13. Reinforcement Learning

[Read Chapter 13]
[Exercises 13.1, 13.2, 13.4]

- Control learning
- Control policies that choose optimal actions
- Q learning
- Convergence

Control Learning

Consider learning to choose actions, e.g.,

- Robot learning to dock on battery charger
- Learning to choose actions to optimize factory output
- Learning to play Backgammon

Note several problem characteristics:

- Delayed reward
- Opportunity for active exploration
- Possibility that state only partially observable
- Possible need to learn multiple tasks with same sensors/effectors

One Example: TD-Gammon

[Tesauro, 1995]
Learn to play Backgammon
Immediate reward
$\bullet+100$ if win

- -100 if lose
- 0 for all other states

Trained by playing 1.5 million games against itself Now approximately equal to best human player

Reinforcement Learning Problem

$$
s_{0} \xrightarrow[r_{0}]{a_{0}} s_{1} \xrightarrow[r_{1}]{a_{1}} s_{2} \xrightarrow[r_{2}]{a_{2}} \ldots
$$

Goal: Learn to choose actions that maximize

$$
r_{0}+\gamma r_{1}+\gamma^{2} r_{2}+\ldots, \text { where } 0 \leqslant \gamma<1
$$

Markov Decision Processes

Assume

- finite set of states S
- set of actions A
- at each discrete time agent observes state $s_{t} \in S$ and chooses action $a_{t} \in A$
- then receives immediate reward r_{t}
- and state changes to s_{t+1}
- Markov assumption: $s_{t+1}=\delta\left(s_{t}, a_{t}\right)$ and $r_{t}=r\left(s_{t}, a_{t}\right)$
- i.e., r_{t} and s_{t+1} depend only on current state and action
- functions δ and r may be nondeterministic
- functions δ and r not necessarily known to agent

Agent's Learning Task

Execute actions in environment, observe results, and

- learn action policy $\pi: S \rightarrow A$ that maximizes

$$
E\left[r_{t}+\gamma r_{t+1}+\gamma^{2} r_{t+2}+\ldots\right]
$$

from any starting state in S

- here $0 \leq \gamma<1$ is the discount factor for future rewards

Note something new:

- Target function is $\pi: S \rightarrow A$
- but we have no training examples of form $\langle s, a\rangle$
- training examples are of form $\langle\langle s, a\rangle, r\rangle$

Value Function

To begin, consider deterministic worlds...
For each possible policy π the agent might adopt, we can define an evaluation function over states

$$
\begin{aligned}
V^{\pi}(s) & \equiv r_{t}+\gamma r_{t+1}+\gamma^{2} r_{t+2}+\ldots \\
& \equiv \sum_{i=0}^{\infty} \gamma^{i} r_{t+i}
\end{aligned}
$$

where r_{t}, r_{t+1}, \ldots are generated by following policy π starting at state s

Restated, the task is to learn the optimal policy π^{*}

$$
\pi^{*} \equiv \underset{\pi}{\operatorname{argmax}} V^{\pi}(s),(\forall s)
$$

$V^{*}(s)$ values

What to Learn

We might try to have agent learn the evaluation function $V^{\pi^{*}}$ (which we write as V^{*})

It could then do a lookahead search to choose best action from any state s because

$$
\pi^{*}(s)=\underset{a}{\operatorname{argmax}}\left[r(s, a)+\gamma V^{*}(\delta(s, a))\right]
$$

A problem:

- This works well if agent knows $\delta: S \times A \rightarrow S$, and $r: S \times A \rightarrow \Re$
- But when it doesn't, it can't choose actions this way

Q Function

Define new function very similar to V^{*}

$$
Q(s, a) \equiv r(s, a)+\gamma V^{*}(\delta(s, a))
$$

If agent learns Q, it can choose optimal action even without knowing δ !

$$
\begin{gathered}
\pi^{*}(s)=\underset{a}{\operatorname{argmax}}\left[r(s, a)+\gamma V^{*}(\delta(s, a))\right] \\
\pi^{*}(s)=\underset{a}{\operatorname{argmax}} Q(s, a)
\end{gathered}
$$

Q is the evaluation function the agent will learn

Training Rule to Learn Q

Note Q and V^{*} closely related:

$$
V^{*}(s)=\max _{a^{\prime}} Q\left(s, a^{\prime}\right)
$$

Which allows us to write Q recursively as

$$
\begin{aligned}
Q\left(s_{t}, a_{t}\right) & \left.=r\left(s_{t}, a_{t}\right)+\gamma V^{*}\left(\delta\left(s_{t}, a_{t}\right)\right)\right) \\
& =r\left(s_{t}, a_{t}\right)+\gamma \max _{a^{\prime}} Q\left(s_{t+1}, a^{\prime}\right)
\end{aligned}
$$

Nice! Let \hat{Q} denote learner's current approximation to Q. Consider training rule

$$
\hat{Q}(s, a) \leftarrow r+\gamma \max _{a^{\prime}} \hat{Q}\left(s^{\prime}, a^{\prime}\right)
$$

where s^{\prime} is the state resulting from applying action a in state s

Q Learning for Deterministic Worlds

For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$
Observe current state s
Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state s^{\prime}
- Update the table entry for $\hat{Q}(s, a)$ as follows:

$$
\hat{Q}(s, a) \leftarrow r+\gamma \max _{a^{\prime}} \hat{Q}\left(s^{\prime}, a^{\prime}\right)
$$

- $s \leftarrow s^{\prime}$

Updating \hat{Q}

notice if rewards non-negative, then

$$
(\forall s, a, n) \quad \hat{Q}_{n+1}(s, a) \geq \hat{Q}_{n}(s, a)
$$

and

$$
(\forall s, a, n) \quad 0 \leq \hat{Q}_{n}(s, a) \leq Q(s, a)
$$

\hat{Q} converges to Q. Consider case of deterministic world where see each $\langle s, a\rangle$ visited infinitely often.

Proof: Define a full interval to be an interval during which each $\langle s, a\rangle$ is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ
Let \hat{Q}_{n} be table after n updates, and Δ_{n} be the maximum error in \hat{Q}_{n}; that is

$$
\Delta_{n}=\max _{s, a}\left|\hat{Q}_{n}(s, a)-Q(s, a)\right|
$$

For any table entry $\hat{Q}_{n}(s, a)$ updated on iteration $n+1$, the error in the revised estimate $\hat{Q}_{n+1}(s, a)$ is

$$
\begin{aligned}
&\left|\hat{Q}_{n+1}(s, a)-Q(s, a)\right|= \mid\left(r+\gamma \max _{a^{\prime}} \hat{Q}_{n}\left(s^{\prime}, a^{\prime}\right)\right) \\
&-\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right) \mid \\
&= \gamma\left|\max _{a^{\prime}} \hat{Q}_{n}\left(s^{\prime}, a^{\prime}\right)-\max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right| \\
& \leq \gamma \max _{a^{\prime}}\left|\hat{Q}_{n}\left(s^{\prime}, a^{\prime}\right)-Q\left(s^{\prime}, a^{\prime}\right)\right| \\
& \leq \gamma \max _{s^{\prime \prime}, a^{\prime}}\left|\hat{Q}_{n}\left(s^{\prime \prime}, a^{\prime}\right)-Q\left(s^{\prime \prime}, a^{\prime}\right)\right| \\
&\left|\hat{Q}_{n+1}(s, a)-Q(s, a)\right| \leq \gamma \Delta_{n}
\end{aligned}
$$

Note we used general fact that

$$
\left|\max _{a} f_{1}(a)-\max _{a} f_{2}(a)\right| \leq \max _{a}\left|f_{1}(a)-f_{2}(a)\right|
$$

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

$$
\begin{aligned}
V^{\pi}(s) & \equiv E\left[r_{t}+\gamma r_{t+1}+\gamma^{2} r_{t+2}+\ldots\right] \\
& \equiv E\left[\sum_{i=0}^{\infty} \gamma^{i} r_{t+i}\right] \\
Q(s, a) & \equiv E\left[r(s, a)+\gamma V^{*}(\delta(s, a))\right]
\end{aligned}
$$

Nondeterministic Case

Q learning generalizes to nondeterministic worlds
Alter training rule to
$\hat{Q}_{n}(s, a) \leftarrow\left(1-\alpha_{n}\right) \hat{Q}_{n-1}(s, a)+\alpha_{n}\left[r+\max _{a^{\prime}} \hat{Q}_{n-1}\left(s^{\prime}, a^{\prime}\right)\right]$ where

$$
\alpha_{n}=\frac{1}{1+\text { visits }_{n}(s, a)}
$$

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]

Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$$
Q^{(1)}\left(s_{t}, a_{t}\right) \equiv r_{t}+\gamma \max _{a} \hat{Q}\left(s_{t+1}, a\right)
$$

Why not two steps?

$$
Q^{(2)}\left(s_{t}, a_{t}\right) \equiv r_{t}+\gamma r_{t+1}+\gamma^{2} \max _{a} \hat{Q}\left(s_{t+2}, a\right)
$$

Or n ?
$Q^{(n)}\left(s_{t}, a_{t}\right) \equiv r_{t}+\gamma r_{t+1}+\cdots+\gamma^{(n-1)} r_{t+n-1}+\gamma^{n} \max _{a} \hat{Q}\left(s_{t+n}, a\right)$
Blend all of these:
$Q^{\lambda}\left(s_{t}, a_{t}\right) \equiv(1-\lambda)\left[Q^{(1)}\left(s_{t}, a_{t}\right)+\lambda Q^{(2)}\left(s_{t}, a_{t}\right)+\lambda^{2} Q^{(3)}\left(s_{t}, a_{t}\right)\right.$

Temporal Difference Learning

$$
Q^{\lambda}\left(s_{t}, a_{t}\right) \equiv(1-\lambda)\left[Q^{(1)}\left(s_{t}, a_{t}\right)+\lambda Q^{(2)}\left(s_{t}, a_{t}\right)+\lambda^{2} Q^{(3)}\left(s_{t}, a_{t}\right)\right.
$$

Equivalent expression:

$$
\begin{aligned}
Q^{\lambda}\left(s_{t}, a_{t}\right)=r_{t}+\gamma[& (1-\lambda) \max _{a} \hat{Q}\left(s_{t}, a_{t}\right) \\
& \left.+\lambda Q^{\lambda}\left(s_{t+1}, a_{t+1}\right)\right]
\end{aligned}
$$

$\mathrm{TD}(\lambda)$ algorithm uses above training rule

- Sometimes converges faster than Q learning
- converges for learning V^{*} for any $0 \leq \lambda \leq 1$ (Dayan, 1992)
- Tesauro's TD-Gammon uses this algorithm

Subtleties and Ongoing Research

- Replace \hat{Q} table with neural net or other generalizer
- Handle case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
- Learn and use $\hat{\delta}: S \times A \rightarrow S$
- Relationship to dynamic programming

