DECSA Costa Rica S.A.

Database Project

Prepared for: CS542 Databases
Prepared by: Franklin Angulo

December 13, 2007

DECSA Costa Rica S.A. Escazu San Jose, Costa Rica T (506) 228-6969 F (506) 228-2372 franklin.angulo@decsacr.com www.decsacr.com

http://www.decsacr.com
http://www.decsacr.com

—xecutive summary

Objective

This project consists of extensions to an existing database application. A new and improved database design
was introduced in order to organize the data in a more efficient and productive way. This database design covers three
general areas: window descriptions, security and authentication and window navigation menus. These areas are de-
scribed in the following project description:

A software development company has been in the process of transforming most of its old software. It translates
its original software written in PowerBuilder to the relatively new Java programming language. The software it develops is
targeted to companies that need to organize and manipulate data through a database. They achieve this through the use
of various types of windows which present the data from the database to the user. Then the user can select several op-
erations to perform on the data.

On its old systems, all the windows were described in separate files because that was the architecture used in
PowerBuilder. Therefore, if there were 1000 windows in the whole system, then there would be exactly 1000 files de-
scribing each and every one of these windows. This posed a severe portability issue because 1000 files would occupy a
great deal of disk space (in part because PowerBuilder executable files were gigantic). Java introduced a more efficient
perspective. The windows could be described completely through database tables and fields. Then there would be a
“window generator” that would take the description from the database and “paint” the window exactly as it was de-
scribed. But most importantly, the window would never be physically stored in the disk. Instead, since Java just gener-
ated it, the window would be stored in memory during execution time until the user decided to close the window. The
only file that would have to be stored in the disk would be the Java class for generating the windows (and the rows in the
database). In summary, the 1000 files that existed originally would have to be converted into 1000 rows in a database
table and a single Java class file which would be the window generator. Suddenly there was a great performance boost,
even if the system had 5000 windows, the new Java software would only need a single file. The company is looking for a
database design that will enable them to execute this idea.

Furthermore, the company is trying to implement an improved security and authentication system. Keeping in
mind that all the windows will be described in a database table, the company now wants to assign access permissions
to those windows also through a database table. Therefore, for every user of the system, there should be a row in a table
specifying windows to which he has access.

The final addition to its system will be a type of window navigation description through menus. In the old sys-
tem, users had to know the name of the window to open it. It was a command-like interface. With this new system, us-
ers can use a menu-driven interface to find the window they need and then open it. In addition, if users have some win-
dows that they use more frequently than others, they may want to access these through some sort of “favorite window”
mechanism.

Keywords

Oracle, PostgreSQL, Java, PowerBuilder

Database Project 1

Overview

There are three main points that need to be addressed in this project: window descriptions, security and
authentication and window navigation and menus.

Window Descriptions

For this point, we first need to figure out what data needs to be retrieved from the PowerBuilder files. After gathering this
data, we may want to make some extensions to capture some functionality that the PowerBuilder files might not have
captured. Finally, we would have to create the database design for the windows and translate from PowerBuilder files
directly to the database.

Security and Authentication

When we have all of our windows described in the database, we need to be able to assign access rights to them. The
database design for users and permissions has to be created. This will most likely involve entities such as users, compa-
nies and permissions.

Window Navigation and Menus

Another of the requirements for this project is to provide an easier way to navigate all the windows for which a user has
access. In other to satisfy this requirement, we will need to define a way to group the windows into menus that can then
be traversed. This will include both the design and the actual implementation in Java.

Requirements List:

e Req 01: Create a database design for windows and their respective fields and behavior
e This consists of defining the tables and/or views that will make up the window descriptions.

e Req 02: Convert the PowerBuilder files into database rows
e A converter that reads a PowerBuilder file needs to be created. It will output SQL insert statements to be exe-
cuted against the database.

e Req 03: Implement a window generator that will present the window on screen
e This window generator will access the data stored in the window description tables and paint the described win-
dow on screen. This generator will be written in Java.

e Req 04: Create a database design for granting access rights to the windows on a user or group basis
e A design will be created that will allow easy assignment of access rights to specific windows. The assignments
can be done for a specific user.

e Req 05: Create a database design for navigating the windows in a menu-like fashion
e This requirement consists of creating tables and/or views that will display the windows in a menu-like fashion. This
means that some of the windows will be grouped and further sub-grouped. In this way, a tree-like structure will be
created that then can be navigated.

Database Project 2

e Req 06: Implement the window navigation functionality
e After creating the design for navigating windows, a menu system will be implemented that will allow the user to
very easily go through all the windows and select one. After a window is selected, the window generator from Req
02 will be invoked and the appropriate window will be presented on screen.

e Req 07: Test the access rights on the menu navigation
e With the window navigation implementation in place, we need to test that the access rights assignments actually
work. In order to do this, we will create some windows and assign some access rights and then check to see
which windows appear in the menu navigation. Only the windows that the user has access to should appear in
the menu.

Project Goals

The goals of this project go hand-in-hand with the project requirements. At the end of this project, | aim to have devel-
oped a working implementation of window descriptions all the way from their definition, to access rights and a menu
implementation that will allow the user to select the window they want and make it appear on screen.

Potential User Groups

There are two types of user groups that will benefit from this project. First and foremost are the developers. With the win-
dow descriptions and access rights design, developing the complete system will be much easier for them. At least there
will be a standard for storing the window descriptions. The second user group that will benefit will be the end users. They
will benefit from the more user-friendly way to navigate the windows of the system.

Database Project 3

sackground Material

My work on this project was based on several specific topics. First of all, | used the ER Model theory described in Chap-
ter 2 of the book Database Management Systems. With this | was able to create a high-level model of all the entities and
relationships between them. This design was part of the solution that was delivered to the software company. Apart from
this, | drew upon aspects of the DDLs and DMLs of both the Oracle and PostgreSQL DBMS. There were several differ-
ences between these two that needed to be handled appropriately. For instance, there was a very specific difference
between the DDL in Oracle and the DDL in PostgreSQL that did not have the same syntax for specifying an outer join
when creating a view.

The topics listed previously deal with the DBMS and the data that had to be stored in them. The next step was to retrieve
the data from data files and convert them into insert statements for the database. Usual file operations written in the Java
programming language were used to scan files, retrieve and organize the data, and generate DML files that would then
be executed against the DBMS tables. In order to interact with the data (modify, delete, insert), the JDBC drivers were
used in the developed Java application in order to communicate with the DBMS. Finally, some knowledge of Java Swing
was required to develop the user interface and components such as the window navigation tree and the window genera-
tor that displays windows and their appropriate fields.

DBMS Description

For my project | used two different DBMS: Oracle and PostgreSQL. The Oracle DBMS is a relational database manage-
ment system software product released by Oracle Corporation and it has become a major player in the database market.
PostgreSQL is a powerful, open source relational database system. It has more than 15 years of active development and
a proven architecture that has earned it a strong reputation for reliability, data integrity and correctness.

The software that my company develops has two very distinct layers. In one layer we have all the presentation logic for
describing how the user interface should look and function. The second layer deals with the business data that is stored
by using the user interface. When a system is delivered to a client, the presentation layer contains all the logic of the
software company that specifies how to handle insertions, deletions and modifications in a window. But there is no busi-
ness data present at the beginning because the client has not started using the system. Without a doubt, the business
data layer is the most important part and it should be protected. At the beginning we thought about putting both the
presentation layer and the business data layer in a single Oracle DBMS. This was working perfectly until we thought
about remote execution of the system. If a client had to travel and wanted to access the system using a slow internet
connection, it would not be very pleasant to work. Apart from making a request to the remote database for the business
data that was queried, the client would also have to request the presentation logic. Therefore, when a client would try to
open a window, he would first have to wait a long time for the window to open. Then he would insert his query parame-
ters and execute the query to request the business data which would also take a long time.

We decided to keep the business data in a centrally-located Oracle DBMS to ensure security of the information. But the
presentation logic could be stored in each client. For example, we could create a database with the presentation logic in
each of the laptops that would be used for travel. Then, when a client used the system, the presentation logic would be
obtained from his local copy of the presentation database and the business data would be obtained from the centrally-
located database. Our clients have very low IT budgets, so asking them to install an Oracle database in each of their
laptops would be unreasonable. In addition, Oracle can be a very heavy database that would probably not function in a
laptop with limited resources. Therefore, we decided to go with open-source PostgreSQL in the laptops. This added
some complexity to the system because we had to handle several different databases, but it solved the great problem of
remote execution of the system. PostgreSQL was also compared to mySQL, but we decided that the first was much
more robust. At the time, mySQL did not support stored procedures nor views, so PostgreSQL was our clear choice.

Database Project 4

Approacn

Window Descriptions

There are three aspects that we need to address. This first aspect deals with the descriptions of the windows of
the system. We plan to solve this problem using nine tables and two views. Our first table will be COM_VENTAN. Each
row of the COM_VENTAN table will register a new window for the system. It will contain information such as the title,
name and dimensions of the window. Related to the COM_VENTAN table will be the COM_AREDAT table. If we look at
the layout of most of the windows of the system, we can notice that there are several different areas in a window. For
example, in some of the accounting windows we may have a top area that selects the number of a receipt. Once the
receipt number is selected, the middle area of the window is populated with all the entries for that receipt (e.g. what was
bought). Finally, in the lowest area the sum of all the items appears. For this reason, each row of the COM_AREDAT table
will describe the areas of the window. If there are three areas as in this case, there would be three different rows specify-
ing three areas for the single window.

If we further subdivide the problem, we find that each area can have fields (e.g. textboxes, checkboxes, textar-
eas) and labels (e.g. the titles corresponding to a field). Therefore, we will create the tables COM_CAMARE and
COM_ETQARE for the fields and the labels for each area of a window. This allows for fields without a label for example.
As a result of the division we made between fields and labels, we can apply different formatting to each of these. For
example, we might want the label to be bold and blue and the field to have normal text of size 9pt and in Arial font. In
order to do this, two more tables were created: COM_ATRCAM and COM_ATRETQ. These two tables correspond to the
attributes or formatting details for fields and labels, respectively.

The final aspect that needed to be addressed in this window descriptions section is internationalization. For
labels in an area of a specific window, we might want them to be flexible enough so that if the locale was changed, so
could the text the was displayed in the label. COM_IDIOMA was created to keep track of all the available locales in the
systems (e.g. English, Spanish, French, etc.). Then, in COM_INFCAM and COM_INFETQ we specify the translations for
each of the localized objects. COM_INFETQ stores all the titles in each of the different locales for each of the available
labels of the system. COM_INFCAM also stores the tooltip texts in each of the different locales for each of the available
fields. Then, two views are created; COM_IDICAM and COM_IDIETQ. The COM_IDICAM view joins that data from
COM_CAMARE and COM_INFCAM by locale. Basically, it takes the data stored for each of the fields for that area and
sticks the correct tooltip in the current locale. COM_IDIETQ does the same but for titles; it joins COM_ETQARE and
COM_INFETQ by locale. Therefore, when the system presents a window it retrieves the tooltips and label text in the cur-
rent locale using the data from the views COM_IDICAM and COM_IDIETQ.

Security and Authentication

The second aspect we need to address with our database design is the security and authentication issue. All
the windows of the system are registered in the COM_VENTAN table and described in the COM_AREDAT, COM_CA-
MARE, COM_ETQARE and all the other tables. Now the company wants to assign access permissions to those win-
dows also through a database table. For every user of the system, there should be a row in a table specifying the win-
dows to which he has access.

We will first have COM_COMPAN to keep track of all the companies registered in the system. Then we will cre-
ate COM_USUARI to keep track of all the users of the system. With companies and users in place, now we create the
permissions table called COM_PERMIS. This table will receive a company, a user, a window references and a permission
code. In essence, a row in COM_PERMIS specifies that a user of a system under the specified company has the speci-
fied permissions (a combination of QIMDP) for the specified window that is references from COM_VENTAN.

Database Project 5

QIMDP is an abbreviation that the software company has created to deal with operations that can be performed
on database data through their windows.

Perform (Q)ueries

(hnsert a new row of data
(M)odify an existing row of data
(D)elete an existing row of data
(P)rint data from a window

TOoOZI ™~ O

| thought about creating a separate table for specifying the available permission codes. That is, all the possible combina-
tions of QIMDP. But this makes the design more complex than necessary and we would have to join two tables to find
out what the actual permission code would represent (e.g. if we assigned code 100 to permissions QMP, we would have
to join both tables to find out what this meant). So, | kept it simple and allowed for direct insertion of a combination of
QIMDP into the COM_PERMIS table.

This is the solution for granting access to users for a specific window. The next step was to find a way around
having to input permissions repeatedly. Take this example: | have a group of developers called SwingDevelopers that all
have the same exact permissions for several windows. They all have access to the same windows and for the same op-
erations. Now, a new employee is hired into the SwingDevelopers group. How do | go about inserting permissions for the
new employee knowing that all SwingDevelopers have the same permissions? Under the current design, | would have to
go row by row duplicating the data while only changing the username. This would be a pain if we had, say, we had 5000
permission entries. | would be easier if we could say that the new employee inherits all the permissions of the group. To
allow for this a new table was created: COM_USRDEP.

In the COM_USRDEP table we can specify that for a given company, user X is parent of user Y. As we will see
later, this relationship will be used to determine permissions based on inheritance. This table not only allows for specifying
direct inheritance from user to user, but we can also created groups of users. For example, we can define the group
SwingDevelopers. We set this group as the parent and then for each member we create a new tuple setting the member
as a child of SwingDevelopers. In order for our design to work correctly, we have to note something. For each user that
we want to control using COM_USRDEP, we have to specify that it is a parent of itself. So, for example, SwingDevelopers
will be a parent of itself and so will every member of SwingDevelopers. If we set Mary as a child of SwingDevelopers,
Mary will also be a parent of herself.

As a final step, we create the view COM_PERUSR. This view will combine the data from COM_PERMIS and
COM_USRDEP and will expose the inheritance functionality that we were looking for. This view is probably the most
complex part of the database design. Apart from inheritance, this view will also allow for the concept of negative permis-
sions. Take our example of SwingDevelopers. If the newly hired employee should have access to almost all windows
except for one or two, it makes sense to apply the inheritance relationship to provide him access to all windows. Then
we can specify negative permissions to “un-grant” him access to the one or two windows that he should not have ac-
cess to. We do this by specifying an X in the permissions field of COM_PERMIS. For example, user Mary will have ac-
cess to window W with permissions QIMDX. This allows Mary to query, insert, modify and delete, but NOT print using
window W. The view COM_PERUSR notices that a child has been assigned a permission in COM_PERMIS and gives
higher precedence to the child's permission that to the permission inherited from the parent. Therefore, even if the par-
ent's permission for window W was QIDMP, the child will now have permission QIDMX. This will effectively execute the
concept of negative permissions. In this case, we are taking away Mary's permission to print on window W.

Window Navigation Menus

Our last aspect is the creation of a window navigation interface for the users interacting with our system. First
we will describe what we mean when we talk about a window navigation interface. The software company’s system has
thousands of windows divided into subsystems. Each subsystem is divided further into groups or menus. For example,
the Employees and Payroll subsystem may have a group called Managers and another called Employees. These groups
are represented as menus. Inside the Managers menu there will be several windows with which we can work. The Em-
ployee menu also has some windows. There could exist a monthly salary window in the Employee menu that lets the
employee query how much his salary for this month will be after taxes and other deductions. A window called Deduc-
tions may also exist under the Managers menu that lets the manager include deductions to the monthly salary of an em-
ployee. Now, this simple menu structure will look like this:

Database Project 6

menu0 menu menu2 menu3 menu4
Start Menu Employees & Payroll Managers Deductions (W)
Employees Monthly Salary (W)

This is how the window navigation for our system should work. When a user enters the system, he starts in the
“Start” menu. At this point he sees the Employees and Payroll subsystem menu. Inside this subsystem he sees both the
Managers and Employees menus. He can now select the Managers menu and then open the Deductions window to
perform some changes. After examining this structure, we find a very important problem. Should an employee be able to
see and access the Managers menu? This could lead to some serious problems. Therefore, we need to grant access
permissions and restrictions. If John is an employee, he should only see the Employees menu when he enters the sys-
tem. On the other hand, if Jake is a manager he should only be able to see the Managers menu. We will provide this
functionality using the COM_PERMIS table and a new table we will create named COM_NAVEGA.

COM_NAVEGA will describe all the possibilities for navigation through the system. Referring to our example, it
will say that from menuQ the user can see menui. If the user then goes into menu1, then he can see menu2, and so on.
Now, when the user enters menu3, he does not see any menus. He sees one window instead, Deductions. We need to
distinguish between windows and menus. Menus are used to group windows and other menus. Windows are registered
in the COM_VENTAN table. If you select a menu, our system will open the options available under that menu which could
include windows or more submenus. On the other hand, if you select a window, the system will automatically generate
that window using the descriptions from COM_VENTAN, COM_AREDAT, COM_CAMARE, COM_ETQARE, etc. and then
present it to the display so the user can perform operations on the data. We will refer to our example again to illustrate
this point.

FROM TO TYPE
menu0 menul Menu
menul menu2 Menu
menu2 menu3 Menu
menu2 menu4 Menu
menu3 Deductions Window
menu4 Monthly Salary Window

This table above is a representation of how the COM_NAVEGA table would look. We define the rules of naviga-
tion in this table. We can say that the user may go from menuO to another menu, menul, using navigation of type
“Menu”. In such a case, the system would open the available options under menul. We may also allow the user to go
from a menu, menu3, to a window, Deductions, using navigation of type “Window”. In this case, the system would auto-
matically generate the Deductions window and present it to the display. We can find the definition of menu1 by querying
the database and asking it what elements have FROM equal to menu1. If we print the distinct TITLE attributes for these
elements we would get a list of elements that make up the menu1 definition.

This table will have a one-to-many relationship with COM_VENTAN. This is because the attribute TO_WHERE
may contain the name of a window. For any window registered in the COM_WINDOW table there could be many naviga-
tion rules that include fit.

Another more graphical example of the difference between menus and windows is the following. The first menu
that the user selects is the one named Applications. When the user selects this menu, the system opens all the options
under that menu which include Accessories, Games, Graphics, etc. Next the user goes down to the Office option and
selects it. Office is also a menu as we can see from the arrow at the right of its name. Therefore, when the user selects it,
all possible options will appear; Evolution, OpenOffice.org Drawing, OpenOffice.org from Template, etc. Now, say the

Database Project 7

user selects the OpenOffice.org Word Processor option from within this menu. As we can see, this option does not have
an arrow to the right of its name; thus it is a window or “runnable” option. So when the user selects this option, the Word
Processor application will load so the user can work on a document. This is the same menu-driven functionality that our
system will have.

5’ PN LY Places |
&] Accessories 4

3

Ci’ Games »
),'6 Graphics 4
w Internet 4

*J Other » B OpenOffice.org Drawing

<X Programming 4 ,E;ﬁl OpenOffice.org From Template

. —
g&, Sound & Video » @ OpenOffice.org Math

g System Tools 4 ;L-;‘Jl OpenOffice.org Presentation

a%’ S SR ’E"l OpenOffice.org Printer Administration

“ 4| OpenOffice.org Spreadsheet
@ OpenOffice.org Word Processor

{O‘l OpenOffice.org Writer/Web

With COM_NAVEGA in place, we now create COM_INFNAV. This table is used to localize all the options of the
menu navigation. So for each caller/callee combination we give the appropriate title translation in each locale. This is a
very similar design to the one used to localize the label titles and field tooltips in the window descriptions section. Then
the view COM_IDINAV combines COM_NAVEGA and COM_INFNAV using the required locale. During execution of the
system, we pass in the current locale as parameter and get the correctly localized version of the menu navigation op-
tions.

In the previous section we defined how to specify access rights to specific windows. These permissions need
to be portrayed in the menu navigation options. That is, only the windows for which the user has access to should ap-
pear. The others should be hidden. To do this, we create a new view: COM_PENAVE, navigation permissions. This view
will join the data in COM_PERUSR and COM_IDINAV relations. It joins with COM_PERUSR because it defines all the
permissions for all the users. It joins with COM_IDINAV because it specifies all the navigation options. In the end, we have
a view that combines permissions with navigation options and this is our solution.

The software company also emphasized that many users could complain about using their window navigation
structure for doing day-to-day work. For example, John checks the Monthly Salary Query window every day. He would
like to avoid the process of navigation through all the menus. Instead he would like to have a “favorite window” utility in
which he could include the Monthly Salary Query window. The software company expressed their desire for this function-
ality to be included in the database design since more and more users are asking for this. We will create a COM_VE-
NUSR table.

Database Project 8

We have four attributes for the COM_VENUSR table. We need to record the company and the user. These will
reference the COM_COMPAN and COM_USUARI tables for integrity. Then we need to record the caller and callee. With
these two attributes we index into the COM_NAVEGA table to find the specific window that was flagged as a favorite
window. Now, a single window can be a favorite for many users and of course, many users may have many favorite win-
dows.

Database Project 9

10

Database Project

HSNN3A

ETVEL
: WvoIal

s

W I u WVYOHLVY

\/

SR

Database Project

—leld Requirements

underline: primary key
italic: foreign key

Window Descriptions
COM_VENTAN(NOM_VENTAN, DES_VENTAN)

COM_AREDAT(NOM_VENTAN, NOM_ARE_DA, NOM_EST_BA, NOM_EST_AC, TIP_PRESEN, VAL_ALTURA,
VAL_LARGO)

COM_CAMARE(NOM_VENTAN, NOM_ARE_DA, NOM_CAMPO, DES_CAMPO, SEC_ORDENA, TIP_DATO, LON_PRE-
SEN, FOR_PRESEN, LON_CAMPO, TIP_PRESEN, UBICA_X, UBICA_Y, ALT_CAMPO, NUM_ORDENA, TIP_ORDENA,
IND_ACTUAL, IND_MODIFI, IND_CONSUL, IND_OCULTO, IND_OBLIGA, IND_LLAVE, IND_ATR_ES, SEC_LLAVE)
COM_ETQARE(NOM_VENTAN, NOM_ARE_DA, NUM_ETIQUE, ALT_ETIQUE, LON_ETIQUE, UBICA_X, UBICA_Y)

COM_ATRCAM(NOM_VENTAN, NOM_ARE_DA, NOM_CAMPO, TIP_FUENTE, TAM_FUENTE, COL_FUENTE,
COL_FONDO, IND_NEGRIT, IND_CURSIV, IND_SUBRAY, TIP_JUSTIF, TIP_BORDE)

COM_ATRETQNOM_VENTAN, NOM_ARE_DA., NUM_ETIQUE, TIP_FUENTE, TAM_FUENTE, COL_FUENTE,
COL_FONDO, IND_NEGRIT, IND_CURSIV, IND_SUBRAY, TIP_JUSTIF, TIP_BORDE)

COM_INFCAM(NOM_VENTAN, NOM_ARE_DA, NOM_CAMPO, COD_IDIOMA, DES_CAMPO)
COM_INFETQNOM_VENTAN, NOM_ARE_DA, NUM_ETIQUE, COD_IDIOMA, TIT_ETIQUE)
COM_IDIOMA(COD_IDIOMA, DES_IDIOMA)

COM_IDICAM(NOM_VENTAN, NOM_ARE_DA, NOM_CAMPO, SEC_ORDENA, TIP_DATO, LON_PRESEN, FOR_PRE-
SEN, LON_CAMPO, TIP_PRESEN, UBICA_X, UBICA_Y, ALT_CAMPO, NUM_ORDENA, TIP_ORDENA, IND_ACTUAL,
IND_MODIFI, IND_CONSUL, IND_OCULTO, IND_OBLIGA, IND_LLAVE, IND_ATR_ES, SEC_LLAVE, COD_IDIOMA,
DES_CAMPO)

COM_IDIETQ(NOM_VENTAN, NOM_ARE_DA, NUM_ETIQUE, ALT_ETIQUE, LON_ETIQUE, UBICA_X, UBICA_Y, IND_A-
TR_ES, COD_IDIOMA, TIT_ETIQUE)

Security and Authentication
COM_COMPAN(COMPANIA, DES_COMPAN)
COM_USUARIINOM_USUARI, DES_USUARI)
COM_PERMIS(COMPANIA, ABR_FORMAT, NOM_AUTORI, PERMISOS)
COM_USRDEP(COMPANIA, USR_PADRE, USR_HIJO, NOM_USUAR)

COM_PERUSR(COMPANIA, ABR_FORMAT, NOM_AUTORI, PERMISOS, USR_PADRE, USR_HIJO)

Database Project 12

Window Navigation Menus

COM_NAVEGA(LLAMANTE, L LAMADO, NOM_CAMPO, SECUENCIA, DES_LLAMAD, TIP_LLAMAD)
COM_VENUSR(COMPANIA, NOM_USUAR, LL AMADO, LI AMANTE, SEC_ORDENA)
COM_INFNAV(LLAMANTE, L LAMADO, COD_IDIOMA, TITULO)

CON_IDINAV(LLAMANTE, LLAMADO, NOM_CAMPO, SECUENCIA, DES_LLAMAD, TIP_LLAMAD, OPE_BITACO, EN-
CADENADO, AUX_LLAMAD, COD_ID_NAV, COD_IDIOMA, TITULO)

COM_PENAVE(COMPANIA, NOM_AUTORI, PERMISOS, LLAMANTE, LLAMADO, TITULO, NOM_CAMPO, SECUEN-

CIA, DES_LLAMAD, TIP_LLAMAD, OPE_BITACO, ENCADENADO, COD_ID_NAV, AUX_LLAMAD, COD_IDIOMA,
NOM_VEN_BA, TIP_PRESEN, VAL_ALTURA, VAL_LARGO, MAX_REG_CO)

Database Project 13

SQL Statements

In this section, | list the SQL statements for a PostgreSQL database which is what I've used for implementation. But our
system will potentially support any database, so the statements will translated to fit the specific DBMS if needed.

Window Descriptions
COM_VENTAN

create table com_ventan
(
nom_ventan varchar(15) not null,
des_ventan varchar(240) ,
constraint com_ventan_llave primary key (nom_ventan)
)
without oids;
alter table com_ventan owner to dec;
grant all on table com_ventan to dec;
grant all on table com_ventan to public;

COM_AREDAT

create table com_aredat

(

nom_ventan varchar(15) not null,
nom_are_da varchar(15) not null,
nom_est_ba varchar(10) ,

nom_est_ac varchar(10) ,

tip_presen varchar(3) not null,
val_altura numeric(7) not null,
val_largo numeric(7) not null,

constraint com_aredat_llave primary key (hom_ventan, nom_are_da),
constraint com_aredat_fllave foreign key (nom_ventan) references com_ventan
)
without oids;
alter table com_aredat owner to dec;
grant all on table com_aredat to dec;
grant all on table com_aredat to public;

Database Project 14

COM_CAMARE

create table com_camare

(

nom_ventan varchar(15) not null,
nom_are_da varchar(15) not null,
nom_campo varchar(10) not null,
des_campo varchar(240) ,
sec_ordena numeric(7) not null,
tip_dato varchar(3) not null,
lon_presen varchar(6) not null,
for_presen varchar(20) not null,
lon_campo varchar(6) not null,
tip_presen varchar(1) not null,
ubica_x numeric(7) not null,
ubica_y numeric(7) not null,
alt_campo numeric(7) not null,
num_ordena numeric(7) ,
tip_ordena varchar(1) ,
ind_actual varchar(1) not null,
ind_modifi varchar(1) not null,
ind_consul varchar(1) not null,
ind_oculto varchar(1) not null,
ind_obliga varchar(1) not null,
ind_llave varchar(1) not null,
ind_atr_es varchar(1) not null,
sec_llave numeric(7)

constraint com_camare_llave primary key (hom_ventan, nom_are_da, nom_campo),
constraint com_camare fllave1 foreign key (nom_ventan, nom_are_da) references com_aredat
)
without oids;
alter table com_camare owner to dec;
grant all on table com_camare to dec;
grant all on table com_camare to public;

COM_ETQARE

create table com_etgare

(

nom_ventan varchar(15) not null,
nom_are_da varchar(15) not null,
num_etique numeric(7) not null,
alt_etique numeric(7) not null,
lon_etique numeric(7) not null,
ubica_x numeric(7) not null,
ubica_y numeric(7) not null,

constraint com_etqare_llave primary key (hom_ventan, nom_are_da, num_etique),
constraint com_etqare fllave1 foreign key (nom_ventan, nom_are_da) references com_aredat
)
without oids;
alter table com_etgare owner to dec;
grant all on table com_etgare to dec;
grant all on table com_etqgare to public;

Database Project

COM_ATRCAM

create table com_atrcam

(

nom_ventan varchar(15) not null,
nom_are_da varchar(15) not null,
nom_campo varchar(10) not null,
tip_fuente varchar(40) not null,
tam_fuente numeric(7) not null,
col_fuente varchar(15) not null,
col_fondo varchar(15) not null,
ind_negrit varchar(1) not null,
ind_cursiv varchar(1) not null,
ind_subray varchar(1) not null,
tip_justif varchar(1) not null,
tip_borde varchar(1) not null,

constraint com_atrcam_llave primary key (nom_ventan, nom_are_da, nom_campo),
constraint com_atrcam_fllave1 foreign key (hom_ventan, nom_are_da, nom_campo) references
com_camare
)
without oids;
alter table com_camare owner to dec;
grant all on table com_atrcam to dec;
grant all on table com_atrcam to public;

COM_ATRETQ

create table com_atretq

(

nom_ventan varchar(15) not null,
nom_are_da varchar(15) not null,
num_etique varchar(10) not null,
tip_fuente varchar(40) not null,
tam_fuente numeric(7) not null,
col_fuente varchar(15) not null,
col_fondo varchar(15) not null,
ind_negrit varchar(1) not null,
ind_cursiv varchar(1) not null,
ind_subray varchar(1) not null,
tip_justif varchar(1) not null,
tip_borde varchar(1) not null,

constraint com_atretqg_llave primary key (nom_ventan, nom_are_da, num_etique),
constraint com_atretqg_fllave2 foreign key (nom_ventan, nom_are_da, num_etique) references
com_etgare
)
without oids;
alter table com_camare owner to dec;
grant all on table com_atretq to dec;
grant all on table com_atretq to public;

Database Project

COM_INFCAM

create table com_infcam

(

nom_ventan varchar(15) not null,
nom_are_da varchar(15) not null,
nom_campo varchar(10) not null,
cod_idioma varchar(6) not null,
des_campo varchar(240) not null,

constraint com_infcam_llave primary key (nom_ventan, nom_are_da, nom_campo, cod_idioma),
constraint com_infcam_fllave3 foreign key (hom_ventan, nom_are_da, nom_campo) references
com_camare,

constraint com_infcam_fllave4 foreign key (cod_idioma) references com_idioma

)

without oids;

alter table com_infcam owner to dec;

grant all on table com_infcam to dec;

grant all on table com_infcam to public;

COM_INFETQ

create table com_infetq

(

nom_ventan varchar(15) not null,
nom_are_da varchar(15) not null,
num_etique numeric(7) not null,
cod_idioma varchar(6) not null,
tit_etique varchar(240) not null,

constraint com_infetg_llave primary key (nom_ventan, nom_are_da, num_etique, cod_idioma),
constraint com_infetg_fllave3 foreign key (nom_ventan, nom_are_da, num_etique) references
com_etqare,

constraint com_infetq_fllave4 foreign key (cod_idioma) references com_idioma

)

without oids;

alter table com_infetq owner to dec;

grant all on table com_infetq to dec;

grant all on table com_infetq to public;

COM_IDIOMA

create table com_idioma

(
cod_idioma varchar(6) not null,
des_idioma varchar(240) not null,
constraint com_idioma_llave primary key (cod_idioma)

)

without oids;

alter table com_idioma owner to dec;

grant all on table com_idioma to dec;

grant all on table com_idioma to public;

Database Project

17

COM_IDICAM

create view com_idicam

as select
com_camare.nom_ventan as nom_ventan
com_camare.nom_are_da as nom_are_da ,
com_camare.nom_campo as nom_campo
com_camare.sec_ordena as sec_ordena
com_camare.tip_dato as tip_dato ,
com_camare.lon_presen as lon_presen ,
com_camare.for_presen as for_presen ,
com_camare.lon_campo as lon_campo
com_camare.tip_presen as tip_presen
com_camare.ubica_x as ubica_x
com_camare.ubica_y as ubica_y ,
com_camare.alt_campo as alt_campo ,
com_camare.num_ordena as num_ordena
com_camare.tip_ordena as tip_ordena
com_camare.ind_actual as ind_actual ,
com_camare.ind_modifi as ind_modifi ,
com_camare.ind_consul as ind_consul ,
com_camare.ind_oculto as ind_oculto ,
com_camare.ind_obliga as ind_obliga ,
com_camare.ind_llave asind_llave ,
com_camare.ind_atr_es asind_atr_es ,
com_camare.sec_llave as sec_llave
com_infcam.cod_idioma as cod_idioma ,
com_infcam.des_campo as des_campo

from com_camare, com_infcam

where com_camare.nom_ventan = com_infcam.nom_ventan

and com_camare.nom_are_da = com_infcam.nom_are_da

and com_camare.nom_campo = com_infcam.nom_campo

COM_IDIETQ

create view com_idietq

as select
com_etgare.nom_ventan as nom_ventan
com_etgare.nom_are_da as nom_are_da ,
com_etgare.num_etique as num_etique
com_etgare.alt_etique as alt_etique ,
com_etgare.lon_etique as lon_etique
com_etgare.ubica_x as ubica_x
com_etgare.ubica_y as ubica_y
com_infetg.cod_idioma as cod_idioma ,
com_infetq.tit_etique as tit_etique

from com_etgare, com_infetq

where com_etgare.nom_ventan = com_infetg.nom_ventan

and com_etgare.nom_are_da = com_infetg.nom_are_da

and com_etgare.num_etique = com_infetg.num_etique

Database Project

Security and Authentication

COM_COMPAN

create table com_compan (
compania varchar(6) not null,
des_compan varchar(100) ,

constraint com_compan_llave primary key (compania)
);
alter table com_compan owner to dec;
grant all on table com_compan to dec;
grant all on table com_compan to public;

COM_USUARI

create table com_usuari (
nom_usuari varchar(8) not null,
des_compan varchar(100) ,

constraint com_usuari_llave primary key (nom_usuari)
)
alter table com_usuari owner to dec;
grant all on table com_usuari to dec;
grant all on table com_usuari to public;

COM_PERMIS

create table com_permis (
compania varchar(6) not null,
abr_format varchar(15) not null,
nom_autori varchar(8) not null,
permisos varchar(6) not null,

constraint com_permis_llave primary key (compania, abr_format, nom_autori),
constraint com_permis_fllave1 foreign key (compania) references com_compan,
constraint com_permis_fllave2 foreign key (abr_format) references com_ventan,
constraint com_permis_fllave3 foreign key (nom_autori) references com_usuari

);

alter table com_permis owner to dec;

grant all on table com_permis to dec;

grant all on table com_permis to public;

COM_USRDEP

create table com_usrdep (

compania varchar(6) not null,
usr_padre varchar(8) not null,
usr_hijo varchar(8) not null,
nom_usuar varchar(8) ,

constraint com_usrdep_llave primary key (compania, usr_padre, usr_hijo),
constraint com_usrdep_fllave1 foreign key (compania) references com_compan,
constraint com_usrdep_fllave2 foreign key (usr_padre) references com_usuari,
constraint com_usrdep_fllave3 foreign key (usr_hijo) references com_usuari

);

alter table com_usrdep owner to dec;

grant all on table com_usrdep to dec;

grant all on table com_usrdep to public;

Database Project

19

COM_PERUSR

create view com_perusr

as select
com_permis.compania as compania,
com_permis.abr_format as abr_format,
com_permis.nom_autori as nom_autori,
COM_permis.permisos as permisos,
com_usrdep.usr_padre as usr_padre,
com_usrdep.usr_hijo as usr_hijo

from com_permis, com_usrdep
where com_permis.compania = com_usrdep.compania
and com_permis.permisos not in ('X")
and ((com_permis.nom_autori = com_usrdep.usr_hijo
and com_usrdep.usr_padre = com_usrdep.usr_hijo)
or (com_permis.nom_autori = com_usrdep.usr_padre
and com_usrdep.usr_hijo not in (com_usrdep.usr_padre)
and not com_permis.abr_format = any (select abr_format
from com_permis
where com_permis.nom_autori = com_usrdep.usr_hijo

)

Window Navigation Menus

COM_NAVEGA

create table com_navega (
llamante varchar(10) not null,
llamado varchar(10) not null,
nom_campo varchar(10) not null,
secuencia numeric(7) not null,
des_llamad varchar(240) ,
tip_llamad varchar(1) ,

constraint com_navega_llave primary key (lamante, llamado)
);
alter table com_navega owner to dec;
grant all on table com_navega to dec;
grant all on table com_navega to public;

COM_VENUSR

create table com_venusr (

compania varchar(6) not null,
nom_usuar varchar(8) not null,
llamado varchar(15) not null,
llamante varchar(15) not null,

constraint com_venusr_llave primary key (compania, nom_usuar, llamado, llamante),
constraint com_venusr_fllave1 foreign key (compania) references com_compan,
constraint com_venusr_fllave2 foreign key (hom_usuar) references com_usuari,
constraint com_venusr_fllave3 foreign key (lamante, llamado) references com_navega

);

alter table com_venusr owner to dec;
grant all on table com_venusr to dec;
grant all on table com_venusr to public;

Database Project

20

COM_INFNAV

create table com_infnav (

llamante varchar(10) not null,
llamado varchar(10) not null,
cod_idioma varchar(6) not null,
titulo varchar(40) not null,

constraint com_infnav_llave primary key (llamante, llamado, cod_idioma),
constraint com_infnav_fllave1 foreign key (llamante, llamado) references com_navega,
constraint com_infnav_fllave2 foreign key (cod_idioma) references com_idioma

);

alter table com_infnav owner to dec;

grant all on table com_infnav to dec;

grant all on table com_infnav to public;

COM_IDINAV
create view com_idinav
as select
com_navega.llamante as llamante
com_navega.llamado as llamado
com_navega.nom_campo as nom_campo
com_navega.secuencia as secuencia
com_navega.des_llamad as des_llamad ,
com_navega.tip_llamad as tip_llamad
com_infnav.cod_idioma as cod_idioma ,
com_infnav.titulo as titulo
from com_navega, com_infnav
where com_navega.llamante = com_infnav.llamante
and com_navega.llamado = com_infnav.llamado
COM_PENAVE
create view com_penave
as select
distinct com_perusr.compania as compania,
com_perusr.usr_hijo as nom_autori
COM_PErusr.permisos as permisos ,
com_idinav.llamante as llamante ,
com_idinav.llamado as [lamado ,
com_idinav.titulo as titulo ,
com_idinav.nom_campo as nom_campo ,
com_idinav.secuencia as secuencia
com_idinav.des_llamad as des_llamad
com_idinav.tip_llamad as tip_llamad
com_idinav.cod_idioma as cod_idioma

from com_perusr, com_idinav

where com_perusr.abr_format = com_idinav.llamado
and tip_llamadin ('N', 'V', 'H', 'A", 'S")

;- ()

Database Project

Database Project

MenuNavigation

wutility» «utility»
ext_pb DBQueries

Decsal.ayout

PresentationManager

Navigation

Tree

TreeNode TreeModel TreeExpander

22

System Design

Window Converter

After finishing up the database design, the next step was to convert the PowerBuilder window definitions into
database rows that could be inserted into the new database design. | did not know enough about PowerBuilder in order
to accomplish this part of the project on my own. For this reason, | got help from several employees of the company. Due
to the time limitations, | just presented the new database design to the PowerBuilder experts and they determined what
could be extracted from the PowerBuilder window definitions. | attach a screenshot of what a portion of the window defi-
nition looks like.

A utility program was created called ext_pb, or extract from PowerBuilder. This utility program was created by
the PowerBuilder experts and it received the path for a window definition file. It would then go through the file and output
four different files. The first file contains the mappings of the separate fields to the database. That is, what information
from the database was displayed in that field. The second file shows the select statement executed to get the data from
the database in order to populate the window fields with data. The third file describes each of the window labels and
specifies formatting such as height, width, border, title and x and y coordinates. The fourth file describes each of the win-
dow fields and also specifies formatting.

Out of the four files, we only needed the third and fourth files to import data into the new window definition ta-
bles that were created. The other two files deal with issues that are out of the scope of this project. When | got these
files, | created a convertor utility program that would read these label and field descriptions and created SQL statements
for each of the windows. This is a very straight-forward, but lengthy (approximately 1000 lines), file manipulation Java
program. The program converts other information that is not covered in this project. For example, it converts information
for presentation values. If the database returns an 'S', the window field will be present true. If the database returns an
'N', the window field will present false. This information is needed for the system but not for this project. In total, the con-
vertor generates three files. We only are interested in the first one which creates the SQL statements for inserting into
COM_VENTAN, COM_AREDAT, COM_CAMARE and COM_ETQARE. A screenshot of this file is attached.

It must be noted that this convertor is not perfect. Even after conversion, the window fields and labels have to
be tweaked for the window to look correct. But with the new database design, assigning formatting to the labels and
fields is particularly easy. Unfortunately, all the formatting and the issues with field and label positioning in the window
have to be solved by hand. That is, actual database tuples have to be modified. One of the future enhancements of this
project will be to create a tool for modifying windows easily. The idea is that a developer can move fields around in a drag
and drop manner until he is satisfied with the look and layout of the window. The same goes for formatting. The devel-
oper should be able to select a label and apply a font, size and other formatting in an easy way. Unfortunately, there is no
time to finish this before December.

Database Project 23

24

B@oe R el [81501 syl a1qEILIM o0 |
<> D
40U}, =BDF TIFUIUI=IWDU 0@ Q## #,~I0WI0F ,p2Z,~YIPIM ,95,=IYB1Y ,9T9,=A ,64Z.,=X ,0,=40102 ,§,=4IpJ0q gpz=aduaNbaISqDL} T, =FudWUBLIL QT=Pl 11DIIP=pupq)uwniod
v .00, ~3YB1am juoy 8-, =3yb1ayrjuoy 1014y, =204 JU03 €8T, <YIPM ,95,~3Y613Y ,979,<K ,§5,=X ,0,=40102 ,@,=42PJ0q,T U], =3Xd} ,2,=FudWubLlD 11032p=pupq)IXa}
“lowol buoz,=6by 267U0ZTpod=awbu ,,=30WO3 ,TTE,<YIPIM ,95,~IYB1Y ,955,<A ,88BT.=X ,0,<4010> ,§,=J3pJ0q QEE=IOUINDISqD} @, ~FUdWUBLID Tp=pl 110IIp=pupq)uwniod
p.=3Y61am-juoy ,g-,=3yB1ay-juoy 1014y, =ad04°Ju0y ,99€,<YIPI™ ,95,<34B1ay ,955,~A ,p@L, =X ,8,=40102 ,@,=43p.0q,B0UOH BUOZ,=3X3} ,@,=FudWuBLD 11D3IP=pupq)3IXa}
juos @0, ~3ybram-juoy g-,=3yb1ay-juoy 101Uy, =3D03 U0y 288, <YIPIM ,255,IYB1ay ,9€5,<A ,989,<X ,0,=40102 ,G,=42pJ0q, ,=3X2} ,T,=3udwublip 1103ap=pupq)Ixa}
3 .00Y,~3YB1am juoy 8- ,=3YB1ay juoy 1014V, =304 Ju0y €8T, =YIPIM ,95,<3YB13Y ,9T6,=A ,55.=X ,@,40102 ,,=42P40q, 100, =IXF ,Z,~Fudwubllp 11032p=pupq)3ixay
pu=3YB1am-juoy 8-, =3YB1ay juoy 1014y, =204 Ju0y |, T9Z,<YIPM ,95,~34B13Y ,8YS, =K ,PEE, =X ,@,=40102 ,0,=42P40q,d110) dw1l],=3x3 ,T,=Fudwublip 11032p=pupq)3ixay
3U0j @@, ~3YB1am juoy 8- ,=IYB1ay juoy 1014V, =ID04 JU05 €09, <YIPIM ,255.,~IB1Y ,9ES, <A LE,=X ,0,=40101 ,5,=4IpJ0q, ,=3X?} ,T,=FudwubliD 11032p=pupq)IXa}
0.,=603 souasToujo=awou | [10u2uaB] |, =3OWJ03 ,G9.T,=YIPIM ,95,<IYB13Y ,8pb,=A _Nm =X :s =4010d> ,§,=J43pJoq @T=3duanbasqo} ,@,=3udwublip g=p1l 1103ap=pupq)uwniod
p oudwnN,=6p} 13adausTwnu=awou ,@,=3OWJ03 ,82T,=YIPM ,95,=3y61ay ,9.€,=K §,=43pJoq QEz=aduanbasqoy ,z,=juawublio zg=pl 1103ap=pupq)uwniod
1,-603 13adauTpui=awou | [1042udB], =30WI03 65, <YIPIM ,95,~3Y61aY ,92€,=A 48,=40102 g, =43pJ0q gzz=2duanbasqoy ,z,=juawublip TG=p1 11p3dp=pupq)uwnied
A13nd3su0),=Bb} DINUTSUOD=AWOU |, =3OWOS ETT,=YIPIM ,95,<3YB1ay ,9/€,~A 40,4010 G, =4dpuoq QTZ=IduaNnbasqoy ,T,=judwublip gg=p1 1103ap=pupq)uwniod
1p2 T=3391033yB1d pInJTwnu=awou |, =30W03 | TST,=YIPIM ,95,~3Y613Y ,92€,~A ,EEBT,=X ,@,=40102 ,5,=42pJ0q @pZ=2oudnbasqpy ,T,=judwublip Tz=pl 1103ap=pupq)uuniod
S.=Bp} 23017souas=awou |, [1042uaB] ,=30WN0S ST, =YIPIM ,95,<IYB1Y ,92€,~A ,ZE€,<X ,@,=40102 ,5,=4pJ0q @8T=IOUINbISqD} ,@,~Fudwublip 2=p1 11p3Ip=pupq)uwniod
3yBram-juoy ,8-,=3yb1ay juoy 11Uy, =3003°3U03 887, ~YIPIM ,95,~I4613Y ,80E, <A ,£9TZ.<X ,,=40103 ,@,=42P40q,U0> Dp13aday,=3xd3} ,T,=Fuduwublip 11032p=pupq)IXa3}
IyBram-juoy ,8-,=3yb1ay juoy , 1014y, =003 U053 TTE,~YIPM ,95,~34613Y ,80E,~A ,6Z8T.<X ,8,=40102 ,@,~42p.0q,03J0doy DINY,=3X93} ,T,=Fudwublip 11032p=pupq)IXa3}
400Y, ~3yb1am juoy 8-, =3yb1ay-juoy 1014y, =3003°3U05 ,G92T,~YIPIM 95,3461y ,80@€, <A ,2€,<X ,0,40102 ,,=4IP40q,SDYIS, =X} ,Q,~FudWuBLID 11D3Ip=pupq)Ixa3}
] 031puT,=Bo3 BdTuupTpul=dWOU | =FDWNOS 65, <YIPIM 8F,~IYBLIAY ,p22,K ,22ET.X ,S5Z.=4O102 ,@,=4IP40q QLT=3OUINbISqL} 7, ~judwublip pS=pl 1103Ip=pupq)uwniod
puI, =603 nl7qod~pul=awou , =3OWN0} 65, <YIPIM . 8Y,=IYB1AY ,$22,~K ,SETZ.=X .OZTTVL6L,=40102 ,@,=42p40q @9T=3duanbasqoy ,z,=judwublip £5=p1 1103ap=pupq)uuniod
w=Bp} oudToATpur=awou | [1042uaB] ,=30WL0J ,65,<YIPIM 8F,~IYB1IAY ,p22,A ,@L6T.X ,8,<40102 ,0,~4IP40q @ST=IOUINDISqDY ,Z,=3udwublip SZ=pl 11P3Ip=pubq)uIniod
=603 a1dwodTwou=dwou |, [1042uaB] ,=3owu0l ,BLTT.=YIPIM ,8F,=IY613Y ,pZ2,<K ,@S2.=X ,0,=40102 ,§,=42pJoq QpT=3dUanbasqo} g, ~Iudwublip gp=p1 1103ap=pupq)uwniod
d ap ouaw N,=60} uosuadTWNU=AWDU | =3OWJO} ,T@Z,=YIPIM ,8,=IY613Y ,$22.<K .86¥,=X ,0,=40102> ,§,=J43pJoq QET=dduanbasqoy ,T,=3udwublip p=p1l 1103ap=pupq)uwniod
©-31W11"31pa pinpad=awou [1042udb], =30WI03 | pEY,=YIPIM 8,341y ,$22,K ,2€,<X ,0,40102 ,§5,=43pJoq gZT=IduUanbasqoy =juawublip gy=pl 1103ap=pupg)uwniod
400y, ~3yB1am juoy 8-, =3Y61ay Iuoy ,1D1IY, =203 U054 ,8LT,<YIPM ,95,~IY613Y ,8YT,~A ,€9ZZ.~X .0,-40102 ,0,=43p0q,bq Juy,=3x23 ,Z,~juawublip 11032p=pupq)Ixa3
400V, ~3yb1am juoy 8- ,=3YB1ay juoy 1014y, =2005 Ju0y Q9T ~YIPIM ,95,<34B13Y 8YT,=A ,680Z.~X .0,=40102 ,@,=42P40q,pPN[/),=IX?} ,Z,~Fuduwublip 11032p=pupq)Ixa3}
W8~ =3YB1ay Juoy 101y, =2004 juoy FTuoSUIdTWNU=IWOU | €2T,=YIPIM ,95,~IY613Y ,8YT, <A ,BEGT.=X ,0,~40102 ,0,=4IP40q, 50430, ~IXd} ,Z,~Fudwub1l|D 11032p=pupq)Ixa3y
ju0j ,8-,=3Y61ay juoy 1014V, =3003°3u0y |, TEPT,~YIPIM ,95,~IY613Y ,8YT. <A Y6V, =X ,0,~40102 ,@,=J2pJ0q,JqUON A DUOSJI] ON,=3Xd} ,@,~Fudwublip 11032p=pupq)IXa3}
4@0Y,~3yb1am juoy ,8-,=3yb1ay juoy ,1D1IY, =303 3U03 ,SZP,~YIPIM 8, ~IYB13Y 95T, =K ,Z€,=X ,0,=40101 ,0,=43P40q,01NPI),=IX3} ,@,~FuaWuB1lD 11032p=pupq)IXa3}
DOUljTwnu=awbu , [1ouauab] JOWI0S |, 622,<YIPM 95,3461y ,@8,=A ,S@9T.=X ,@,=4010D ,§,=42puoq gg=aduanbasqoy =judwublip 2T=pl 1103jap=pupnq)uwniod
oluupqTuqo=awou [1puduab] ,=3owdoj ,Z@E,=YIP™ ,95,<3461ay ,08,<A ,522T.=X ,@,=40102> ,G,=J2pJ0oq @/=3aduanbasqoy =judwublip 9=p1 11p3ap=pubgq)luWniod
qv, =603 1u3sipTuqo=dwou | [1042uab] |, =jow.oj ST, =YIPIM 95,3461y ,08,~A ,ZSTT,=X ,0,=40102 ,§,=42pJ0q gg=Iduanbasqoy =juawublip G=p1 11p3ap=pupq)iuuniod
4D D DO1pUT,=Bp3 3D0JDITpUL=AWDU |, =FDWIOS €6Z,~YIPIM ,95,~IY613Y ,@8,~A ,9VY8,~X ,0,~40102 ,5,=JIpJ0q g5=IOUINbISqDY =juawubllp g=pl 1103ap=pupq)luuniod
1p2 ,01paud,=6p3} olpaudTwnu=awou ,@,=IDWJOJ €8T, =YIPIM ,95,~IY613Y ,08,~A .S¥9,~X ,0,=40102 ,§,=J3pJ0q pp=2dUdNbISqD} =juawublip 9z=p1 1103ap=pupq)uwniod
SuswoN, =603 D13dJbd=dwou ,[1043ua6] | =30WU03 ,TOZ,=YIPIM ,95,~IY613Y ,08.,=A ,S52P,=X ,0,=40102 ,§,=JIpJ0q PE=IOUINDISGDY ,@,=Fudwublip g=p1 11p3Ip=pupq)uwN]od
}1boudwoN, <6oy bdow=awou |, [1042uaB] ,=30WJ03 ,pLT,=YIPIM ,95,<IYB19Y ,08,~A ,EEZ.<X ,8,=40102 ,5,=4apJ0q §Z=3dUanbasqo} ,g,=juawublip z=p1 1103ap=pupq)uLn|od
9p1 anb oudw N,=Bo3 DIUINDTWNU=IWOU ,=FOWNOS 82T, <YIPIM ,95,~34B1aY ,08,<K LE,=X ,0,-40102 ,G,=4IpJoq gT=IDUINDISqD} T, =Fudmwublip T=p1 1103ap=pupq)uwniod
W00Y, ~3yb1am juoy 8-, =3yb1ay juoy 1014V, =003 3u05 957, ~YIPIM ,95,=3YB1ay =K ,S@9T.=X ,0,=40102 ,@,=42PJ0q,DOUL] ON,=3X33} ,@,~Fuduwublip 11032p=pupq)Ixa3y
W8-u=3YB1aY juoy 1014y, =2J04 JU0y 3TOLUIDGTUGD=IWOU | 2QE,~YIPIM ,95,~IY613Y ,8,=K ,S/2T,=X ,0,=40102 ,Q,=4IP.0q,01.44bg, =3X3} ,@,~FudwubLID 11032p=pupq)IXa3}
3 u8-,=3YB12Y 3juoy ,1D1IY, =203 3U0) FTLUISIPTUQD=AWDU ,SQT,=YIPIM ,95,<3YB1aY ,8,=A ,ZSTT.=X ,@,=40102 ,0,=42p40q,d351(, =X} ,0,~IuUdwubllp 11032p=pupq)3Ixay
400Y, ~3yB1amjuoy 8-, =3YB1ay juoy ,1D1IY, =203 3U0S L E6Z,~YIPIM ,95,~I4B13Y ,8,<K ,9p8,=X ,0,<4010> ,@,=43P40q,U)1d1puU0),=3IX3} ,Q,~FudWuUB1|D 1103Ip=pupq)Ixa3}
3 .00¥,=3y6lam juoy ,g-,=3YB1ay-juoy 1014y, =ad04°Ju0y €8T, =YIPIM ,95,<34B1ay 8,k ,Sp9,=X ,0,~40101 ,@,=J2pJ0q,01padd,=Ixa} ,T 11032p=pupq)Ixay
uoj ,8-,=3Y61ay juoy 1014y, =2d04 Juoy 3TD1IdJpd=dWOU TPZ,YIPIM ,95,~IY613Y ,8,~A .52, <X ,@,=40102 ,0,=4IP40q,D]30u0d,=IXDF @, ~FuUdWUBLID 1103IP=puDq)IXa3
B1am-juoy ,8-,=3yb1ay juoy 1014y, =2003 Juoy 3 odow=awou | p2T,=YIPIM ,95,~IY613Y ,8,~A ,EE€Z,=X ,0,~40102 ,Q,~42P40q,0dDN,=IX2F ,@,~FuUIWUBLID 11D3IP=pupq)IXa
3 u8-,=3YB12yY juoy ,D1IY, =203 3uU0) FTOIUINDTWAU=IWDU 26T, =YIPIM ,95,<34B1ay ,8,=A ,2€,<X ,@,=40103 ,@,=4IP40q,pI1d0d,=IX3} ,Z,~FuUdWUBL1D 11D3IP=pupq)3Ixa3
1731p2 uosuad~dij=awou |, [1042uaB], =30wWd03 TTE,~YIPM ,95,~IY613Y ,pp9, <A LEZE. =X ,0,=40102 ,§5,=42pJ0q @p5=2dUdnbasqpy ,@,=3uduwublio gy=pl 1103ap=pubq)uuniod
P2 @=31Wll’31pa uosuad wou=awou (=F0WI03 | TTE,=YIPIM ,95,~3IYB19Y ,895,=A ,2EZE,~X ,0,~40102 ,§,=J2pJoq QES=IOUaNbIsqo} g, ~3udwublip gE=p1 1103ap=pupq)uwniod
9,~603 314u937uow=awou @@’ Q## #,~FOWI03 ,TTE,~YIPIM ,95,<IYB13Y 26V, =A ,LEZE.=X ,0,=4O0102 ,§,=J2pJ0q @z5=3duUanbasqo} ,g,=juawublip 9g=p1 11p3ap=pupq)uwniod
=Bo3} qgojuedTxnp=awou [1pJ2uab] | =jowuoy | TTE,=YIPM 95,3461y 9Ty, <A ,2€2€,<X ,0,~40102 ,5,=49pJoq @TG=aduanbasqoy ,g,~judwublip ge=pl 1103ap=pupqiuwniod
un1aD1Aduqy, <603 DlUDdWOd=dWOU , =30WM03 | TTE,=YIPIM ,95,<IYB1aY ,@YE,.~A LEZE.=X ,0,=40102 ,§,=42pJoq @@5=aduanbasqoy g, ~judwublip Lg=p1 1103ap=pupq)uwniod
9p 0udli N,=B03 OUD]AWNU=DWDU ,,=3DW0S ,TTE,~UIPTH ,95,=IB19Y 992,k ,LEZEL=X ,0,=4O10D ,§,=49Pu0q QEy=37UdNbIsqo} ,T,=3udwublip GT=p1 1103ap=pupg)luwniod
2y 01104,=603 1pauTO110j=dwoU @, =FOWMOF ,TTE,~YIPIM ,95,<IYB13Y 88T, =A ,LEZE.=X ,0,=40102 ,§,=42pJoq @gp=3dUdNbasqoy ,T,=judwublip /Z=p1 1103ap=pupq)uwniod
1104,=603 o1loj=awou ,[1042uabB] ,=30Wd0j ,TTE,~YIPM ,95,~IY613Y ,2TT, <A LEZE.=X ,0,=40102 ,§,=42pJ0q @/p=2OUdnbasqpy ,T,=3udwublip 9T=p1l 1103ap=pubq)uwniod
S owo|,=6b} owoj-awou ,[1042uaB] ,=3owuol ,TTE,=YIPWM ,95,-3Y61ay ,9€,=A ,2€2€ ,0,=40102 G, =J3puoq ggp=aduanbasqoy ,T,=judwublip ST=pl 1103ap=pupqluwniod
mw (. ¥ pjuandTwnu y plubdwod =3J40s SaA=adp1dulAadajppdn g=aJsaymaiopdn IT40dd”4ND.=23opdn
a OYdINI™4N) wouj
9d 7YYV ANT
— ‘NCTE027ANT 3
‘IL3dIYTWAN
B - ‘T13d3YTONT H
M O 53 pisaidosdTyndp [F eael J01J2AU0D @ M
enef %8/ 6ngaq s £ D G F [OR[-OBF[DO k[B [F L]
(=] aedsyiom/sjuawndoq/ynbue/siasn/ - wione|d asdip3 - pis-a1doid jnd"p/dis [I31dAU0D ~ BAR[000

Database Project

6¥x2ST

yss

duwy/ :Wo3"IdesIaP NZedS3

e
L

s23p

25

Database Project

Window Generator

The next big step was to create a window generator that would query the new database tables at runtime and
display a Java Swing frame in the system with all the specified fields and labels. First things first. As many people know,
layouts in Java Swing are not very pleasant to work with. In this case, our window definitions stored field and label posi-
tions in pixels. No layout that | knew of could solve our positioning problem in pixels easily. For this reason, a completely
new layout was created called Decsalayout. It is very simple in reality. The developer passes the object that needs to be
displayed along with a vector that contains four entries: width, height, x-coordinate and y-coordinate. It is just as easy as
it sounds. | was very surprised at how simple it was to create a layout in Java from scratch.

With this new layout, things became a little less difficult. The generator consisted of a class called Window
which represented a window in the system. This would be the interface that would be called once we got the menu navi-
gation working. Once the user selected a window in the menu system, this class would be invoked. The Window class
would first of all call the AreaCollection class to create the different areas that make up the window. This class queries the
database to find the information in COM_AREDAT for each of the areas. For each of the areas defined in the database
table, AreaCollection creates an Area class instance which represents a specific area of a window.

Within the Area instance we make a call to the PresentationManager class. This class manages the presentation of the
fields and labels for each area. In the system there are two types of windows. There are windows with columnar presen-
tation and others with free presentation.

+* Ventanas (com.ventan) =0 X
\ Ventana Descripcion Titulo Est. Base Est. Act. Pr tacio Ven. Base Alto Largo Max. Reg.
prs.moveaj prs moveaj prs moveaj [PRS_MOVCA) |PRS_MOVCAS COLUMNAR fcom.column | 150 | 700 | A
prs.movimi prs movimi prs movimi [PRS_MOVRUB [PRS_MOVIMI COLUMNAR feom.column | 150 | 700 | 1
prs.movsal prs.movsal prs movsal [PRS_saMov [PRS_MOVSAL COLUMNAR ‘}com.column | 150 | 700 | 1
prs ordcom prs ordcom prs.ordcom |PRS_ORDCOM [PRS_ORDCOM | COLUMNAR feom.column | 150 | 700 | 1
brs.porcen br’s.pomen brs.porcen |PR$_PORCEN I COLUMNAR fcom.column I 150 I 700 j 1
brs,pnaasg b)rs.preasg k)rs.pneasg IPRS_PREASG I LIBRE ‘F:om.column I 150 | 700 } 1
prs prehis prs prehis prs prehis [PRS_PREHID [PRS_PREHIS LIBRE feom.column | 150 | 700 | 1
prs premuh prs premuh prs premuh |PRS_PREHID ~ [PRS_PRESUP |LIBRE fcom.column [150 | 700 | 1
prs.premun prs.premun prs.premun [PRS_PRESUD [PRS_PRESUP LIBRE ‘}com.column | 150 | 700 | 1
prs presup prs presup prs presup |PRS_PRESUD [PRS_PRESUP LIBRE fom.column | 150 | 700 | 1
brs.proycp brs.proycp brs.proycp | | PROCESO }com.column | 150 | 700 J 1
};r‘s.pmydp br’s.pmydp br’s.pmydp I I PROCESO ‘fcom.column I 150 | 700 j 1
brs.proyoc brs.pmyoc brs.pmyoc I | LIBRE ‘fcom.column I 150 I 700 j 1
brsproyop b:rs.proyop brs.proyop | | PROCESO }com.column | 150 | 700 J LI
< >
1de 1841 registros [Nombre ventana

Columnar Presentation Window

PresentationManager determines which type of presentation is needed by querying the database and calls ei-
ther FreePresentation or ColumnarPresentation. FreePresentation creates the free presentation and it goes through the
window definition looking for each of the window fields and labels, positioning them correctly on the JPanel depending
on their coordinates, and finally applying any formatting that is necessary such as bolding, italics, underlining, colors,
size, font, borders, etc. ColumnPresentation is much simpler because it just needs to create a table much like a spread-
sheet with columns corresponding to each of the fields. Columnar presentations do not have labels, they consist only of
field descriptions. We just check each of the fields, the field type (checkbox, combobox, normal textbox), and the field
width.

This concludes the description of the central piece of the window generator. | also created specific classes to
handle the functionality of checkboxes, comboboxes, textboxes and all the other presentation objects that could appear
in a window. These classes extend the normal Java Swing classes such as JComboBox, JTextField, JCheckbox, etc.
These are especially useful when applying the formatting to each of the fields and labels. | exposed methods that would
make formatting a breeze. For example, | could call the combo box method for changing the font. | would specify the
desired font and this would make any necessary changes to the JComboBox object in the window. These methods will

Database Project 26

also be useful if, later on, we implement runtime changes to the font or text size for example. The screenshots presented
above and below are actual windows generated by the window generator. Clearly, the one up top does not lend itself to
much formatting. It is just a simple spreadsheet with values. But the one in the following page has colors, different text
sizes and a more complex layout. This is the true power of the window generator combined with the database design for
window descriptions. But again, as you can imagine, in order to move one of these fields a little to the left, we need to go
into a database row and modify the coordinate values. This can be a very time-consuming task, especially when you are
trying to get 5,000 windows perfectly displayed.

3 Inventario (pte.invent) D=0 X

No. Adiculo Cadigo Descripeion
Auxiliar Proveedor | |

Detalle. [
Ubicacion | Facturar Manualmente [T Maximo v Minimo [Series m
Categoria Unidad de Medida Impuesto Venta

Adiculo [Inventario [Fac fpl Cantidad | Fplica M

Adquisicién [Compra [Op Apl Cantidad [3) Porcentaje [

Nivel Import I Fac Compa | Fac #pl Precio [Costo M
Existencia [Costo Promedio — Ultima Orden Com [
Disponible ﬁ Costo Unitario f Fecha Ukt Compra ﬁ
Exist. Mes Anterior — Costo Maximo —
Cantidad Mnima — Costo Aaterior [Utima Entrada —
Cantidad Maxima — Ottima Salida —
Consumo por hes [— Costo Promed DI [— Ul Lig Compra [—
Consumo Promedio — Costo Unitario DI [(tima Orden Prod —
Entradas — Costo Maximo DI [Fecha \Encimiento —
Salidas — Mt Compra [
Devoluciones — Plazo Maximo [“alor del Adiculo —
Reservas — Referencia |
Consumo Estandar |

2 | >
0 de 0 registros Namero de articulo

Free Presentation Window

Database Project 27

Menu Navigation

The last part of the project that was completed before this report was due, is the menu navigation subsystem.
With the menu navigation database design in place, we decided to create a way to navigate through all the options in a
straight-forward manner. The first option that came to mind was “cascading-windows”. That is, for each menu defined in
the COM_NAVEGA table we would create a list in a window specifying all the options (windows or more menus). If the
user selected a “runnable” window from the list, then the window generator would be invoked to display the selected
window. On the other hand, if the user selected another menu within the menu, another list would appear next to the
current list. In effect, we would be creating a sort of waterfall of lists. To go back one level, the user could close the low-
est list in the waterfall and go back to the previous list.

This wasn't a bad idea, but then | came across the JTree component in Java. Implementing the menu with this
component would have several advantages over the cascading windows options. First, there would be a single window
to display all the menu navigation options because the only component on screen would be the tree. Furthermore, the
user could have several menus expanded at the same time. With the cascading windows option, expanding different
menus would be very confusing to the user. The tree, on the other hand, would keep the options organized and there
would be no “mess” of windows all over the screen. | decided to go with the tree implementation, even though | had
never used these components before.

In order to create a JTree, | first needed to define a TreeModel that defined the behavior of the tree. A class
called TreeModel was created and it extended the Java Swing TreeModel (same name) class. In this class, | defined
methods such as counting how many children the tree had, and how to expand and collapse nodes. The class TreeNode
extended DefaultMutableTreeNode and implemented the Java interface TreeNode (same name). This class represents a
node, but it can be either a node or a leaf of the tree. This was all that was necessary to create a tree.

Next, | defined the Navigation and Tree classes. The Navigation class would create a frame with a Tree inside it.
The Tree was initialized with an instance of the TreeModel class and a “dummy” TreeNode was inserted as the root of the
tree. Now, | had to populate the tree with the values from COM_PENAVE. To start, the Tree class queries COM_PENAVE
with the attribute LLAMANTE = 'glb.menupr'. This corresponds to the first level of menus of the system. The results of
this query would be inserted into the tree. The query could return two types of results: actual windows or submenus. For
this reason, the TreeNode class had two separate constructors. One would create a node as a leaf and the other would
create the node as a submenu.

At this point, | had to make a decision about how the tree would be populated. The first option was to populate
the complete tree during initialization of the system. The second was to only populate the first level of the tree. Then,
when the user wanted to expand a node, a separate query would be executed that would populate the next level. | tried
the first option while running the database locally. It took approximately 10 seconds to populate the entire tree for a user
with access to approximately 3000 windows. Once | executed the query using a remote database, | decided to go with
the second option. For the same user, the remote query took almost five minutes. It was preferable for the user to wait 1-
2 seconds to expand each subsequent level of the tree, than to wait five minutes to load the entire tree at the beginning.
In addition, the user might not need the entire tree to begin with.

To implement the second option, | created a class called TreeExpander. Once a user selected a node in the tree
to expand, the Tree class would pass a reference to the selected node as parameter to the TreeExpander class. This
class would execute the query to COM_PENAVE to retrieve the options under that node and populate it. Therefore, the
Tree class would listen for expansion events and call the TreeExpander class. This concluded the implementation of the
menu navigation system.

The screenshot below shows a navigation tree with several levels open and a window that was generated and
displayed after the user selected the ‘Ventanas’ runnable option in the tree.

Database Project 28

« Menu Principal
=
7 Menu Principal
™ Saleccién Directa (ventana)
a Decsa-Case
-~ 4 Comunes
+ 9 General
+ # Campos de Area de Datos @ Ventanas (com.ventan) .0 X

+ - Parametros vy Series — -
-/ Disefio de Ventanas ertana Désoipcion : Est. fot. Presentaci

™ vantanas I I I I
™' Areas de Datos
Etiquetas del Area de Dato
Campos del Area de Datos
Reglas de Ventanas
Reglas < 2
Detalle Reglas 0 de 0 registros Nombre ventana
Especificacién Procedimiel
™ Valores de Presentacion
Farametros de Listas
Campos de Lista
Listas
Idioma Errores
Idioma Objetos
Teclas Rapidas
Fotos de Personas
"' Atributos Especiales camp!
"' Atributos Especiales etiqu
+ 9 Control de Acceso
o

<

Menu Navigation and Window Generation Combined

Favorite Windows

The favorite windows implementation was very much simplified after the menu navigation was all complete. We
could extend from the functionality provided to the main tree. In our favorite windows tree, we would only have windows,
no submenus. Therefore, our tree would be much simpler. First, we provided a way to add favorite windows to the sys-
tem. In order to do this, the user would right-click on any of the window options of the main tree navigation window. To
add the selected window, the user would need to select the ‘Add to Favorite Windows’ option.

I

= sIstema de Faramet
* ; Control de Acceso
T e
& B Utilitario & Permisos
™ Tipos de| Afiadir a Favoritos
Subsistemas
seno de \-‘entanas

b Y

'O RS

2

Add a Favorite Window

Database Project 29

This action would trigger a new creation of a tuple in the COM_FAVWIN table. The information stored in the
COM_FAVWIN table is taken from the COM_PENAVE view. Since the nodes of the tree store their unique identification,
we can index into the appropriate tuple in COM_PENAVE, to retrieve the window information necessary to create the
new tuple in COM_FAVWIN. After the insertion into the table, if the user brings up the favorite window tree, he will find the
newly selected option. The favorite window tree only populates the data from the COM_FAVWIN table. There is no refer-
ence to the COM_PENAVE view with has all the security features for access control. It could be argued that there is a
hole in the security of the system. But since the only way to add a favorite window is through the main navigation menu,
then | believe the ‘security hole’ is non-existent. That is, also assuming that the user cannot hack into the database and
inserts tuples himself. Since the favorite windows tree inherits the functionality from the main navigation tree, it will have
the same way of operation. If the user selects a node, the window generator will be invoked to present the window on
the desktop.

«w VYent..itas D=0 X

Menu - Ventanas Favoritas
™ Sistema de Parametros
™ Parametros Globales

Favorite Windows Tree

Window Search

Above the main menu navigation tree, there is a text box for searching for a window. This is used for rapid ac-
cess to windows. Instead of traversing the tree, the user can just search for a window by title or codename. When the
user wants to execute a search, the COM_PENAVE view is queried for titles and codenames of windows. The windows
returned are presented in another tree similar to the favorite window tree. The only difference is that a search can return
submenus, unlike the favorite window tree.

The favorite windows implementation was very much simplified after the menu navigation was all complete. We could
extend from the functionality provided to the main tree. In our favorite windows tree, we would only have windows, no
submenus. Therefore, our tree would be much simpler. First, we provided a way to add favorite windows to the system.
In order to do this, the user would right-click on any of the window options of the main tree navigation window. To add
the selected window, the user would need to select the ‘Add to Favorite Windows’ option.

@ Menu..ipal =0 X
Q

lcontrol

Menu Principal [A
W Seleccién Directa (ventanz
+ ® Decsa-Case
= Comunes

+ A Canaral

Search for ‘control’

Database Project 30

«» Busqueda =0 X
' Busqueda (control)
+ 9 Control de Acceso
™' Control Customs
i Control de Acceso
Control de Formularios
™ Control de Despachos

3 Control de Acceso
P Access Control

™ Access Control

i Control de Entradas vy Salidas
™ Access Control

™ Control de Llantas
i Control de Becas

Search Results for ‘control’

Window Designer (Prototype)

The window generator feature is very convenient, but not for when a window needs to be modified. In order to
modify the layout, the user would manually have to change the tuples in the table. To make life easier on the developers, |
started to develop a prototype for a window designer. Ultimately, this designer would have drag-and-drop functionality
and formatting capabilities. But due to the limited time remaining, | kept this as a prototype.

«» DECSA Interfaz Grafica D=0 X

Yentanas: lcuf_ocu... E]'[Load][New H Save H Quit]
cuf_notcer [~
Componentes: |cuf_notlic ||
cuf_obslic
cuf_ocugis —
cuf_parcel
cuf_parcet
cuf_patabo
cuf_patdec |y

W iew I Delete

Load the ‘cuf_ocugis’ window

The developer can either select an existing window and load it, or create a new window from scratch. In the
figure above, the window ‘cuf_ocugis’ is loaded into the window designer. The window fields and labels will appear in the
list on the left. Then the developer can select a field or label to display its properties. Currently, the window designer will
display the name, title, component type, x-coordinate, y-coordinate, width and height. Then, the user can modify any of
these values. The developer can also delete or add new fields if necessary. In the screenshot on the next page, the de-
veloper is modifying the ‘COD_BODEGA' field. Notice that in the bottom panel, the actual window is presented, just like it
would look using the window generator. Once the developers modifies a value, the corresponding changes are displayed
in the bottom panel preview. Clearly, this specific window needs some modifications in order to be ready for use.

Database Project 31

121U [Bp A0 A

| pold UspiQ BU|
13pI0 15E

BpIES WM

BUIODU| ISE

eidwon 1M BYo34

12pI0 15E7

1507
1uBI0d [l

EIEN
SBXE]

[

O|BISBIPREY XE Ul PUE XEJ4|

uoIONpPOIg _ [_

¥ pUBIST ownsuc)
SEAIBSTY
SBUOION|0AR(]
sinding
SBLUIODU|

BUOIJ OWNSUC)
dwnsuos Yiuo
UNOLWE UNLUIXE
UNOWE UNLUIUI
121Uy s3I "151x3

3lgqiuodsiq
EIDUB1IS 1T

J BIDUBIB)Y
Dliad UNWIXE

|| ®Eadwo] 13

PP Ul 150D XEJH

DUEIIUM 0150)

pawold 01507

|
|
L
(I

02 YIUoLW 1SET
DUWIXE 01507
DUEIIUN 01507

1500 BbRIBAY

| jodui) [2AIN

|| ®midwo) | |1o1sinbpy
| [oUEIUBAU| 0] wa1|

10124 Allun 2UnSESA Sl JO 1IN Alobzie)

PIIEZI|EDOT
| 3|EIRQ

[ENUERY

| HOPBBAO) 1BI[IXNYy

p1od s3] obipo) (IESTRETN|

L ebapog

218120 _ MBI A

<

| >

1 anl
1 anl
1D
1 034
1034
NN
)XY
[~ani
1 034
1 034
NN
MMM
SNOD
SNOD
d353d
Qs
g<NINE]
XY
NI
I"S0D

seoue) | [T]oz [[E]zT HE

1| ¥p3aos~aod|

ol oyouy

onlg odi) BIQUION

plE e | seluauodwon

[unp || aaeg || man || peol :@ 1uzAuR1d ISEUBIUS A

{500
7500
I"s3a
I"1¥D

YA
AN
Y 1an

CWON |

N2I1Ld% aod
OWIXYINTSOD
AYLINATSOD
Ff34A3IN
Fo @3N INN
IOV 4T AN
SITNOD NYD
NOD IWTINN
%340 anll
N2y 130
JA 03IW OV
JAAINWTINN
SO2™ AITANI
YIANOD DVS
02 d3IW NN
LA™ dWI™d0d
[HO LMY Z7d
d3modd S0D
J13INOdSIa
LNV S3W >3
N2ILd¥ 530
¥AIa3WTINM
N2V L¥D
10T LAY IV A
¥D3d0g dod
YINYdWOD
LOS™ ATIHNN
1d7INNS0D

BIYRID ZRJIBIU| ¥SDHIQ &

32

Database Project

—valuations

Window Generator Evaluation

The Window Designer prototype not only served as a window modification tool, but also as an evaluator for the
window generator. Since the generator is embedded into the window designer, | could test it by inserting new fields and
noticing the changes in the visual window output. In the following screenshots, | go through the steps of adding several
components and labels and the changes in the generated window can be seen.

« DECSA Interfaz Grafica -0 X
Yentanas: \ ™[Load |[New || Save || Quit |

Componentes: |TextField

Nombre Tipo Titulo % ¥ Ancho Alto
txtlsername TextField [150[2] | 302 | 100[2] | 20[2] [cancelar

Wiew I Delete

< DECSA Interfaz Grifica -0 X
txtllsername Yentanas: [|[Load][New][Save][Quit]
Componentes: [TextFiald
Nombre Tipo Titulo X Y Ancho Alto
txtPassword TextField [150[2] | 552] 100[2] | 20[2] [Cancelar

View | Delete

«» DECSA Interfaz Grafica D=0 X
txtUsername Yentanas: | H Load][Newr][Save][Quit]
txtPassword
Componentes: [Label
Nombre Tipo Titulo X ¥ Ancho Alto
IblUsername Label [Username: I 30[2] [302] 100[2] | 20[2] [Cancelar
.......... =
o

<[

View | Delete

Database Project 33

3 DECSA Interfaz Grafica 0=-0 X
txtUsername Wentanas: [(| Load || New |[save || Quit |
txtPassword
IblUsername Componentes: [Label
Nombre Tipo Titulo % ¥ Ancho Alto
IbIPas sword ILabel [Password: I 302] | 552 | 100[2] | 20[2] [Cancelar

Username:

A

View | Delete

View | Delete =
« DECSA Interfaz Grafica D=0 X%
txtUsername Yentanas: | |[Load || New || Save || Quit |
txtPassword
T Componentes: |JLabel
IblPassword

---------- A
Username: franklin o
Password: franklinl

Access Rights Evaluation

The requirements specify that we need to verify that the access rights for a user are enforced in the menu navi-
gation tree. | will start by assigning access to the user named ‘franklin’ in the COM_PERMIS table. This user will only
have access to the ‘glb.menupr’ menu which is the top level object of the tree. Therefore, the menu navigation tree will

be empty. Only the top-level node should be present.

"[Table View] com_permis @public... @ | [Table View] com_usrdep @public... @

| compania
_| DECSA glb.menupr franklin
|

Assign permissions to ‘franklin’

« Menu..ipal =0 X
=y

™ Menu Principal

Corresponding tree for ‘franklin’

Database Project

permisos [
CIMER

34

Next, | defined permissions to the ‘asesores’ user. This user can be defined conceptually as a group. All devel-
opers are defined as children of ‘asesores’. For this example | gave ‘asesores’ access to all the windows in the system.

[Table View] com_permis @public... & | [Table View) com_usrdep @public... & ‘

| compania abr_format ‘nom_autori permisos
_I DECSA pep.conint asesores CIMER
J DECSA pep.explab asesores CIMER
J DECSA coi.sercia asesores CIMER
J DECSA coi.series asesores CIMER
J DECSA coi.paraco asesores CIMER
J DECSA coi.parame asesores CIMER
_| DECsa coi.usuari asesores CIMER
_I DECSA coi.usrdep asesores CIMER
J DECSA coi.permis asesores CIMER
J DECSA coi.navega asesores CIMER
_| DECSA grd.menuex asesores CIMER

Some of the permissions for ‘asesores’

In the COM_USRDERP table | defined ‘franklin’ to be a child of ‘asesores’. Note that ‘franklin’ also has to be de-
fined as a parent of himself. With this change, now ‘franklin’ should have access to all the windows for which ‘asesores’
has access. The screenshot shows that now the tree has been populated with all the options.

[Table View) com_permis @public... & ’ [Table View] com_usrdep @public... 8{

compania usr_padre ‘usr_hijo nom_usuar
J DECSA asesores franklin franklin
J DECSA franklin franklin franklin

‘asesores’ is parent of ‘franklin’

@ Menu..ipal D=0 %
Q

Menu Principal [~
™ Seleccién Directa (ventana
? Decsa-Case

? Comunes

? Cestidn Agricola

™' Seleccionar Compafiia

Contabilidad General

Cobro unificado

Bancos

Cuenta Corriente

Inventario.

Personal y Planillas

? Presupuesto

? Clientes

Facturacién

? Asociacién Solidarista

Custodia Libre

? Cajas

? Produccion

? Flotillas

P Cantacian

o

’\I-r++++++++++++++

Corresponding tree for ‘franklin’

Database Project 35

Validation of Approach

Have you built the system?
Yes | have. The database design, window convertor, window generator, menu navigation, favorite window navi-
gation, window search and window designer have been built. All of the aspects are complete except the window de-

signer which was kept as a prototype. In later projects, developers can build upon what was developed for the window
designer. Evaluations were also carried out on the window generator and the access rights on the menu navigation tree.

Which part of the system is not working?

Through testing and actual use of the system, it has been verified that all the aspects of these project are work-
ing as expected. Again, the only part that is not ready for production is the window designer.

What experiments have you run?

Please refer to the Evaluations section. The two major tests were to verify the enforcement of access rights in
the menu navigation tree and to verify the output of the window generator.

How will you know that the system works?

The menu navigation system was tested for access rights enforcement. Integration with the window generator
was also tested. Basically, if the user selects a window, the corresponding window should be displayed on the screen by
the window generator. Favorite windows and window searches are also returning the correct results.

Database Project 36

Conclusions

Lessons Learned
Describe your experience and what you have learned thus far?

| have enjoyed this project. It has been a very-very-time-consuming project but | believe that it was well worth it. The
benefits that the software company will receive from the deliverables of this project will be quite noticeable. In fact, they
have asked me to give them alpha releases so they can start playing around with the windows and adjust them to their
own business needs. During the presentation at the end of this course, | will present the window generator and menu
navigation tree in a “real” environment with “real” data provided by the software company. Due to the ease of use of this
generator, integration is also very straight-forward. And it is all backed up with a very strong database design, in my own
opinion.

From the database aspect of the project, | was amazed with what could be done with views. The COM_PERUSR view
combined with the COM_USRDEP table is probably the accomplishment that | am most proud of. It solved all the re-
quirements and even more. Ideas such as negative permissions were like an impossible, and | achieved that functionality
with the use of a view, a very complex view.

| believe | spent considerable more time on the database design than on the application implementation. The COM_PE-
RUSR and COM_PENAVE views took a couple of weeks to come up with, finalize and test. But due to the time spent
designing, the GUI implementation was very easy and straight-forward. The queries that needed to be executed were
also very simple and straight-forward. So | guess that the moral of the story is that if you spend sufficient time designing,
life will be easier later on. | was very lucky this time because | did not have to go back and change my design after | had
started implementing the GUI. But for example, the database design changed considerably from what | had presented on
October 11 for the project proposal.

What skills you are practicing or new tools and techniques you are working with, that you did not know before?
| worked with Eclipse for the GUI implementation and also to modify the SQL statements. | also used Navicat to look
through the PostgreSQL tables and their data and | used PostgreSQL 8.3. My environment was a Mac with OS X, but |

have tried my deliverables in both Linux and Windows and they work perfectly. To insert tables and data | used the
command-line programs that come with PostgreSQL.

Member Contribution

Not applicable. | am the only member of this group.
But | have to note that | did receive help by PowerBuilder experts to create the PowerBuilder data exporter called ext_pb.

Future Work

The next step would be to create a fully-functional window designer.The software company could really benefit from this
component. Especially when the developers have to modify window layouts.

Database Project 37

