

CS534 Artificial Intelligence

Homework 6 - Spring 2019

Michael Sokolovsky, Ahmedul Kabir and Prof. Carolina Ruiz

Due Date:
See homework webpage for due date and submission details

1. Project Description & Dataset

(Image taken from https://corochann.com/)

Primary Goal:

In this project you will build machine learning models for categorizing images. You will write

programs that takes images like the hand-written numbers above and output what numbers the images

represent. The two machine learning algorithms to be used are:

- Artificial Neural Network (ANN)

- Decision Tree (DT)

Dataset:

MNIST is a dataset composed of handwritten numbers and their labels. It is a famous dataset that has

been used for testing new machine-learning algorithm's performance. Each MNIST image is a 28x28

grey-scale image. Data is provided as 28x28 matrices containing numbers ranging from 0

(corresponding to white pixels) to 255 (corresponding to black pixels). Labels for each image are also

https://web.cs.wpi.edu/~cs534/s19/
http://www.wpi.edu/

provided with integer values ranging from 0 to 9, corresponding to the actual value in the image. There

are 6500 images in our version of the database and 6500 corresponding labels.

Tasks:

In the project you will experiment with training machine learning models for identifying which digit is

represented by a MNIST image. You will then submit a report describing your experimental methods

and results. For Artificial Neural Network, you should use a package called Keras implemented in

Python3. For Decision tree, you should use Python’s Scikit-learn package. The input to your model will

be an image, and the output will be a classification of the number, from 0-9. You’ll get a chance to

work with common machine learning packages used in state-of-the-art research. In addition, you will

practice using the numerical computation package Numpy for preprocessing.

2. Project Requirements

Projects will include turning in a written report and code for training and visualization. Details of what

to include are listed below:

Written Report

 Model & Training Procedure Description

For each classification algorithm, include sections describing the experiments that you

performed varying hyper-parameters. For example, for ANN include the number of layers,

number of neurons in each layer, number of epochs used for training, and batch size used for

training. For decision trees, include parameter values you experimented with.

 Model Performance & Confusion Matrix

For each algorithm, describe the best performing model you obtained. Include a confusion

matrix showing results of testing the model on the test set. The matrix should be a 10-by-10 grid

showing which categories images were classified as. Use your confusion matrix to additionally

report precision & recall for each of the 10 classes, as well as overall accuracy of your model.

 Plot

For your best performing ANN, include a plot showing how training accuracy and validation

accuracy change over time during training. Graph number of training epochs (x-axis) versus

training set and validation set accuracy (y-axis). Hence, your plot should contain two curves.

 Visualization

For each algorithm, include 3 visualizations of images that were misclassified by your best

performing model and any observations about why you think these images were misclassified.

You will have to create or use a visualization program that takes a 28-by-28 matrix input and

translate it into a black-and-white image.

Code:

 Model Code

Please turn in your preprocessing, model creation, model training, graphing and confusion

matrix code.

 Copy of Trained Model:

Turn in a copy of your best model saved as `trained_model.hw6.' Please use the following

Keras methods for saving your model.

https://web.cs.wpi.edu/~cs534/s19/HW/HW6/images.npy
https://web.cs.wpi.edu/~cs534/s19/HW/HW6/labels.npy
https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

3. Project Preparatory Tasks and Guidelines

3.1 Artificial Neural Networks

Below are important guidelines to follow for implementing the project using ANNs. A

model template is provided for you, and these guidelines follow the structure of the

template.

1) Installing Software and Dependencies

template.py is written with the Keras API in a Python3 script. You will use this template to build and

train a model. To do so, you will need to implement the project in Python3 and install Keras and its

dependencies. Please make sure you have a working version of Python3 and Keras as soon as possible,

as these programs are necessary for completing the project.

2) Downloading Data

Raw data is provided and can be downloaded from the following links:

 The images.npy file contains 6500 images from the MNIST dataset.

 labels.npy contains the 6500 corresponding labels for the image data.

3) Preprocessing Data

All data is provided as NumPy .npy files. To load and preprocess data, use Python’s NumPy package

Image data is provided as 28-by-28 matrices of integer pixel values. However the input to the network

will be a flat vector of length 28*28 = 784. You will have to flatten each matrix to be a vector, as

illustrated by the toy example below:

The label for each image is provided as an integer in the range of 0 to 9. However, the output of the

network should be structured as a “one-hot vector” of length 10 encoded as follows:

https://web.cs.wpi.edu/~cs534/s19/HW/HW6/template.py
https://web.cs.wpi.edu/~cs534/s19/HW/HW6/template.py
https://keras.io/
https://web.cs.wpi.edu/~cs534/s19/HW/HW6/images.npy
https://web.cs.wpi.edu/~cs534/s19/HW/HW6/labels.npy
http://www.numpy.org/

To preprocess data, use NumPy functions like reshape for changing matrices into vectors. You can

also use Keras’s to_categorical function for converting label numbers into one-hot encodings.

After preprocessing, you will need to take your data and randomly split it into Training, Validation, and

Test Sets. In order create the three sets of data, use stratified sampling, so that each set contains the

same relatively frequency of the ten classes.

You are given 6500 images and labels. The training set should contain ~60% of the data, the validation

set should contain ~15% of the data, and the test set should contain ~25% of the data.

Example Stratified Sampling Procedure:

 Take data and separate it into 10 classes, one for each digit

 From each class:

◦ take 60% at random and put into the Training Set,

◦ take 15% at random and put into the Validation Set,

◦ take the remaining 25% and put into the Test Set

3) Building a Model

In Keras, Models are instantiations of the class Sequential. A Keras model template written with the

Sequential Model API is provided which can be used as a starting point for building your model. The

template includes a sample first input layer and output layer. You must limit yourself to “Dense” layers

- Keras’ version of traditional neural network layers. This portion of the project will involve

experimentation.

Good guidelines for model creation are:

 Initialize weights randomly for every layer, try different initialization schemes

 Experiment with using ReLu Activation Units, as well as SeLu and Tanh

 Experiment with number of layers and number of neurons in each layer, including the first

layer.

Leave the final layer as it appears in the template with a softmax activation unit.

http://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
https://keras.io/utils/
https://web.cs.wpi.edu/~cs534/s19/HW/HW6/template.py
https://keras.io/models/sequential/#the-sequential-model-api

4) Compiling a Model

Prior to training a model, you must specify what your loss function for the model is and what your

gradient descent method is. Please use the standard categorical cross-entropy and stochastic gradient

descent (‘sgd’) when compiling your model (as provided in the template).

5) Training a Model

You have the option of changing how many epochs to train your model for and how large your mini-

batch size is. Experiment to see what works best. Also remember to include your validation data in the

fit() method.

6) Reporting Your Results

fit() returns data about your training experiment. In the template this is stored in the “history” variable.

Use this information to construct your graph that shows how validation and training accuracy change

after every epoch of training.

https://keras.io/models/sequential/#fit

Use the predict() method on model to evaluate what labels your model predicts on test set. Use these

and the true labels to construct your confusion matrix, like the toy example below, although you do not

need to create a fancy visualization. Your matrix should have 10 rows and 10 columns.

3.2 Decision Tree Classification

Work with the same training, validation, and test sets you constructed earlier to make decision tree

models for classifying the digits. You will focus on making three variations on decision trees and

documenting the results and experiments in the report.

1) Creating a Baseline Model

Using the scikit-learn class DecisionTreeClassifier, train a decision tree on the raw pixel data just as

you did with your neural networks, and report your results on the validation set. This is your baseline

validation performance. Write about your experiments and include them in the Description of

Experiments section.

2) Variation on the Baseline Model

Try changing the parameters of your tree, such as restricting tree depth or utilizing pruning to see if

you can reduce generalization error. Write about your experiments and include them in the

Description of Experiments section.

3) Creating Hand-Engineered Features

Try creating your own discriminatory features (between 4-10) from the raw pixel data and training a

decision tree on those features. Talk about what features you chose to create in the Description of

Experiments section. One example would be to include the average pixel intensity over the whole

28x28 image as a feature. You may want to consider working with the original 28x28 prior to come

up with features. This is an opportunity to think creatively about what transformations to the raw data

would help at discriminating between different numbers.

4) Reporting Results

Finally, run the above three final models on your test set and report performances and confusion

matrices. How do your results compare to your neural network results?

https://keras.io/models/sequential/#predict

4. Grading Rubric

Report

 Neural Networks

◦ Description of Experiments – 10 pts

◦ Model & Training Procedure Description – 15 pts

◦ Plot – 10 pts

◦ Visualization – 5 pts

◦ Model Performance & Confusion Matrix – 5 pts

 Decision Trees

◦ Feature Extraction & Explanation – 10 pts

◦ Description of Experiments – 10 pts

◦ Model Performance & Confusion Matrix – 5 pts

Code:

 Neural Network - 20 pts

 Decision Tree Code – 15 pts

 Model:

 Copy of Trained Model: 5 pts

Total Points: 100 pts + 10 bonus pts

