algorithm
or use the algorithm incorrectly. For exam-
ple, an encryption scheme may protect the
confidentiality of data, but may not pro-
tect against malicious modifications to the
data. As another example, if an algorithm
requires an initialization vector (IV), then
choosing an IV with certain properties may
be required for the algorithm to work se-
curely. Understanding the nuances of algo-
rithm and library usage is a core skill for
applied cryptographers.

USE CRYPTOGRAPH
CORRECTLY

202014

• Poor key management. When everything
else is done correctly, the security of the
cryptographic system still hinges on the pro-
tection of the cryptographic keys. Key man-
agement mistakes are common, and include
hard-coding keys into software (often ob-
served in embedded devices and application
software), failure to allow for the revocation
and/or rotation of keys, use of cryptographic
keys that are weak (such as keys that are
too short or that are predictable), and weak
key distribution mechanisms.

• Randomness that is not random. Confusion
between statistical randomness and cryp-
tographic randomness is common. Cryp-
tographic operations require random num-
bers that have strong security properties. In
addition to obtaining numbers with strong
cryptographic randomness properties, care
must be taken not to re-use the random
numbers.

• Failure to centralize cryptography. Numer-
ous situations have been observed in which
different teams within an organization each
implemented their own cryptographic rou-
tines. Cryptographic algorithms often don’t

interact nicely. Best practices indicate get-
ting it “right” once and reusing the compo-
nent elsewhere.

• Failure to allow for algorithm adaptation
and evolution. For more on this, please see
“Design for changes in the security proper-
ties of components beyond your control” in
the “Be Flexible When Considering Future
Changes to Objects and Actors” section.

Cryptography is so hard to get right that it
always makes sense to work with an expert if
you can. Note that expertise in applied cryptog-
raphy is not the same as being a mathemati-
cian and having a mathematical understanding
of cryptography. At the highest level, make use
of proven algorithms and libraries, but realize
that just the use of such things does not guar-
antee security—it is easy to accidentally misuse
these things. Have a cryptography expert work
with your designers to provide an API abstrac-
tion around a strong library, so that your devel-
opers are not making decisions on algorithms
and cipher modes, and so that if you need to
change algorithms behind that abstraction
layer, you can.

Cryptographic algorithms
often don’t interact nicely.

212014

IDENTIFY SENSITIVE
DATA AND HOW THEY
SHOULD BE HANDLED
Data are critical to organizations and to users.
One of the first tasks that systems designers
must do is identify sensitive data and determine
how to protect it appropriately. Many deployed
systems over the years have failed to protect
data appropriately. This can happen when de-
signers fail to identify data as sensitive, or when
designers do not identify all the ways in which
data could be manipulated or exposed.

Data sensitivity is context-sensitive. It depends
on many factors, including regulation (which is
often mandatory), company policy, contractu-
al obligations, and user expectation. Note that
sensitive data are not always user-generated
input. Rather, they include data computed from
scratch, data coming from external sensors (for
example, geolocation and accelerometer data
on mobile devices), cryptographic material, and
Personally Identifiable Information (PII). Creat-
ing a policy that explicitly identifies different
levels of classification is the first step in han-
dling data appropriately.

It is important to factor all relevant consid-
erations into the design of a data sensitivity
policy. For example, there are numerous reg-
ulations that system designers must consider,
ultimately creating a unified approach that con-
sistently addresses them all. A number of exam-
ples may help to flesh this out: various jurisdic-
tions impose regulations on how personal data
should be handled (such as medical records); the
EU Data Protection Directive differs from the
regulations in the United States; and PCI com-
pliance issues, though not regulatory, directly
affect data protection requirements.

Not all data protection requirements are the

same. For some data, confidentiality is critical.
Examples include financial records and corpo-
rate intellectual property. For data on which
business continuity or life depends (for example,
medical data), availability is critical. In other
cases, integrity is most important. Spoofing or
substituting data to cause a system to misbe-
have intentionally are examples of failures to
ensure data integrity. Do not conflate confiden-
tiality alone with data protection.

Technical data sensitivity controls that a de-
signer might consider include access control
mechanisms (including file protection mecha-
nisms, memory protection mechanisms, and
database protection mechanisms), cryptogra-
phy to preserve data confidentiality or integrity,
and redundancy and backups to preserve data
availability.

Data sets do not exist only at rest, but in tran-
sit between components within a single system
and between organizations. As data sets tran-
sit between systems, they may cross multiple
trust boundaries. Identifying these boundaries
and rectifying them with data protection poli-
cies is an essential design activity. Trust is just
as tricky as data sensitivity, and the notion of
trust enclaves is likely to dominate security
conversations in the next decade.

Policy requirements and data sensitivity can
change over time as the business climate
evolves, as regulatory regimes change, as sys-
tems become increasingly interconnected, and
as new data sources are incorporated into a
system. Regularly revisiting and revising data
protection policies and their design implications
is essential.

222014

ALWAYS CONSIDER THE USERS
Almost every software system in existence
today interacts in one way or another with
human beings. The users of a software system
range from those in charge of fielding, config-
uring, and maintaining it operationally to those
who actually use it for its intended purpose, the
system’s end users.

The security stance of a software system is
inextricably linked to what its users do with it. It
is therefore very important that all security-re-
lated mechanisms are designed in a manner
that makes it easy to deploy, configure, use, and
update the system securely. Remember, secu-
rity is not a feature that can simply be added
to a software system, but rather a property
emerging from how the system was built and is
operated.

The way each user interacts with software is
dictated not only by the design and implemen-
tation decisions of its creators but also by the
cognitive abilities and cultural background of
its users. Consequently, it is important that
software designers and architects consider how
the physical abilities, cultural biases, habits,
and idiosyncrasies of the intended users of the
system will impact its overall security stance. It
is also a truism that during the life of any mod-
erately useful system, a few users will discover
capabilities that are outside the intentions of
the system’s designers and builders. Some of
those capabilities may very well have significant
security implications.

Usability and user experience considerations
are often the most important factors ensuring
that software systems operate in a secure man-
ner. Designing systems that can be configured
and used in a secure manner with easy-to-use,
intuitive interfaces and sufficiently expressive,
but not excessive, security controls is crucial.

However, it is dangerous to assume that every
intended user of the system will be interested
in security—or will even be well-meaning. The
challenge to designers and architects lies in
creating designs that facilitate secure configu-
ration and use by those interested in doing so,
designs that motivate and incentivize secure
use among those not particularly interested in
software security, and designs that prevent or
mitigate abuse from those who intend to weak-
en or compromise the system.

Failing to address this design principle can lead
to a number of problems:

• Privilege escalation may result from a fail-
ure to implement an authorization model
that is sufficiently tied to the authenticated
entity (user) in all cases. Escalation failures
may also occur when higher-privileged func-
tions are not protected by the authorization
model and where assumptions about inac-
cessibility are incorrect.

• A particular failure of appropriate autho-
rization can allow a breach of the intended
authorization and isolation between users

ALWAYS CONSIDER T

232014

such that one user may access another us-
er’s data.

• When designers don’t “remember the user”
in their software design, inadvertent disclo-
sures by the user may take place. If it is diffi-
cult to understand the authorization model,
or difficult to understand the configuration
for visibility of data, then the user’s data are
likely to be unintentionally disclosed.

• Default configurations that are “open” (that
is, default configurations that allow access
to the system or data while the system is
being configured or on the first run) assume
that the first user is sophisticated enough
to understand that other protections must
be in place while the system is configured.
Assumptions about the sophistication or
security knowledge of users are bound to be
incorrect some percentage of the time. This
is particularly true at the startup and ini-
tialization of the system.

• If the security configuration is difficult or
non-intuitive, the result will be an inability
to configure the product to conform to the
required security policy.

• Designers sometimes fail to account for the
fact that authenticated and properly autho-
rized users can also be attackers! This design
error is a failure to distrust the user, result-
ing in authorized users having opportunities
to misuse the system.

• When security is too hard to set up for a
large population of the system’s users, it will
never be configured, or it will not be config-
ured properly. This is especially dangerous
where the system’s defaults are “open” or
insecure. For example, if there are too many
clicks required for the user to get from the
main page or screen to a security control
panel, users are unlikely to persist through
the labyrinth of clicks.

• Failure to consider the needs of program-
mers who must code to an API will cause the
intended automation patterns to be missed.
Programmers are a class of users who also
require that the interface they consume be
intuitive enough to guide them to correct
usage patterns. Because a misunderstand-
ing of an API occurs within the program
that uses it, problems may not be readily
apparent (appearing perhaps only obliquely,
within log files of the ongoing activity), and
the debugging of the problem difficult; this
failure can be one of the most difficult to
find and fix. Additionally, if the API must be
changed, many if not all consumers of the
API may be forced into further changes, thus
spreading the original failure throughout
the ecosystem.

• Failure to consider the possibility of “collat-
eral damage” that can occur from included
or embedded software or data in the user
interface may cause an inadvertent or un-
intentional leaks of personal data. Consider
the capture of a bystander in a personal
photo taken in a public place. Even if that
passerby is not a user of software, the by-
stander’s privacy may be compromised if
that image is posted online later.

• Failure to consider the user’s data during
setup, use, and revocation/termination may
cause unintended data to be gathered and
stored against the users’ wishes, or may hold
onto data that should have been removed
completely after the user has stopped using
the service and closed his or her account.
For example, when a user decides to stop
using the system, is the private data easy for
the user to destroy?

• Failure to consider the many different class-
es of users (blind users, language proficien-
cy, children, people with different mental

242014

capabilities, etc.) will exclude those classes of
users from the software -- or, alternatively,
make the software too difficult to use effec-
tively. Most importantly, when designing the
security of the system, failure to consider
how security is set up and used from the
perspective of users with different capabil-
ities and understandings typically causes
those users to set up and make inappropri-
ate use of the software’s security.

Stepping back, our biggest recommendation is
the following: Always consider the users, and
any other stakeholders, in the design and eval-
uation of systems. There are numerous factors
to consider, and there are often trade-offs; for
example, improving the system with respect to
one user value (such as privacy or usability) can
negatively affect another user value (like ease of
accessing the relevant information).

In addition to the general recommendations
given above, there are numerous artifacts de-
signers can consider in order to address specific
problems mentioned earlier. The decision wheth-
er to implement these specific recommendations
will, however, depend on the system in question.
For example, in some cases we recommend not
putting security-relevant decisions in the hands
of all users, as they may not possess the knowl-
edge or context to evaluate those decisions.
Similarly, because users may not know how to
explore or choose between a variety of options,
we recommend making the easiest and most
common usage scenario also secure—a notion
often referred to as “secure by default.” When
users do desire to change security settings, we
suggest making it as easy as possible for them
to find the relevant settings.

Often there is value in allowing users to test dif-
ferent security and privacy settings and see the

results in order to understand the impact of the
changes (for example, on social networks, good
interfaces allow users to see their privacy-set-
tings changes from the perspective of other
users).

On the other hand, it might be preferable not to
give the user a choice at all; or example if a de-
fault secure choice does not have any material
disadvantage over any other; if the choice is in
a domain that the user is unlikely to be able to
reason about; or if one user’s choice may sig-
nificantly affect the system’s or the other user’s
state, including security.

Designers must also consider the implications
of user fatigue (for example, the implications
of having a user click “OK” every time an appli-
cation needs a specific permission) and try to
design a system that avoids user fatigue while
also providing the desired level of security and
privacy to the user.

The field of user-focused security is rich with
tensions. As a trivial example, so-called “se-
cure” password selection strategies are also well
known to lead to passwords that are hard for
users to remember. A more complex example
of these inherent tensions would be the need
to make security simple enough for typical
users while also giving sophisticated or admin-
istrative users the control that they require.
We encourage designers to also consider other
resources on designing security systems with
stakeholders in mind.

By fully considering all the relevant stakehold-
ers, designers have the opportunity to create
systems that are both secure and usable, sys-
tems that will see adoption, and systems that
will be compatible with the values of users and
other people impacted by them.

252014

UNDERSTAND HOW
INTEGRATING EXTERNAL
COMPONENTS CHANGES
YOUR ATTACK SURFACE
It is unlikely that you will develop a new system
without using external pieces of software. In fact,
when adding functionality to an existing system,
developers often make use of existing compo-
nents to provide some or all of that new function-
ality. In this context, external components refer
to software “not written here,” such as:

• Software procured as off-the-shelf compo-
nents, platforms, and applications

• Third-party open source or proprietary
libraries

• Widgets and gadgets added or loaded at run-
time as part of a web project

• Access to some functionality provided by the
component that you plan to take advantage
of (such as accessing a web service that pro-
vides federated authentication)

• Software developed by a different team
within your organization

• Software that your team developed at a pre-
vious point in time (perhaps at a time when
the security stance was not as mature as it
is now)

These components may be included as binaries,
libraries, and source code, or they may exist
simply as APIs.

It is a common adage of software security that
whenever possible, functionality should be
achieved by the reuse of tried-and-true pieces
of previously tested and validated software,
instead of developing from scratch every time.
The important distinction is that the software
being newly included has actually been tried
as well as tested and found to stand up to your
current standards of software security. The
decision to use-rather-than-build means that
the software as a whole inherits the security
weaknesses, security limitations, maintenance
responsibility, and the threat model of whatever
you are including. This inheritance can amount
to a deficit of security, which must be solved,
mitigated, or accounted for when the system is
finished. The system’s “threat model” is a repre-
sentation of the security posture of the system
when all possible threats are taken into consid-
eration, their mitigations established, and the
vulnerabilities identified.

UNDERSTAND HOW

262014

Make sure you allocate time in your software
development methodology to consider the secu-
rity impact on your system when including an
external component:

• How does the external component change
the threat model of the entire system? Does
it add to the attack surface? Does it modify
entry points in the system that had already
been considered in its own threat model?

• Were new features, capabilities, or interfaces
added even though you are not using them?
Can those unused features be disabled?

• Does the external component being included
also include other external components with
their own security weaknesses?

• Have you obtained the external component
from a known, trusted source?

• Does the external component provide secu-
rity documentation that may help you better
understand its threat model and the securi-
ty implications of its configuration?

You must assume that incoming external
components are not to be trusted until appro-
priate security controls have been applied, in
order to align the component’s attack surface
and security policy with ones that meet your
requirements.

Examples of potential security issues with
third-party components include the following:

• Loading a library with known vulnerabilities
(CWE, CVE, etc.)

• Including a library with extra features that
entail security risks

• Reusing a library—yours or a third
party’s— that no longer meets current soft-
ware security standards

• Using a third-party service and hoping
thereby to pass responsibility of security to
that service

• Configuration mistakes in the security of a
library—e.g, secure defaults

• Library making outbound requests to the
maker’s site or to some partner of theirs

• Library receiving inbound requests from
some external source

• A single external component including other
components, causing multiple levels of inclu-
sion (“recursion”)

• Including pieces of functionality that offer
unknown interfaces into the system—for ex-
ample, a CLI for configuration of an included
daemon, a panel or admin mode for a Web
component, a hardcoded set of credentials
for an authentication/authorization module,
a debugging interface or backdoor, or the
like.

At a minimum, consider the following:

• Isolate external components as much as
your required functionality permits; use
containers, sandboxes, and drop privileges
before entering uncontrolled code.

• When possible, configure external compo-
nents to enable only the functionality you
intend to use.

• If you include functionality that you do not
intend to use, you must consider how that
included functionality changes your secu-
rity posture (attack surface, inherited debt,
threats, etc.), and therefore increases the
security you must implement to account for
the change.

• If you cannot configure the security prop-
erties of the component to align with your
security goals, find another library, or docu-
ment that you are accepting the risk and in-
form relevant stakeholders of your decision.

• Likewise, if the element to be included can-
not realize your security objectives, find a
different element, or document that you
are accepting the risk and inform relevant
stakeholders of your decision.

• Validate the provenance and integrity
of the external component by means of

272014

cryptographically trusted hashes and sig-
natures, code signing artifacts, and ver-
ification of the downloaded source. If no
integrity mechanism is available, consider
maintaining a local mirror of the library’s
source. Understand the risk of dynamically
including components such as JavaScript
from external sources. If the external host is
compromised you may be including attack-
er-controlled JavaScript.

• Identify and follow sources that track or
publish security-related information regard-
ing the external components you consume:
bug repositories, security-focused mailing
lists, CVE databases, and so forth.

• Make sure that the development team mem-
bers charged with responding to security
events are aware of all external components
used so those can be included in their threat
intelligence collection efforts.

• Maintain an up-to-date list of consumed ex-
ternal components and at a pre-established
cadence verify that it matches the versions
included in your product, as well as that
those are the latest known-secure versions
available for each external component.

• Maintain a healthy distrust of external
components:

• Whenever possible, authenticate the data-
flow between your system and external
components.

• Consider all data coming from an external
component to be tainted, until proven valid
(see “Define an approach that ensures all
data are explicitly validated” for additional
information).

• Be sure to understand and verify the default
configuration of the external component.
For example, if you are including an external
crypto library, understand what values are
used by default unless you change them; for
example, sources of entropy, algorithms, and
key lengths. When consuming an external

component such as a Web server, under-
stand its defaults concerning admin modes,
ports where the processes will be listening,
and assumptions concerning how it interfac-
es with the operating system and with your
own software.

• Document everything. If you change a de-
fault, make sure that there is documentation
as to why the decision was made to change
it. If you include an external component, cre-
ate documentation around the process used
to choose the component, the provenance
of the component, the verification it went
through, and most importantly any securi-
ty-relevant assumption made about it. This
will make it easier to move forward when
versions change, or when you consider the
use of an alternative external component.
When changing the build defaults of exter-
nal components, configuration options for
deployment, or source code, automate the
procedure using your version control system
or a patch file (numerous tools, including
make, sed, and patch, are available for this
task depending on your environment). Then
include the automated procedure in your
build workflow—bring in the pristine com-
ponent, apply your modifications, and use it
for your build. The automation will help to
maintain consistency between builds, and
some tools include calling modes or execut-
ables that validate their own configurations;
leverage those into your process as well to
know when your modifications need adjust-
ment due to a version change in the external
component or some other similar event.

• Design for flexibility. Sometimes an external
component becomes too risky, or its devel-
opment is abandoned, or the functionality
it offers is surpassed by another external
component. For those cases, you will want to
design your system so that external compo-
nents can be easily replaced.

282014

BE FLEXIBLE WHEN
CONSIDERING FUTURE CHANGES
TO OBJECTS AND ACTORS
Software security must be designed for change,
rather than being fragile, brittle, and static.
During the design and development processes,
the goal is to meet a set of functional and secu-
rity requirements. However, software, the en-
vironments running software, and threats and
attacks against software all change over time.
Even when security is considered during design,
or a framework being used was built correctly
to permit runtime changes in a controlled and
secure manner, designers still need to consider
the security implications of future changes to
objects and actors.

Designers need to understand how change influ-
ences security considerations under many cir-
cumstances. There will be changes at runtime,
in the form of configuration changes, enabling
and disabling of features, and sometimes dy-
namic loading of objects. The need for security
consideration will appear during testing, since
all possible variations of states will need to be
verified to guarantee that they uphold the se-
curity posture of the system (among, of course,
other tested behavior). There will be changes
at deployment when permissions, access con-
trol and other security-related activities and

decisions need to take place. The addition of
continuous integration processes creates a re-
quirement for security flexibility, as changes to
systems are pushed automatically and at ever
shorter periodicity.

Meanwhile, entropy increases in every way pos-
sible. Threats change over time. Embedded com-
ponents (that is, components that are not easily
reachable) will inevitably be found to be vulner-
able to attacks, researchers will discover new
ways to break into systems, and proprietary
code will reveal itself to contain vulnerabili-
ties. Any deployed system can eventually come
under attack and potentially be compromised.
And, because threats change over time, even a
deployed system that has resisted attacks for a
long time may eventually succumb to an attack
and be compromised.

Like threats, the environment and conditions
under which the system exists will also change.
It is a different proposition to maintain secu-
rity for a system with 10 users than 10 million
users —not at all a simple matter of linear scale.
A system that works well in a given configura-
tion might find itself exposed to new threats
by virtue of changes to that environment; for

BE FLEXIBLE WHEN

292014

example, the addition of a mobile interface to a
legacy system.

For these reasons, secure design keeps flexibility
in mind.

Design for secure updates. It is easier to up-
grade small pieces of a system than huge blobs.
Doing so ensures that the security implications
of the upgrade are well understood and con-
trolled. For example, a database engine upgrade
may involve new access control defaults or re-
writes of the controls such that previously tight
permissions loosen, or create new default users
that need to be disabled. If the update happens
with the same change operation performed on
the web server, the amount of change and ad-
justment to a dynamic, already-configured sys-
tem may be overwhelming to track and assure.

Have the system being upgraded verify the
integrity and provenance of upgrade packages;
make use of code signing and signed mani-
fests to ensure that the system only consumes
patches and updates of trusted origin. This is a
non-trivial design consideration, as there are
many details in process and implementation
that may break if poorly thought out before-
hand. Finally, consider the maintenance burden
placed on administrative personnel. As com-
plexity increases, there is an increasing likeli-
hood of making mistakes.

Design for security properties changing over
time; for example, when code is updated. If the
system ran in a small environment yesterday,

and local users and password storage were suf-
ficient, tomorrow the system may be changed to
make use of an alternate identity management
solution. In that case, the migration of previous
users (and/or the correct coexistence of the
local and remote users) would need to happen
in a way that does not compromise security; for
example, there should be consideration of user
ID collisions such as when a remote and a local
user have the same username.

Design with the ability to isolate or toggle func-
tionality. It should be possible to turn off com-
promised parts of the system, or to turn on per-
formance-affecting mitigations, should the need
arise. Not every vulnerability identified can be
readily mitigated within a safe time period, and
mission-critical systems cannot simply be taken
offline until their vulnerabilities are addressed.
For example, in certain environments a stateful
firewall may impact performance overall, and
so it is turned off – until a vulnerability that
may be stopped by turning it on is identified, in
which case it becomes worthwhile to bear the
performance cost by turning the firewall on
until a proper patch can be developed, tested,
and applied.

Design for changes to objects intended to be
kept secret. History has shown us that secrets
such as encryption keys and passwords get
compromised. Keeping secrets safe is a hard
problem, and one should be prepared to have
secrets replaced at any time and at all levels of
the system. This includes several aspects:

302014

• A secure way for users to change their own
passwords, including disallowing the change
until the old password has been successfully
presented by the user.

• Carefully considering any kind of “password
recovery” mechanism. It is better to give the
forgetful user a way to reset their password
after verification via a parallel mechanism
(like email) than to provide the password in
clear text, which can be subverted or com-
promised in any number of ways.

• A secure and efficient way to replace certif-
icates, SSH keys, and other keys or authen-
tication material that systems use, provid-
ing clear and explicit logs of those events
(without including the secrets in any form!)
in a forensically verifiable way (for example,
external log servers and checksums).

• Understanding how the key change affects
data stored at rest. For example, if data are
encrypted on a file system or in a database
and an administrator needs to change the
encryption key, is it better to decrypt all data
using the current key and re-encrypt that
data with the new key, or to maintain ver-
sions of encrypted data and encryption keys?

Design for changes in the security properties of
components beyond your control. Tech marches
on. A cipher that was considered secure yester-
day may be found to be less secure today, either
by the discovery of an active attack against it
or by improvements in hardware and software
able to defeat that security control. In the same
way, an external component’s security proper-
ties or related characteristics may change over

time, as when an Open Source project is aban-
doned and its code not actively maintained, or
when its license changes, forcing users to aban-
don it.

In these cases it is important to design “agility,”
the capability to change layers and algorithms
as needed, into the system. Good examples
include Java’s capability to change crypto
providers without recompilation of classes, and
Apache’s capability of specifying a list of ciphers
it is willing to negotiate with a client. Many
hours of development and much grief over
security flaws have been avoided due to these
capabilities. Good design allows for intermediate
layers of abstraction between code and import-
ed external APIs, so that developers can change
components providing needed functionality
without changing much of the code.

Design for changes to entitlements. Systems are
sometimes designed in which support staffers
have privileged access to certain parts of the
system in order to perform their job. However,
the support staff’s access to various system
components likely changes over time. Individu-
als leave the organization, job functions change,
they go on extended leaves or sabbaticals,
system functionality changes, and so on. The
system must have a way to revoke access to ar-
eas when a user no longer has a need to access
them. This revocation of access should be part
of an existing auditing mechanism in which ac-
cess to critical system components is regularly
reviewed to confirm that those individuals with
access still require that level of access.

And because threats change over
time, even a deployed system that
has resisted attacks for a long time
may eventually succumb to an
attack and be compromised.

312014

GET INVOLVED
As stated in the mission statement, the IEEE Computer Society Center for Secure Design
will provide guidance on:

• Recognizing software system designs that are likely vulnerable to compromise.
• Designing and building software systems with strong, identifiable security properties.

This document is just one of the practical artifacts that the Center for Secure Design
will deliver.

Interested in keeping up with Center for Secure De-
sign activities? Follow @ieeecsd on Twitter, catch up
with us via cybersecurity.ieee.org, or contact Kathy
Clark-Fisher, Manager, New Initiative Development
(kclark-fisher@computer.org).

About IEEE Computer Society
IEEE Computer Society is the world’s leading computing membership organization and
the trusted information and career-development source for a global workforce of tech-
nology leaders. The Computer Society provides a wide range of forums for top minds
to come together, including technical conferences, publications, and a comprehensive
digital library, unique training webinars, professional training, and the TechLeader
Training Partner Program to help organizations increase their staff’s technical knowl-
edge and expertise. To find out more about the community for technology leaders, visit
http://www.computer.org.

GET INVOLVED

http://www.computer.org

	Introduction
	Mission Statement
	Preamble

	Get Involved
	Be Flexible When Considering Future Changes to Objects and Actors
	Understand How Integrating External Components Changes
Your Attack Surface
	Always Consider the Users
	Identify Sensitive
Data and How They
Should Be Handled
	Use Cryptography Correctly
	Define an Approach
that Ensures all Data
are Explicitly Validated
	Strictly Separate Data
and Control Instructions, and Never Process Control Instructions Received
from Untrusted Sources
	Authorize after
You Authenticate
	Use an Authentication Mechanism that Cannot be Bypassed or Tampered With
	Earn or Give,
but Never Assume, Trust

	Next Page 1:
	Page 1: Off

	Next Page Text:
	Page 1: Off

	Cybersecurity:
	Page 1: Off

	Next Page 2:
	Page 2: Off

	Previous Page 1:
	Page 2: Off

	Next Page 3:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 139: Off
	Page 1410: Off
	Page 1511: Off
	Page 1612: Off
	Page 1713: Off
	Page 1814: Off
	Page 1915: Off
	Page 2016: Off
	Page 2117: Off
	Page 2218: Off
	Page 2319: Off
	Page 2420: Off
	Page 2521: Off
	Page 2622: Off
	Page 2723: Off
	Page 2824: Off
	Page 2925: Off
	Page 3026: Off

	Previous Page 2:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 139: Off
	Page 1410: Off
	Page 1511: Off
	Page 1612: Off
	Page 1713: Off
	Page 1814: Off
	Page 1915: Off
	Page 2016: Off
	Page 2117: Off
	Page 2218: Off
	Page 2319: Off
	Page 2420: Off
	Page 2521: Off
	Page 2622: Off
	Page 2723: Off
	Page 2824: Off
	Page 2925: Off
	Page 3026: Off
	Page 3127: Off

	Next Page 4:
	Previous Page 3:

