The Entity-Relationship Model

Chapter 2
Overview of Database Design

- **Conceptual design:** (ER Model is used at this stage.)
 - What are the *entities* and *relationships* in the enterprise?
 - What information about these entities and relationships should we store in the database?
 - What are the *integrity constraints* or *business rules* that hold?
 - A database `schema` in the ER Model can be represented pictorially (*ER diagrams*).
 - Can map an ER diagram into a relational schema.
Entity: Real-world object distinguishable from other objects. An entity is described (in DB) using a set of **attributes**.

Entity Set: A collection of similar entities. E.g., all employees.
- All entities in an entity set have the same set of attributes. (Until we consider ISA hierarchies, anyway!)
- Each entity set has a **key**.
- Each attribute has a **domain**.
Relationship: Association among two or more entities. E.g., Attishoo works in Pharmacy department.

Relationship Set: Collection of similar relationships.
- An n-ary relationship set \(R \) relates \(n \) entity sets \(E_1 \ldots E_n \); each relationship in \(R \) involves entities \(e_1 \in E_1, \ldots, e_n \in E_n \)
 - Same entity set could participate in different relationship sets, or in different "roles" in same set.
Key Constraints

- Consider Works_In: An employee can work in many departments; a dept can have many employees.
- In contrast, each dept has at most one manager, according to the key constraint on Manages.

Each did can determine its corresponding Manage relationship.
Participation Constraints

- Does every department have a manager?
 - If so, this is a *participation constraint*: the participation of Departments in Manages is said to be *total* (vs. *partial*).
 - Every *did* value in Departments table must appear in a row of the Manages table (with a non-null *ssn* value!)

![Database Management Systems, R. Ramakrishnan and J. Gehrke](image)
Weak Entities

- A **weak entity** can be identified uniquely only by considering the primary key of another (owner) entity.
 - Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner, many weak entities).
 - Weak entity set must have total participation in this **identifying** relationship set.
 - Pname in the following figure is a **partial key**.
ISA (`is a’) Hierarchies

- As in C++, or other PLs, attributes are inherited.
- If we declare A ISA B, every A entity is also considered to be a B entity.
- *Overlap constraints*: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? *(Allowed/disallowed)*
- *Covering constraints*: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? *(Yes/no)*
- Reasons for using ISA:
 - To add descriptive attributes specific to a subclass.
 - To identify entities that participate in a relationship.
Aggregation

- Used when we have to model a relationship involving (entity sets and) a relationship set.
 - Aggregation allows us to treat a relationship set as an entity set for purposes of participation in (other) relationships.

Aggregation vs. ternary relationship:
- Monitors is a distinct relationship, with a descriptive attribute.
- Also, can say that each sponsorship is monitored by at most one employee.
Conceptual Design Using the ER Model

- **Design choices:**
 - Should a concept be modeled as an entity or an attribute?
 - Should a concept be modeled as an entity or a relationship?
 - Identifying relationships: Binary or ternary? Aggregation?

- **Constraints in the ER Model:**
 - A lot of data semantics can (and should) be captured.
 - But some constraints cannot be captured in ER diagrams.
Entity vs. Attribute

- Should *address* be an attribute of Employees or an entity (connected to Employees by a relationship)?
- Depends upon the use we want to make of address information, and the semantics of the data:
 - If we have several addresses per employee, *address* must be an entity (since attributes cannot be set-valued).
 - If the structure (city, street, etc.) is important, e.g., we want to retrieve employees in a given city, *address* must be modeled as an entity (since attribute values are atomic).
Entity vs. Attribute (Contd.)

- Works_In2 does not allow an employee to work in a department for two or more periods.
- Similar to the problem of wanting to record several addresses for an employee: we want to record several values of the descriptive attributes for each instance of this relationship.
Entity vs. Relationship

- First ER diagram OK if a manager gets a separate discretionary budget for each dept.
- What if a manager gets a discretionary budget that covers *all* managed depts?
 - Redundancy of \(dbudget \), which is stored for each dept managed by the manager.

 Misleading: suggests \(dbudget \) tied to managed dept.
Binary vs. Ternary Relationships

- If each policy is owned by just 1 employee:
 - Key constraint on Policies would mean policy can only cover 1 dependent!

- What are the additional constraints in the 2nd diagram?
Previous example illustrated a case when two binary relationships were better than one ternary relationship.

An example in the other direction: a ternary relation Contracts relates entity sets Parts, Departments and Suppliers, and has descriptive attribute \(qty \). No combination of binary relationships is an adequate substitute:

- S “can-supply” P, D “needs” P, and D “deals-with” S does not imply that D has agreed to buy P from S.
- How do we record \(qty \)?
Summary of Conceptual Design

- Conceptual design follows requirements analysis,
 - Yields a high-level description of data to be stored
- ER model popular for conceptual design
 - Constructs are expressive, close to the way people think about their applications.
- Basic constructs: entities, relationships, and attributes (of entities and relationships).
- Some additional constructs: weak entities, ISA hierarchies, and aggregation.
- Note: There are many variations on ER model.
Several kinds of integrity constraints can be expressed in the ER model: key constraints, participation constraints, and overlap/covering constraints for ISA hierarchies. Some foreign key constraints are also implicit in the definition of a relationship set.

- Some constraints (notably, functional dependencies) cannot be expressed in the ER model.
- Constraints play an important role in determining the best database design for an enterprise.
Summary of ER (Contd.)

- ER design is *subjective*. There are often many ways to model a given scenario! Analyzing alternatives can be tricky, especially for a large enterprise. Common choices include:
 - Entity vs. attribute, entity vs. relationship, binary or n-ary relationship, whether or not to use ISA hierarchies, and whether or not to use aggregation.

- Ensuring good database design: resulting relational schema should be analyzed and refined further. FD information and normalization techniques are especially useful.