NEEL language proposal

Dan Dougherty

November 13, 2011 - 13: 33

Our meeting on Friday showed me some things that might be confusing to people, so here I've changed the
writing a little in hopes of making things clearer. The previous draft was mostly written “to myself”” to make
sure I had the ideas right, now that I know other people are going to read it I've added more details. (And
fixed the typos!)

There should be no change in the syntax or semantics (unless I've introduced a bug!) so if this seems different
from what you understood before, ask me.

e For ease of talking about things I've introduced the notion of a “!-expression”. This is an expression
of the form !q where ¢ is a query. It is not itself a query (since we never evaluate it directly to get an
answer) but it is useful to have a name for it.

e The target variables of a query are the variables that we match against primitive events in the input
stream in order to compute the result of the query. A !-expression always has an empty set of target
variables.

We need the more general notion of free variables of a query or !-expression in order to start the main
syntactic constraint (in the definition of the seq queries) that allows the semantics to be defined. The
target variables of a query are each free variables, but when looking at a sub-query p of a larger query
q there may be variables that are free in p which are used target variables only at a “higher level” in the
syntax tree. In the same way, a variable occurrence may be free in p even though in the larger context
q it is not free.

Intuitively, the set of free variables in a query (or !-expression) p is the set of variables that you need
to have bound to primitive expressions if you are in the middle of evaluating p.

For example, in this artificial query
3z . seq((Ax),!((By) : y.id = x.id),(Cz))

the only target variable is x, and the only free variable is x. From the perspective of the subquery
((By) : y.id = x.id) the target variable is y, and both x and y are free. In the !-expression !((By) : y.id = x.id)
x is free, but there are no target variables. In seq((Ax),!((By) : y.id = x.id),(Cz)) the target variables
are x and z, and these are the free variables as well.

This all seems complex and subtle but these ideas are the key details to manage in order to define (and
implement!) the language.

1 Events and Histories

Fix a set of event types written A, B... With each event type is associated a set of attributes; each attribute has
a corresponding domain of possible values. There are tw distinguished attributes, shared by all event types,
called ts and 7e, taking values in (say) the natural numbers (or the reals?) modeling time.

Typically the domains will have predicates defined over them; for example we can compare timestamps by
=, etc. There may be other, domain-specific attributes.

A complex event is (simply) a set of events. If S = {ej,...,e,} is a complex event, define the start and end
times for S as follows (we abuse notation slightly by writing S.zs and S.te): S.ts = min{e;.ts | 1 <i<n} and
S.te =max{e;.te |1 <i<n}.

We can view the vocabulary of primitive events as a first-order logic signature viewing the event types and
the attribute-domains as sorts and the attributes as functions. A history H is a structure for this language.
Call the elements in the structure whose sorts are event types the primitive events. If e is a primitive event
with attribute f defined then it is conventional write e.f rather than f(e). We impose the constraint that
no two primitive events have the same timestamp. A history has a natural order on events induced by the
time-stamps. [if we don’t have ts = te for primitive events, need to say more here...not now]

2 Syntax of Queries

For each event type A we have an infinite set of variables vi,v;,.... Let Vars denote the collection of all
variables.

A term is built from variables and the attributes (viewed as function symbols). We consider constants to be
0-ary function symbols. Of course we impose the usual constraints that application of functions to terms must
type-check.

An atomic formula is a predicate applied to an appropriate number of terms. Examples x =y, x.ts < y.ts,
x.name = ’mo”, etc.

Definition 2.1. Here we define the syntax of queries (and !-expressions). In fact we inductively define at the
same time the farget variables TV (q) of a query or !-expression and the free variables FV(q) of a query or
!-expression.

e if ¢ is a query, then (!g) is a !-expression.
TV(}q) =0and FV(1q) =FV(q)\TV(q)

e a simple query is an expression of the form (A x) : o(x,¥) where A is a primitive event type, x is a
variable of type A and o is a boolean combination of atomic formulas.

FV((Ax):a(x¥)={xy}and TV((A x) : a(x,¥)) = {x}.
e suppose that g1,...,q, are queries; then

- and(qi,...,q,) is a query
~ TV(and(q1,....qn) = U{TV(g) | 1 <i <n}
_ FV(and(q1,.....)) = U{FV(q) | 1 <i < n}

e suppose that g1,...,q, are queries; then

- or(q1,-..,qn) is a query
= TV(or(1.-...qn) = U{TV(g) | 1 <i < n}
- FV(or(q1,...,qn)) =U{FV(qi) |1 <i<n}

e if gisaquery and xy,...,x, are variables then

— (3x.q) is a query

- TV(E3x.q) =TV(g)\ {x}
- FV(3x.q) = FV(g) \{x}
Note: in the other draft I defined, for some reason, (xj,...,x, . g) all at once. But it is conceptually

cleaner to view quantification “one variable at a time:” so you should treat (3xy,...,x, . ¢) as syntactic
sugar for n applications of this quantification syntax rule.

e suppose that for each 1 <i <n, Q; is either a query or a !-expression; then

- seq(Q1,...,0,) is a query, provided the following condition is met.
To define the condition we need some notation. We say that the positive part of seq(Qy,...,0On)
is the subsequence of (Qy,...,Q,) consisting of the queries among the Q;, and the negative part

of seq(Qyi,...,0y) is the subsequence of (Q1,...,Q,) consisting of the queries r such that (!r) is
one of the Q;.

Careful: what we are calling the “negative part” is a set of queries, not !-expressions. They are
what you get after the !has been removed.

Now our requirement is that
for every query p in the positive part, and every r in the !part, TV (r) NFV(p) = 0.

That is, no query in the positive part can make reference to the target variable of a query in the
negative part. (This is the key technical device to allow the semantics to be defined nicely! See
Remark 3.3.

- TV(seq(Qi,...,0n)) =U{TV(p:) | 1 < i<k}
- FV(seq(Q1,...,0n)) =U{FV(Q:) |1 <i<n}

Note that we always have TV (¢) C FV(q).

Definition 2.2. A query is well-formed if no variable is used twice as a target variable.

We need one more bit of notation. If ¢ is a query seq(Q1,...,Q,) let us define erase(q), the erasure of g, as
the query obtained by removing the ! sign in front of each r that is in the negative part of g. Note that we do
not perform this action recursively; we only remove the ! at the “first level”.

The next definition is a little tedious formally, but intuitively it is simple: b(g) is the depth of nesting of
!-operators in g.

Definition 2.3. If ¢ is a query we define b(q), the level of !-nesting of ¢, by

S

=0 if g is simple.

and(q]’ 7q'l)) - max{b(q,-) | I1<i< I’l}

01‘((]1, 7qn)) = max{b(%') | 1<i< n}

-q)) = blq)

b Seq(Q], 7Qn)) -

— if there are no ! at the top level of any of the Q;, in other words if seq(Q1, ..., Q,) = erase(seq(Q1, . ..

then max{b(Q;) | 1 <i<n}

— otherwise 1+ b(erase(seq(Q1,...,0n))

7Qn))’

3 Semantics of Queries

3.1 Environments and Complex Events

If H is a history, an environment over H is a type-respecting partial function [: Vars — H. The meaning of a
query g over a history will be a set of environments.

Say that an environment B is an extension of environment P if the domain of BT is a superset of that of j3,
and B+ and B agree on their common environment. (This is the same as saying that B* is a superset of of §
when functions are taken to be sets of ordered pairs...)

More precisely, let ¢ be a query and let § be an environment over history H whose domain includes FV (g).
We will shortly define what it means for P to satisfy ¢ in H, denoted H,P |= ¢. Anticipating this definition
we define the meaning of a query as follows.

Definition 3.1 (Semantics of Queries). Let g be a query and let H be a history. The meaning of ¢ on H,
written g[H], is the set of those environments Py such that

e [has domain TV (g) and

e there is an extension B of By such that H,B = g.

The reason this is stated somewhat awkwardly, in terms of extensions, is explained in Remark 3.4 below.

It remains to define H,B |= ¢. Since this will be an inductive definition, we need to define H,B |= ¢ even
when the domain of 3 includes free variables of ¢ that are not target variables.

Definition 3.2. Let H be a history, let ¢ be a query, and let B be an environment over H whose domain
includes FV (g). We define
HpBlEq

by induction on the level of nesting of negations, with a sub-induction on the size of g.

e Case: gis (A x):o(x,y)
H,B = g if ox,) is true in H under

e Case: gisand(qi,...,qn)

H,B = qif foreach i, H,B = gi
e Case: gisor(qi,...,qn)

H,B k= q if for some i, H,B = g;

e Case: gis (Ix. p)

Let B~ be the environment obtained by removing x from the domain of . Then H, B | g if there is an
extension BT of B~ such that H,B* = p.

e Case: g isseq(Q1,...,0)

— When b(q) = 0 g is of the form seq(q1,...,¢n)-
For each i let 3; be the restriction of f to the variables TV (p;). (Note that the domains of the 3; are
pairwise disjoint by our assumption that no variable occurs more than once as a target variable.
) Let C; be the range of f3;; note that we may view each C; as a complex event, so that C;.ts and
C,.te are defined.
Now we say that H, =seq(qi,...,q,) if foreach | <i<k

1. H,B =g, foreachi ' and
2. Cite < Ciyy.ts

— Next suppose b(g) > 0. Let the positive part of g be (pi,...,pr). Then we say that H,p =
seq(Q1,...,0p) if

1. H,B Eseq(p1,...,pk), and
2. for no extension BT of B do we have H,B™ |= erase(seq(Q1,...,0x))

Remark 3.3. We are in a position now to understand the restriction about target variables and free variables
in the syntax of seq queries. We have to require in the defn that B be defined on all the free variables of the
query, otherwise we couldn’t refer truth of conditions back to the input history. But the target variables in the
negative part are not free, so B need not be defined for the target variables of negated queries in g. This would
seem to cause a problem for evaluating the positive part above. But all is OK since we said that these target
variables from the !-part were not allowed to be free in the positive part. That’s precisely why we needed that
restriction.

Remark 3.4. Note the subtlety in the interactions between Definition 3.1 and Definition 3.2. In Definition 3.1
it is required that the domain of the answer-environment be precisely the set of target variables, while in
Definition 3.2 we do not (cannot) make this assumption. This difference is required: to see why, consider the
semantics of a query like or((Ax), (By)). Suppose H is {a,b). And consider the environment f3 that binds
x> a and y — b. Then certainly we want to say that H,3 = or((Ax), (By)). But (it seems to me) we do
not want 3 to be an answer to that query on H. Rather, the answers to the query on H should be the two
environments: x — a and y — b. This is what the wording of Definition 3.1 accomplishes.

A final note: It seems to be that there is a potential confusion for readers and users with our use of and and
or as an operator on queries, and A and V as operators on conditions inside of queries. I wonder if we should
say something like all instead of and, and some instead of or?

lyes, we mean P, not B;

	Events and Histories
	Syntax of Queries
	Semantics of Queries
	Environments and Complex Events

