Artificial Neural Networks

74

[Read Ch. 4]
[Recommended exercises 4.1, 4.2, 4.5, 4.9, 4.11]

e Threshold units

e Gradient descent

e Multilayer networks

e Backpropagation

e Hidden layer representations
e Example: Face Recognition

e Advanced topics
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Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10"
e Connections per neuron ~ 10*7°
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed process

e Emphasis on tuning weights automatically
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When to Consider Neural Networks

e Input is high-dimensional discrete or real-valued
(e.g. raw sensor input)

e Qutput is discrete or real valued

e Output is a vector of values

e Possibly noisy data

e Form of target function is unknown

e Human readability of result is unimportant
Examples:

e Speech phoneme recognition [Waibel]
e Image classification [Kanade, Baluja, Rowley]

e Financial prediction
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ALVINN drives 70 mph on highways
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Perceptron

2@,
n
1if 2w x>0
0= i=0 |1
-1 otherwise

1 if wg+wiz1+---+wy,x, >0
—1 otherwise.

o(xl,...,afn)Z{

Sometimes we’ll use simpler vector notation:

o(Z) = {

1lifw-Z2>0
—1 otherwise.
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Decision Surface of a Perceptron
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Represents some useful functions
e What weights represent
g(x1, ) = AND(x1,29)7
But some functions not representable
e c.g., not linearly separable

e Therefore, we’ll want networks of these...
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Perceptron training rule

where
Aw; = n(t — o)x;

Where:
o t = ¢(¥) is target value
® 0 1S perceptron output

e 17 is small constant (e.g., .1) called learning rate
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Perceptron training rule

Can prove it will converge

81

e If training data is linearly separable

e and 7 sufficiently small
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Gradient Descent

To understand, consider simpler linear unit, where
o= wy+ wixry + - -+ w,x,

Let’s learn w;’s that minimize the squared error

1
E[w] = ing(td — 04)*

Where D is set of training examples
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Gradient Descent
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Gradient Descent
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Gradient Descent

GRADIENT-DESCENT (training_examples,n)

FEach training example 1s a pair of the form
(Z,t), where & is the vector of input values,
and t is the target output value. n is the
learning rate (e.g., .05).

e Initialize each w; to some small random value
e Until the termination condition is met, Do

— Initialize each Aw; to zero.
— For each (Z,t) in training examples, Do
* Input the instance T to the unit and
compute the output o

* For each linear unit weight w;, Do
Aw; + Aw; + n(t — o)z;
— For each linear unit weight w;, Do
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Sumimary

Perceptron training rule guaranteed to succeed if
e Training examples are linearly separable

e Sufficiently small learning rate n

Linear unit training rule uses gradient descent

e Guaranteed to converge to hypothesis with
minimum squared error

e Given sufficiently small learning rate 7
e Even when training data contains noise

e Even when training data not separable by H
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Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep|w]
2. W+ W — nVEp|w]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example d in D
1. Compute the gradient V E ]
2. W + W — nV Ey[]

1

2d

Ed[w] = i(td — Od)
Incremental Gradient Descent can approximate

Batch Gradient Descent arbitrarily closely if 7
made small enough

Ep[w] == ¥ (tg — 04)*

eD
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Multilayer Networks of Sigmoid Units
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Sigmoid Unit

o(x) is the sigmoid function

1
1+ e 7

Nice property: dilgf) =o(x)(1 —o(x))
We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

89 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Error Gradient for a Sigmoid Unit
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Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

2. For each output unit k
(Sk — Ok<1 — Ok>(tk — Ok>
3. For each hidden unit A

0y, Oh<1 — Oh) > wh,kdk
k€outputs

4. Update each network weight w; ;
Wij 4 Wij+ Aw
where

Aw; j = ndjx;
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More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum «
Aw j(n) = ndjzi;+ alw;;(n —1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast
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Learning Hidden Layer Representations

A target function:

93

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??
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Learning Hidden Layer Representations

A network:
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Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001
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Training

Sum of sguared errors for each output unit
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Training
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Hidden unit encoding for input 01000000

500 1000 1500 2000 2500
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Training

Weights from inputs to one hidden unit
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Convergence ot Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
e Add momentum
e Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
e Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as
tralning progresses

98 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997



Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers

|[Cybenko 1988].
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Overfitting in ANNs

Error versus weight updates (example 1)
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Neural Nets for Face Recognition

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces
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Learned Hidden Unit Weights

left strt rght up Learned Weights

Typical input images

http://www.cs.cmu.edu/~tom /faces.html
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Alternative Error Functions

Penalize large weights:
1
E@)=-% ¥ (ta—or) +73w5

2 deD k€outputs ,]

Train on target slopes as well as values:

p—

dxy Oz

(3tkd 30kd)2

E () D (tra —ora)*+p X

2 D Ek€outputs JEwnputs

Tie together weights:

e c.g., in phoneme recognition network
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Recurrent Networks

* y(t +1) * y(t +1)

X(t) X(t) c(t)

(a) Feedforward network (b) Recurrent network

xt-1)  ct-1)

Xt-2) c{t-2)

(c) Recurrent network
unfolded in time
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