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a b s t r a c t 

The optimal selection of chemical features (molecular descriptors) is an essential pre-processing step for 

the efficient application of computational intelligence techniques in virtual screening for identification 

of bioactive molecules in drug discovery. The selection of molecular descriptors has key influence in the 

accuracy of affinity prediction. In order to improve this prediction, we examined a Random Forest (RF)- 

based approach to automatically select molecular descriptors of training data for ligands of kinases, nu- 

clear hormone receptors, and other enzymes. The reduction of features to use during prediction dramat- 

ically reduces the computing time over existing approaches and consequently permits the exploration of 

much larger sets of experimental data. To test the validity of the method, we compared the results of our 

approach with the ones obtained using manual feature selection in our previous study (Perez-Sanchez, 

Cano, and Garcia-Rodriguez, 2014).The main novelty of this work in the field of drug discovery is the use 

of RF in two different ways: feature ranking and dimensionality reduction, and classification using the 

automatically selected feature subset. Our RF-based method outperforms classification results provided 

by Support Vector Machine (SVM) and Neural Networks (NN) approaches. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Virtual screening methods are widely used nowadays in the

rug discovery process ( London et al., 2014; Ma, Chan, & Leung,

011; Yan et al., 2014; Zhao et al., 2013 ), where they provide with

redictions about which ligands from large compound databases

ight bind to certain protein targets. Using this approach, it is pos-

ible to reduce the number of compounds that need to be tested

xperimentally in small labs or even when using High Throughput

creening infrastructures ( Bajorath, 2002; Gong, Fang, Peng, Liu,

 Du, 2010; Mueller et al., 2012; Polgar & Keseru, 2011; Tidten-

uksch et al., 2012 ). Within virtual screening methods, one can find

oth Structure Based (SBVS) and Ligand Based (LBVS) methods.

BVS methods exploit information about the protein target and co-
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rystallized ligands (when available), while LBVS methods only ex-

loit information about known ligands. Both SBVS and LBVS meth-

ds use different forms of scoring functions for affinity prediction

nd can complement high-throughput screening techniques; how-

ver, accurate prediction of binding affinity by any virtual screen-

ng method is a very challenging task. Use of modern computa-

ional intelligence techniques that do not impose a pre-determined

coring function has generated interest as a mean to improve pre-

iction accuracy ( Ain, Aleksandrova, Roessler, & Ballester, 2015;

allester & Mitchell, 2010 ). Selection of chemical characteristics

molecular descriptors) with greater discriminatory power has the

otential to improve scoring predictions of which compounds will

e good candidates, i.e., bioactive. 

To improve the scoring of small molecules, it is necessary to

arefully select the predictor variables which must help to de-

ide among the different chosen input features ( Guyon & Elisse-

ff, 2003 ). The set of features that describes small molecules can

e arbitrarily large, so that in most cases a pre-selection stage is

equired. The input variables (predictors) for a dataset are a fixed
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Table 1 

Number of active (ligands) and inactive compounds (decoys) for 

each of the ligand datasets used in this study and obtained from 

DUD. 

Protein PDB code Resolution ( ̊A) Ligands Decoys 

GPB 1A8I 1 .8 52 1851 

MR 2AA2 1 .9 15 535 

TK 1KIM 2 .1 22 785 
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number of features, in our domain: the molecular descriptors. The

values of these predictors can be binary, categorical, or continu-

ous and represent the set of the system input data. The feature

selection process consists of two main stages: acquisition of data

(filtering, suitability, scaling) and feature selection. First, we should

ask an important question: What are the most relevant features

for our application domain? As we are working with standard-

ized databases, we avoid steps for filtering, scaling, or deciding the

suitability of this data. We will focus on the selection of features.

There are different motivations for doing so, but we will seek to

obtain a number of benefits ( Guyon, Gunn, Nikravesh, & Zadeh,

2006 ). In particular, we hope to get some of the following bene-

fits: 

• Reduction of the data to be processed. 
• Reduction of features, reducing the cost of continued storage. 
• Improved performance, improved processing speed can lead to

an improvement in prediction accuracy. 
• Improved display, improved representation helps the under-

standing of the problem. 
• Reduced training time, smaller data subset decreases training

time. 
• Reduction of noise in the data, removing irrelevant or redun-

dant features. 

A proper selection of the set of molecular descriptors (predic-

tors) is essential to optimize the prediction and automatic selec-

tion of these descriptors. This is a clear objective of automatic ver-

sus manual selection (ad hoc) methods. What are the most impor-

tant variables in the classification models? This problem is com-

mon in many research domains. Usually, it is solved using the

variable that best explains our model and adapts to the domain

in which we work. For some domains, the segmentation criteria

are simple or are constructed around artificial variables (dummy).

These are the mechanisms that are adopted by a domain expert

and sometimes it is a multidisciplinary task. The use of computa-

tional intelligence techniques allows us to select these variables in

an automatic way by quantifying their relative importance. 

Once the idea of the relevance of the selected features is intro-

duced, those not selected, or which have been left out, should be

irrelevant or redundant. Therefore, the order of relevance allows us

to extract a minimal subset of features that are enough to make an

optimal prediction. In RF, the classification method is based on the

use of decision trees on multiple samples of a dataset. RF has the

ability to select a reduced set of candidates among a large num-

ber of input variables in our model (predictors) by finding linear

relationships between them, this is what makes this method very

interesting for this purpose. 

In this paper we applied Random Forest as a feature selector

but also as a classifier. We used public datasets to test the classi-

fication performance of the method. The main contribution of the

paper is the automatic selection of a ranked and reduced subset

of features to feed the classifier, enabling the system to obtain a

good accuracy while dramatically reducing the computational cost

thus allowing the system to explore large datasets. Our RF-based

method outperforms manual selection of descriptors and improves

classification results over SVM or NN approaches. 

The rest of the paper is organized as follows: Section 2 de-

scribes the methodology, including the description of the public

datasets employed to test the selection of variables. In addition, a

computational intelligence method is introduced (RF). In Section 3 ,

a set of experiments with RF to fit and model the automatic fea-

ture selection are presented. At last, in Section 4 , a discussion of

the results is presented and, finally, conclusions are drawn and

some future works are listed. 
. Methodology 

This section describes the pipeline, datasets, and methods we

sed to improve the selection of molecular descriptors. To apply

he computational intelligence technique Random Forest to the se-

ection of molecular descriptors, the model was trained with dif-

erent datasets that have been widely used by different virtual

creening techniques. Automatic selection of variables was com-

ared with data obtained by the manual selection (ad hoc) of

ombinations of these descriptors as tested in our previous study

 Perez-Sanchez, Cano, & Garcia-Rodriguez, 2014 ). 

.1. Method pipeline 

We propose a two stages method based on RF: in a first stage

e trained the RF with databases of known active (drugs) and in-

ctive compounds, to help to define the best descriptors for scor-

ng/classification by providing the most relevant information in the

lassification step ( Fig. 1 , 1–3) and improving the results of our

revious work ( Perez-Sanchez et al., 2014 ). This selection drasti-

ally reduces the computational complexity and time allowing to

ocus the computational effort on the proposed candidates which

ill permit to accelerate biomedical research. In a second stage, af-

er the automatic selection of these molecular descriptors, we ap-

lied again a RF-based approach. This time RF is used as a classi-

er to determine the goodness of the selection to provide a pre-

iction of a molecules activity ( Fig. 1 , 4–6). Fig. 1 shows the data

ow from feature selection of the dataset to the classification step

here the best results are measured in terms of AUC (Area Under

he Curve) for each dataset. Accurate feature selection has the po-

ential to improve system performance, processing speed, and can

ead to an improvement in prediction accuracy. 

.2. Ligand databases and molecular properties 

In order to test our method, we compared results with our pre-

ious work using manual feature selection ( Perez-Sanchez et al.,

014 ) employing standard VS benchmark tests, such as the Di-

ectory of Useful Decoys (DUD) ( Huang, Shoichet, & Irwin, 2006 ),

here VS methods’s efficiency to discriminate ligands that are

nown to bind to a given target, from non-binders or decoys, is

hecked. Input data for each molecule of each set contains infor-

ation about its molecular structure and whether it is active or

ot. We focused on three diverse DUD datasets (details are shown

n Table 1 )that cover kinases, nuclear hormone receptors and, other

roteins such as TK, which corresponds to thymidine kinase (from

DB 1KIM ( Champness et al., 1998 )), MR, which corresponds to

ineralocorticoid receptor (from PDB 2AA2 ( Bledsoe et al., 2005 )),

nd GPB, which corresponds to the enzyme glycogen phosphory-

ase (from PDB 1A8I ( Gregoriou et al., 1998 )). 

Next, using the ChemoPy package ( Cao, Xu, Hu, & Liang, 2013 )

e calculated, for all ligands of the TK, MR and GPB sets, a set of

iverse molecular properties derived from the set of constitutional,

PSA (charged partial surface area) and fragment/fingerprint-based

escriptors, as described in Perez-Sanchez et al. (2014) . 
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Fig. 1. Data flow for automatic feature selection. In the feature selection step we feed the RF with a large set of different features from three public datasets ( Table 1 ). The 

RF provided as a result a ranking of the features with the highest discriminative power for each dataset. In the classification step we train the RF using different sets of data 

represented by features obtained in previous selection step. The idea is to find the minimum set of features that achieves a good classification rate. We use the AUC for this 

purpose. 
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.3. Computational intelligence methods 

The use of computational intelligence methods will allow us

o provide a sufficient subset of features. Since the early 50s,

omputational intelligence research has focused on finding rela-

ionships between data and analyze these relationships ( Witten,

ames, Tibshirani, & Hastie, 2013 ). These problems are found in a

ide variety of application domains: engineering, robotics or pat-

ern recognition ( Fukunaga, 1990 ), systems that recognize writing

 Lee, 1999 ), voice ( Huang, Acero, & Hon, 2001 ), pictures ( Young,

994 ), sequencing genes ( Liew, Yan, & Yang, 2005 ), illness diag-

ostic ( Berner & Lande, 2007 ) or spam rejection ( Blanzieri & Bryl,

008 ) are good examples. 

Given a number of training data samples together with an ex-

ected output, the computational intelligence processes allow us

o find the relationship between the pattern and the expected re-

ult, using that training data. The goal is to predict the unknown

utput for new data, e.g., test data. Training data is used for the

ptimal selection of these parameters, and different algorithms are

sed from a broad range of computational intelligence techniques.

 classifier is a function that assigns to an unlabeled sample a la-

el or class. A sample of several predefined categories or classes is

lassified. Classification models can be constructed using a variety

f algorithms ( Michie, Spiegelhalter, Taylor, & Campbell, 1994 ). 

.3.1. Random Forest 

Random Forest ( Breiman, 2001 ) ( Fig. 2 ) is a supervised learn-

ng method that can be applied to solve classification or regression

roblems. It is composed by a combination of tree predictors such

hat each tree depends on the values of a random vector indepen-

ently and with the same layout for each of the generated vectors.
any disciplines use Random Forest: Accident analysis ( Harb, Yan,

adwan, & Su, 2009 ), mechanical engineering ( Longjun, Xibing,

ing, & Qiyue, 2011 ), financial engineering ( Lariviere & Van den

oel, 2005; Xie, Li, Ngai, & Ying, 2009 ), language models ( Xu & Je-

inek, 2007 ) or biology ( Ding & Zhang, 2008 ). during the expansion

f forest. 

In Random Forest ( Hastie, Tibshirani, & Friedman, 2009 ), each

ndividual tree is explored in a particular way: 

1. Given a set of training data N, n random samples with repeti-

tion (Bootstrap) are taken as training set. 

2. For each node of the tree, M input variables are determined,

and m < < M , variables are selected for each node. The most

important variable randomly chosen is used as a node. The

value of m remains constant 

3. Each tree is developed to its maximum expansion. 

The error of the set of trees depends on two factors: 

• Correlation between any two trees in the forest, avoiding the

use of a subset of variables randomly chosen data resampling

(Bootstrap). 
• A strong classifier, the importance of each tree in the forest,

shows that with a low value of this error, the increase of these

classifiers decreases the forest error. 

.3.2. Error estimation 

The OOB (out-of-bag) error is defined to estimate the classifi-

ation or regression error in RF ( Witten et al., 2013 ). It estimates

 selection of the input observations based on Bagging ( Breiman,

996 ), (resampling of a random subset of predictors to be replaced

n each tree). On average, each tree Bagging uses two-thirds of the
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Fig. 2. Random Forest is “a collection of classifiers that are structured as trees t n where F n ( v ) are independent and identically distributed random vectors and each tree 

produces a vote of the most popular class for an input x (predictor)”. The random vectors P n ( c ) represent a set of random numbers that determine the construction of each 

tree ( Tae-Kyun, 2006 ). 
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observations, the remaining third will not be used in the com-

ments off-exchange (OOB). So, you can predict the response to the

i th observation using each tree that will produce B /3 predictions

for the observation i. In order to obtain a single prediction for the

i th element, we forecast based on the average of these responses

(for regression) or by majority vote (for classification). This leads

to a single OOB prediction for the i -th observation, which can be

obtained in this way for each of the n observations. The sum of the

OOB error and the average importance of all OOB trees determine

the total and the relative importance of selected variables. 

2.3.3. Importance of variables 

In Random Forest, a ranking of the contribution of each vari-

able is determined to predict the output variable ( Hastie et al.,

2009 ), establishing a relative importance between them. This value

is calculated using two different measures. The first measure is

the MDA (Mean Decrease Accuracy), which is based on the con-

tribution of each variable to the prediction error (MSE for regres-

sion) and the percentage of misclassifications (for classification).

The second measure of importance, the MDG (Mean Decrease Gini)

from the Gini index, is the criterion used to select each partition in

the construction of the trees. If a decrease of the error attributed

to a variable occurs, its contribution will be lower for all trees. 

For each tree t , we consider the error associated with a sam-

ple as OOB t , errOOB t denoted as the error of a single tree t OOB t 
sample. Randomly permuting the values of X j in OOB t to get a per-

muted sample and calculate their errOOB tj , OOB tj as predictor error

on the permuted sample t . Thus express the importance of vari-

ables (VI) as: 

 I(X j ) = 

1 

ntree 

∑ 

t 

(er r OOB t j − er r OOB t ) . 

A large value of VI indicates the importance of the predictor. By

similarity, in the context of classification Bagging, we add the con-

tribution of the Gini index and the decrease in each partition on a

given as average for all predictor trees. 

The Gini index measures the classification error committed in

node t yet being this leaf, the class assigned randomly an instance,

following the distribution of elements in each class in t . The Gini

i  
ndex for a node t can be calculated as: 

 (t) = 

c ∑ 

i � = j 
P i P j = 1 −

c ∑ 

j 

P 2 j , 

here c is the number of classes and P i is the estimated probabil-

ty of class i for instances that reach the node. Therefore, the Gini

ndex and information gain are measures based on the impurity of

ach node. 

. Random Forest: model estimation 

In any model of computational intelligence it is important to es-

ablish and determine the parameters that will enable us to adjust

his model. In RF, the adequate number of trees must be deter-

ined, as well as how many predictors are used in the construc-

ion of each tree node. A reasonable strategy for accomplishing this

s to set different values and evaluate the prediction error condi-

ion. 

The model behavior is influenced by two parameters: the num-

er of trees and the number of partitions to be made (splits). In

his section, the influence and the optimal values for these param-

ters are analyzed. Experiments were developed using the RF im-

lementation in the R package ( R Core Team, 2013 ). 

.1. Number of trees 

Among the main parameters that can be set in RF, we can find

he ntree , which sets the number of trees used in the model. We

ote that as the size of the tree grows in terms of number of

odes, their training accuracy improves until it stabilizes. For the

hree datasets, it can be estimated that the resulting error OOB is

uite low for all cases. With a value of 300 trees ntree , the error

emains stable. However, for a small number of trees it can be ob-

erved that this leads to an overfitting model on the training data

n all the tested datasets ( Fig. 3 ). 

.2. Number of splits 

The other main parameter is mtry , which represents the num-

er of input variables to be used in each node. 

To construct each forest tree in RF, whenever a tree is divided

t is considered a random sample of m predictors chosen from the
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Fig. 3. OOB error (black line), active misclassify (red line) and inactive misclassify (green line) vs. number of trees for the dataset GBP, MR and TK. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Relationship between OOB error and mtry . 
omplete set of p input predictors (molecular descriptors). These

plits can choose only m predictors, usually the square root of the

umber of input predictors for classification and a third part of

hese predictors are used for regression. 

As we can see in the graph that estimates the minimum OOB

rror, the lowest error occurs when mtry takes values between 17

nd 34 for GPB and MR data sets. A minimum value close to 0.013

s reached in the case of MR. We can set the value of mtry as the

quare root of the number of predictors, by default ( Fig. 4 ). We

ay also use a previous resampling featuring RF packet (TuneRF),

stimating an optimal value for minimizing the OOB mtry error for

ach dataset. 
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Fig. 5. Relative importance of the predictors for the dataset MR. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Top 10 molecular descriptors for dataset (ordered by relative importance. 

Order TK MR GPB 

1 FCFP_2.12 MDLPublicKeys.14 Estate_Keys.13 

2 ALogP_Count.48 Estate_Counts.18 ALogP_Count.56 

3 MDLPublicKeys.12 MDLPublicKeys.1 ALogP_Count.8 

4 Estate_Keys.34 Estate_Counts.16 Estate_Keys.34. 

5 ECFP_4.5 MDLPublicKeys.7 Estate_Counts.34 

6 ALogP_Count.56 ALogP_Count.3 Estate_Counts.13 

7 Estate_Keys.9 Num_Rings MDLPublicKeys.1 

8 FCFP_4.12 MDLPublicKeys.15 ECFP_4.12 

9 ALogP_Count.72 MDLPublicKeys.5 MDLPublicKeys.15 

10 ECFP_6.1 FCFP_2.9 Num_H_Donors 
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g

 

v  
3.3. Automatic selection and ranking of features 

The relative importance of the variables within each dataset de-

termines the automatic selection of molecular descriptors used. In

our experiments we can observe the input and differentiate these

descriptors from the dataset. 

For different molecular datasets and for each descriptor, we can

observe the importance of the contribution to predict the model

and determine the sensitivity with respect to the prediction of the

final activity ( Fig. 5 and Table 2 ). 

4. Results and discussion 

Random Forest selects automatically the molecular descriptors

which allow to improve the goodness of the fitting process, con-

sidering that this selection of features depends on the dataset. We

developed a set of experiments to test the validity of our method

with an automatic selection of molecular descriptors. Furthermore,

we compared it with the manual method (ad hoc) used in our pre-

vious work ( Perez-Sanchez et al., 2014 ). 
The selection of descriptors was performed according to the

ataset, using Random Forest for the selection of variables, and

hen using RF, SVM and a MultiLayer Perceptron (NNET) for the

lassification of the previous selection. The AUC determines the

oodness of the fitting for the prediction of the activity. 

In general terms, we observe that the number of significant

ariables (relative importance) predicting the final activity varies
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Fig. 6. AUC vs Number of features (ordered by relative importance with RF) using 

SVM, NNET and RF as classifiers and applied to datasets TK, MR and GPB. Classifiers 

perspective. 
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Fig. 7. AUC vs Number of features (ordered by relative importance with RF) using 

SVM, NNET and RF as classifiers and applied to datasets TK, MR and GPB. Datasets 
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ith the dataset. But in all cases with less than 10 features we ob-

ain results over 0.9. In the worst case, the use of more than 80

eatures for TK does not improve the AUC. Furthermore, employing

n accurate number of features saves time in the training stage and

ccelerates the whole process. 

On the one hand, we show the results of the different classifiers

epending on the feature subset size. From the experiments we

bserved that RF outperforms SVM and NNET in the three tested

atasets. Another important conclusion that can be extracted from

ig. 6 is that RF presents a decent results with only 4 features

hat is the minimum number that we have tested. On the contrary,

VM needs more than 10 features to obtain results over 0.9 AUC.

F shows a good stability and offers better results with a higher

umber of features but results with a few number of features are

eally good and demonstrate the good performance of RF to find

he features with higher influence in the classification results. Un-

table behavior in SVM and NNET results could come from their
nability to deal with datasets with high-dimensional data with a

ow number of observations. 

On the other hand. we presented the same data but compar-

ng the performance of each classifier with the different datasets

 Fig. 7 ). All methods work fine with GPB with a low number of

eatures. Datasets MR and TK present a more erratic behavior with

VM and NNET while RF works fine for all cases offering best re-

ults with GPB. While classifiers work fine with a large number

f features, achieving results close to 1.0 AUC with MR and GPB,

esults with TK are slightly worse. The only dataset where SVM

nd NNET outperform RF using a large number of features, which

eans almost no feature selection, is MR. 

The main conclusion of this study is that RF outperforms SVM

nd NNET using a minimum subset of relevant features (obtained

ith RF) producing considerably good results and saving time and

esources compared with the other classifiers. 
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Table 3 

Top values obtained for the AUC of the ROC curves for the DUD data sets TK, MK, GPB and 

BINDSURF processed by NNET, SVM using a manual selection of descriptor ( Perez-Sanchez 

et al., 2014 ) against automatic selection processed by RF. 

Descriptor TK MR GPB 

Ad Hoc NNET_EE246 0 .94 NNET_EstCt 0 .87 NNET_EAE246 0 .96 

Ad Hoc SVM_AE246 0 .95 SVM_EstKy 0 .98 SVM_AlCnt 0 .98 

BINDUSRF 0 .70 BINDSURF 0 .70 BINDSURF 0 .68 

Auto C_RF_SVM 0 .94 C_RF_ SVM 0 .99 C_RF_SVM 0 .99 

Auto C_RF_NNET 0 .94 C_RF_NNET 0 .99 C_RF_NNET 0 .98 

Auto C_RF_RF 0 .95 C_RF_RF 0 .98 C_RF_RF 0 .99 
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From the results obtained using this technique for variable se-

lection, we can retrain the model with databases of known active

or inactive compounds ( Table 3 ). This information can be used to

improve predictions and contribute to improved performance and

acceleration in the discovery of new drugs using virtual screening

techniques. 

4.1. Discussion 

We have presented aspects of the problem of automatic fea-

ture selection. This paper covers the challenges of feature selection

through computational intelligence methods. In addition, we pro-

posed a solution and an alternative to traditional manual selection

of features (ad hoc), which requires a very precise knowledge of

the scope of the domain, and sometimes the involvement of mul-

tiple disciplines or experts in the problem to predict. 

The use of Random Forest eases the selection of molecular de-

scriptors of the dataset, ensuring the best possible prediction of

activity in an automated way. The use of this method for classifi-

cation (the final prediction for the activity) improves the goodness

of the fit. 

Support Vector Machine is an effective classification method,

but it does not directly obtain the feature importance. There have

been some attempts to combine it with feature selection strate-

gies but none of them improved Random Forest results for this

task. Compared with SVM or neural networks, RF is able to esti-

mate feature importance during training for little additional time.

It is faster to train and has fewer parameters. The use of cross val-

idation is unnecessary. Data does not need to be rescaled, trans-

formed, or modified. It is resistant to outliers and is able to au-

tomatically handle missing values. And more importantly, it works

better with large databases and a large number of features. Fur-

thermore, RF is applicable to high-dimensional data with a low

number of observations. 

On the other hand, it can be extremely sensitive to small per-

turbations in the data: a slight change can result in a drastically

different tree. Overfitting can be observed for some datasets with

noisy classification/regression tasks. Finally, feature selection per-

formed with Random Forest is sometimes difficult for humans to

interpret. 

5. Conclusions 

In this work, we have proven the power of automatic selec-

tion of characteristics (molecular descriptors) using Random For-

est, thus avoiding the manual selection of descriptors (ad hoc). The

improvement on the prediction of the activity is explained by im-

proving the goodness of the fitting and its value is expressed by

the AUC of the Receiver Operating Characteristic (ROC) curves. 

We used RF for two purposes: feature ranking and dimension-

ality reduction, and classification using the automatically selected

feature subset. 

We have demonstrated empirically the abilities of RF to deter-

mine the most relevant features by comparing the results with our
revious work ( Perez-Sanchez et al., 2014 ) that used ad-hoc fea-

ure selection and comparing RF with other relevant classifiers like

VM and Multilayer Perceptron. The use of Random Forest not only

mproves the accuracy of the classification methods selecting the

ost relevant features but also reduces the computational cost.

his reduction combined with the use of parallel architectures al-

ows the exploration of larger datasets in less time. Our RF-based

ethod outperforms classification results provided by SVM and NN

pproaches. 

However, it should be mentioned that the computational in-

elligence approaches could be used only when there are datasets

vailable with active and inactive compounds. Given the good re-

ults obtained in terms of accuracy and computational resources

eduction, it is concluded that this methodology can be used to

mprove the drug design and discovery, therefore helping consid-

rably in biomedical research. 

Future works include the automation of the choice of a learn-

ng algorithm depending of the characteristics of a given prediction

roblem, data source, and prediction performance. We also work

n the creation of metaclassifiers that combine predictions of dif-

erent classifiers. Despite the fact that our virtual screening method

as already been parallelized, we are working on the GPU imple-

entation of the whole pipeline. Finally, we are considering the

pplication of this study to solve Quantitative Structure-Activity

elationship (QSAR) problems. 

cknowledgments 

This work was partially supported by the Fundación Séneca del

entro de Coordinación de la Investigación de la Región de Mur-

ia under Project 18946/JLI/13. This work has been funded by the

ils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part

nanced by the European Regional Development Fund (ERDF). 

eferences 

in, Q. U. , Aleksandrova, A. , Roessler, F. D. , & Ballester, P. J. (2015). Machine-learning

scoring functions to improve structure-based binding affinity prediction and vir-

tual screening. Wiley Interdisciplinary Reviews: Computational Molecular Science,
5 (6), 405–424 . 

Bajorath, J. (2002). Integration of virtual and high-throughput screening.. Nature Re-
views Drug Discovery, 1 (11), 882–894 . 

allester, P. J. , & Mitchell, J. B. O. (2010). A machine learning approach to predicting
proteinligand binding affinity with applications to molecular docking. Bioinfor-

matics, 26 (9), 1169–1175 . 

erner, E. S. , & Lande, T. J. (2007). Clinical decision support systems: Theory and prac-
tice (pp. 3–22)). New York, NY: Springer New York . 

lanzieri, E. , & Bryl, A. (2008). A survey of learning-based techniques of email spam
filtering. Artificial Intelligence Review, 29 (1), 63–92 . 

Bledsoe, R. K. , Madauss, K. P. , Holt, J. A. , Apolito, C. J. , Lambert, M. H. , Pearce, K. H. ,
et al. (2005). A ligand-mediated hydrogen bond network required for the acti-

vation of the mineralocorticoid receptor. Journal of Biological Chemistry, 280 (35),
31283–31293 . 

reiman, L. (1996). Bagging predictors. Machine Learning, 24 (2), 123–140 . 

Breiman, L. (2001). Random forests. Machine Learning, 45 (1), 5–32 . 
hampness, J. N. , Bennett, M. S. , Wien, F. , Visse, R. , Summers, W. C. , Herdewijn, P. ,

et al. (1998). Exploring the active site of herpes simplex virus type-1 thymidine
kinase by x-ray crystallography of complexes with aciclovir and other ligands.

Proteins: Structure, Function, and Bioinformatics, 32 (3), 350–361 . 

http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0009


G. Cano et al. / Expert Systems With Applications 72 (2017) 151–159 159 

D  

 

 

C  

 

F  

G  

 

G  

 

 

 

G  

G  

 

H  

 

H  

H  

H  

 

W  

L  

 

L
L  

 

L  

 

L  

 

M  

M  

 

M  

 

 

P  

P  

 

R  

T  

 

T  

 

X  

 

X  

Y  

 

Y  

Z  

 

ing, Y.-S. , & Zhang, T.-L. (2008). Using chou’s pseudo amino acid composition to
predict subcellular localization of apoptosis proteins: An approach with immune

genetic algorithm-based ensemble classifier. Pattern Recognition Letters, 29 (13),
1887–1892 . 

ao, D. S., Xu, Q. S., Hu, Q. N., & Liang, Y. Z. (2013). Chemopy: freely available
python package for computational biology and chemoinformatics. Bioinformat-

ics , (8), 092–1094. doi: 10.1093/bioinformatics/btt105 . 
ukunaga, K. (1990). Introduction to statistical pattern recognition ((2nd ed.)). San

Diego, CA, USA: Academic Press Professional, Inc . 

ong, L.-L. , Fang, L.-H. , Peng, J.-H. , Liu, A.-L. , & Du, G.-H. (2010). Integration of vir-
tual screening with high-throughput screening for the identification of novel

Rho-kinase I inhibitors.. Journal of Biotechnology, 145 (3), 295–303 . 
regoriou, M. , Noble, M. E. , Watson, K. A. , Garman, E. F. , Johnson, L. N. , Krulle, T. M. ,

. . . Oikonomakos, N. G. (1998). The structure of a glycogen phosphorylase glu-
copyranose spirohydantoin complex at 1.8 å resolution and 100 k: The role

of the water structure and its contribution to binding. Protein Science, 7 (4),

915–927 . 
uyon, I. , & Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of Machine Learning Research, 3 , 1157–1182 . 
uyon, I. , Gunn, S. , Nikravesh, M. , & Zadeh, L. A. (2006). Feature extraction: Foun-

dations and applications (studies in fuzziness and soft computing) . Secaucus, NJ,
USA: Springer-Verlag New York, Inc . 

arb, R. , Yan, X. , Radwan, E. , & Su, X. (2009). Exploring precrash maneuvers us-

ing classification trees and random forests. Accident Analysis & Prevention, 41 (1),
98–107 . 

astie, T. , Tibshirani, R. , & Friedman, J. (2009). The elements of statistical learning .
Springer . 

uang, N. , Shoichet, B. K. , & Irwin, J. J. (2006). Benchmarking sets for molecular
docking. Journal of Medicinal Chemistry, 49 (23), 6789–6801 . 

uang, X. , Acero, A. , & Hon, H.-W. (2001). Spoken language processing: A guide to the-

ory, algorithm, and system development (1st). Upper Saddle River, NJ, USA: Pren-
tice Hall PTR . 

itten, D. , James, G. , Tibshirani, R. , & Hastie, T. (2013). An introduction to statistical
learning with applications in R . Springer-Verlag New York, Inc . 

ariviere, B. , & Van den Poel, D. (2005). Predicting customer retention and prof-
itability by using random forests and regression forests techniques. Expert Sys-

tems with Applications, 29 (2), 472–484 . 

ee, S.-W. (1999). Advances in handwriting recognition. World Scientific, 34 . 
iew, A. W.-C. , Yan, H. , & Yang, M. (2005). Pattern recognition techniques for

the emerging field of bioinformatics: A review. Pattern Recognition, 38 (11),
2055–2073 . 
ondon, N. , Miller, R. , Krishnan, S. , Uchida, K. , Irwin, J. , Eidam, O. , et al. (2014). Co-
valent docking of large libraries for the discovery of chemical probes. Nature

Chemical Biology, 10 (12), 1066–1072 . 
ongjun, D. , Xibing, L. , Ming, X. , & Qiyue, L. (2011). Comparisons of random forest

and support vector machine for predicting blasting vibration characteristic pa-
rameters. Procedia Engineering, 26 , 1772–1781 . {ISMSSE2011}. 

a, D.-L. , Chan, D.-H. , & Leung, C.-H. (2011). Molecular docking for virtual screening
of natural product databases. Chemical Science, 2 (9), 1656–1665 . 

ichie, D., Spiegelhalter, D. J., Taylor, C. C., & Campbell, J. (Eds.). (1994). Machine

learning, neural and statistical classification . Upper Saddle River, NJ, USA: Ellis
Horwood . 

ueller, R. , Dawson, E. S. , Niswender, C. M. , Butkiewicz, M. , Hopkins, C. R. ,
Weaver, C. D. , . . . Meiler, J. (2012). Iterative experimental and virtual high-

-throughput screening identifies metabotropic glutamate receptor subtype 4
positive allosteric modulators. Journal of Molecular Modeling, 18 (9), 4 437–4 4 46 . 

erez-Sanchez, H. E. , Cano, G. , & Garcia-Rodriguez, J. (2014). Improving drug discov-

ery using hybrid softcomputing methods. Applied Soft Computing, 20 , 119–126 . 
olgar, T. , & Keseru, G. M. (2011). Integration of virtual and high throughput screen-

ing in lead discovery settings. Combinatorial Chemistry &# 38; High Throughput
Screening, 14 (10), 889–897 . 

 Core Team (2013). R: A language and environment for statistical computing . R Foun-
dation for Statistical Computing . Vienna, Austria. 

ae-Kyun, K. (2009). Boosting and Random Forest for Visual Recognition: Boosting and

Tree-structured Classifier . Kyoto, Japan: Tutorial at IEEE Int. Conf. on Computer
Vision . http://www.iis.ee.ic.ac.uk/icvl/iccv09 _ tutorial.html#abstract . 

idten-Luksch, N. , Grimaldi, R. , Torrie, L. S. , Frearson, J. A. , Hunter, W. N. , &
Brenk, R. (2012). IspE inhibitors identified by a combination of in silico and in

vitro high-throughput screening.. Plos One, 7 (4), e35792 . 
ie, Y. , Li, X. , Ngai, E. W. T. , & Ying, W. (2009). Customer churn prediction us-

ing improved balanced random forests. Expert Systems with Applications, 36 (3),

5445–5449 . 
u, P. , & Jelinek, F. (2007). Random forests and the data sparseness problem in lan-

guage modeling. Computer Speech & Language, 21 (1), 105–152 . 
an, C. , Liu, D. , Li, L. , Wempe, M. , Guin, S. , Khanna, M. , et al. (2014). Discovery and

characterization of small molecules that target the gtpase ral. Nature, 515 (7527),
4 43–4 47 . 

oung, T. Y. (Ed.). (1994). Handbook of pattern recognition and image processing (vol.

2): Computer vision . Orlando, FL, USA: Academic Press, Inc . 
hao, S. , Kumar, R. , Sakai, A. , Vetting, M. , Wood, B. , Brown, S. , et al. (2013). Discov-

ery of new enzymes and metabolic pathways by using structure and genome
context. Nature, 502 (7473), 698–702 . 

http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0010
http://dx.doi.org/10.1093/bioinformatics/btt105
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0032
http://www.iis.ee.ic.ac.uk/icvl/iccv09_tutorial.html#abstract
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30681-9/sbref0038

	Automatic selection of molecular descriptors using random forest: Application to drug discovery
	1 Introduction
	2 Methodology
	2.1 Method pipeline
	2.2 Ligand databases and molecular properties
	2.3 Computational intelligence methods
	2.3.1 Random Forest
	2.3.2 Error estimation
	2.3.3 Importance of variables


	3 Random Forest: model estimation
	3.1 Number of trees
	3.2 Number of splits
	3.3 Automatic selection and ranking of features

	4 Results and discussion
	4.1 Discussion

	5 Conclusions
	 Acknowledgments
	 References


