
CS542

Database Management

Personal Financial Planner

Project Progress
Jonathan Perreault

11/11/04
Introduction

This project is an application project to create a personal financial planner. It consists of a database containing all financial information for multiple users along with several query types and check constraints in order to maintain the integrity of the data. There is a user interface that allows the users to make entries and query the database. Several research topics were explored prior to designing the database and the software for this project. These topics include learning more about java and the JDBC API, making a connection from the java software to Oracle database, and using triggers. Each of these topics will be discussed in further detail below. Figure 1 below is an ER Model that shows the overall architecture of th e database.
Database Design
The database consists of seven entities and five relations and one hierarchy. The operator entity has a unique ID, which will be chosen by the user and will be used in combination with the date to create the primary key. It was necessary to add the date to the primary key to allow the operator to make more than one withdrawal from an account. The account has a type which will be either savings or checking and a unique ID (account number), which is used as the primary key. A check constraint will be added to the account table to make sure that the userid exists in the operator table. I plan to use triggers to make sure that only the user linked to an account can make a transaction involving that account. There is also an income entity which gets deposited into an account. I changed the income entity from the original design to eliminate automatic deposits. The user will be required to make all income deposit entries into the database through the GUI. I also added a date to the primary key of the income entity along with the source to allow one source to make multiple income deposits into an account. The arrow in the ER Model indicates that each income can be deposited at most once. In the SQL tables shown below, the at most once constraint is enforced by making the primary key of the income table the same as the primary key for the deposit table. The same income cannot be deposited into multiple accounts. Money can be transferred from one account to another with the transfer relation. Any bills are entered by the user in the payment entity. Again, the date was added to the payment entity to allow payments of the same type from the same account on separate dates. I also removed the automatic payments from the original design due to time constraints. The payment also has an arrow to the makes relation in the ER Model to indicate that each payment can be made at most once. This at most once constraint is also enforced using equivalent primary keys for the payment and make tables in the SQL tables shown below. The last entity in the diagram is taxes. The taxes entity uses the year and type as the primary key since taxes are only paid once each year and can have only one of each type per year. The two types are state or federal. The taxes entity has a participation constraint that indicates that each taxes entity must participate in exactly one pay relation. In the SQL tables shown below, the taxes entity and the pay relation are combined into one table to force the participation constraint.
SQL Tables
CREATE TABLE Operator (

userid CHAR(10),

odate INTEGER,

name CHAR (25),

PRIMARY KEY (userid, odate));

CREATE TABLE Account (

accountid INTEGER,

type CHAR(1),

balance REAL,

userid CHAR(10),

PRIMARY KEY (accountid));

CREATE TABLE Income (

idate INTEGER,

source CHAR(20),

PRIMARY KEY (idate, source));

CREATE TABLE Payment (

type CHAR(10),

pdate INTEGER,

PRIMARY KEY (type, pdate));

CREATE TABLE Pay_Taxes (

year CHAR(4),

type CHAR(1),

accountid INTEGER,

pamount REAL,

PRIMARY KEY (year, type),

FOREIGN KEY (accountid) REFERENCES Account);

CREATE TABLE Deposit (

idate INTEGER,

source CHAR(20),

accountid INTEGER,

damount REAL,

PRIMARY KEY (idate, source),

FOREIGN KEY (idate, source) REFERENCES Income,

FOREIGN KEY (accountid) REFERENCES Account);

CREATE TABLE Withdraw (

userid CHAR(10),

odate INTEGER,

accountid INTEGER,

wamount REAL,

FOREIGN KEY (userid, odate) REFERENCES Operator,

FOREIGN KEY (accountid) REFERENCES Account);

CREATE TABLE Transfer (

accountfrom INTEGER,

accountto INTEGER,

tdate INTEGER,

tamount REAL,

FOREIGN KEY (accountfrom) REFERENCES Account,

FOREIGN KEY (accountto) REFERENCES Account);

CREATE TABLE Make (

type CHAR(10),

pdate INTEGER,

accountid INTEGER,

mamount REAL,

PRIMARY KEY (type, pdate),

FOREIGN KEY (type, pdate) REFERENCES Payment,

FOREIGN KEY (accountid) REFERENCES Account);

User Interface

The user interface will allow the user to easily make queries or enter tuples into the database. The user will login with a username and password (stored in a passwords file) so that triggers can be developed to prevent one user from making a transaction with another user’s account. Query outputs will open a separate window to display the results, which will vary in type depending on the query. Some output windows will contain a single value and others will contain a spreadsheet type of output. The user interface will consist of pull down menus containing the various tables to be accessed as well as buttons for data entry or data query options. These buttons will invoke a separate window with the options that are available to the user based on the selection that was made from the corresponding pull down menu.
Queries

There are three types of queries that will be made available to the user in this project. For simplicity there will be a list of prewritten queries that the user can choose and the results will be displayed. There will also be some prewritten queries that will require some input from the user that will either be chosen from a pull down menu or entered into a text field. The last type of query that will be available is the user defined query.
The prewritten queries will be simple common queries that are used frequently. These queries will include the following:

SELECT accountid, type, balance

FROM Account

WHERE userid = <userid of current user>

SELECT I.source, I.idate, D.damount

FROM Income I, Deposit D, Account A

WHERE I.source = D.source AND I.idate = D.idate AND D.accountid = A.accountid AND

A.userid = <userid of current user>
SELECT P.type, P.pdate, M.mamount

FROM Payment P, Make M, Account A

WHERE P.type = M.type AND P.pdate = M.mdate AND M.accountid = A.accountid AND

A.userid = <userid of current user>

SELECT P.year, P.type, P.pamount

FROM Pay_Taxes P, Account A

WHERE P.accountid = A.accountid AND A.userid = <userid of current user>
The second type of query that will be available to the user is similar to the first, but requires some input from the user. These queries will also be prewritten, but will have some input fields, such as an interval of dates, that will be provided by the user. The date entities are setup as integers in the form [(yyyy * 10000) + (mm * 100) + (dd)], which will allow for simple range queries on the date attributes. All of the queries previously listed will also be available with range queries on the date attributes.
The third type of query is the user defined query, which will consist of three GUI menus corresponding to the SELECT, FROM, and WHERE clauses of an SQL query. These queries will allow the user to create any simple query. The inputs will be interpreted in the java code and an SQL query will be constructed using the JDBC API. For the SELECT clause, there will be a pull down menu of all available attributes for the user to choose to project. A second pull down menu will be used for the FROM clause to select all necessary tables for the query. Finally, for the WHERE clause, there will be a text field where the user can enter any restrictions on the query.
Research

I am using java to create the user interface and interact with the database. I had used java once previously, but my knowledge was very limited, so I spent some time reviewing java tutorials. I also read the tutorial on the JDBC API. Tutorials for both of these are available at http://java.sun.com/learning/tutorial/index.html. I also needed to learn how to create a graphical user interface using java. I downloaded the latest version of JDK, which comes with netBeans freeware tool to help create the GUI, which I have never done before. I have begun work on the GUI, but it is not yet operational. There is more information at www.netBeans.org and I have read about how to use the software. Another topic that required research was how to bridge my WPI Oracle account to the java JDBC API, which is done using the JDBC ODBC Bridge Driver. Making the connection to the Oracle account also required an Oracle database driver that I downloaded from http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html. The final topic that will require more research is creating triggers. I have not yet created the triggers, assertions, or check constraints.
Completion Plan

Currently I have completed the research necessary to make use of the JDBC API with the Oracle database. I have used the java code insert tuples into the Oracle database and perform some simple queries. I have also made some changes to my original design to include dates in the primary keys of several of the tables. I also added some participation constraints. In the process of updating my design, I realized that it might not be feasible to complete all of the features that I had hoped to implement, so I simplified the design to focus more on some of the database aspects. I basically have a “stripped down” version of my software right now. The remaining tasks are research and development of the triggers (along with assertions and check constraints) and completing the implementation to meet the requirements described above.
We have five weeks remaining in the semester. Next week I plan to spend developing all of my triggers, assertions, and check constraints. The following two weeks will be used to develop the code and have a more polished product for the in class demonstration. The fourth week will be used for the write up and the presentation. The final week will be for any last minute corrections or enhancements.
Income

Operator

Account

Payment

Taxes

idate

odate

source

name

userid

pdate

damount

wamount

type

mamount

year

pamount

type

accountid

type

Deposit

Withdraw

Pay

Make

userid

Transfer

accountfrom

accountto

tdate

tamount

balance

Figure � SEQ Figure * ARABIC �1� - ER Model

