Aspects of Networking in Multiplayer Computer Games

By Jouni Smed, Timo Kaukoranta, and Harri Hakonen c. 2001

Presented by Cody Olivier

Intro / Motivation

- Virtual reality realm of computing:
 - c1980 Military Simulations
 - Distributed Interactive Simulation (DIS)
 - c1990 Virtual Reality
 - Distributed virtual environments (DVE)
 - c1990 Computer Supported Collaborative Work

Intro / Motivation

- Share similarities with online games
- Games not seen in scientific literature
- Game companies starting to publishing ideas
- Bridge gap: Layout explicit problems

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating

Networking Resources

• Bandwidth

• Amount of data sent per unit time

Latency

- Jitter: variance in latency
- Rule of Thumb: 0.1 1 sec
- Computational Power
 - Handling traffic
 - 100,000 objects ⇒ 80 percent CPU 500Mhz processor

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating

DC - Communication Architectures

- Split Screen
- Peer-to-Peer
 - Great for LAN
- Client / Server
 - Very common today
- Server Network
 - Upgrade: hierarchy of server-network

DC - Data and Control Architectures

Data and Control Attributes

- Consistency: same data everywhere
- Responsiveness: how responsive are changes
- 2 setups:
 - Two-way relay
 - Commands sent directly to server
 - Short-Circuit
 - Send to server and locally updated

DC - Data and Control Architectures

- Architectures:
 - Centralized
 - All data on one server
 - Consistency, two-way relay
 - Distributed
 - Subsets of data on a server
 - Responsiveness, short-circuit relay
 - Replicated
 - Duplicates of data
 - Responsiveness, short-circuit relay

DC - Compensatory Management

- Reducing traffic between nodes
- Message Compression and Aggregation
 - Compress data
 - Aggregating messages
 - Less header info
- Tradeoff less data sent, more computation

Interest Management

- Nodes express interest in what they want
- Aura or area of interest
 - Only send relevant data to clients
 - 2 entity auros intersect, made aware of each other
 - Symmetric

Interest Management

- Finer grade: nimbus and focus
 - When Focus intersects other entity nimbus, update

Dead Reckoning

Service Contains

- Predicting future data
 - Based on navigational techniques
- Position and velocity known, extrapolate future positions
- Increase time between transmissions
- Update when new messages are arrive

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating

Scalability - Serial & Parallel Execution

- Speedup based on # nodes and parallel part
- Serializable part immutable
- Extreme 1: no serialize part exists
- Extreme 2: no parallelizable part
- Real-time must be between these
- Client / Server works best

Scalability - Communication Capacity

- Serialized scalability communication limited
- P2P Server-Network: n clients, m servers
- Hierarchical Server-Network: ~n capacity

Deployment architecture	Capacity requirement
Single node	0
Peer-to-peer	$\sim n \dots n^2$
Client/server	$\sim n$
Peer-to-peer server-network	$\sim \frac{n}{m} + m \dots \frac{n}{m} + m^2$
Hierarchical server-network	$\sim n$

Ultimate Hierarchical Server-Network

- Sublinear communications
- k-ary tree of hierarchical server-network
- Server sends 1/kth of client data up the tree
 - Aggregation and compression
 - Very unlikely to reduce data to 1/kth
 - Instead, perform interest management
 - Use dead reckoning to limit messages sent

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating

S&C - Packet and Traffic Tampering

Issues

- Reflex Augmentation
- Packet Interception
- Replay Attack

• Solutions:

- Use checksums (MD5) to detect packet tampering
- Encrypt and add state information (such as random numbers)

S&C - Information Exposure

- Crack clients
 - RTS: see where other players' units are
 - FPS: wallhacks
- Solution:
 - Data encrypted, memory locations hard to find
 - Make sure commands coming into server are valid
 - In replicable arch, determine what is valid by majority

S&C - Design Defects

- Exploits
- Backend design choices
 - Client trust
 - Solution: Server commands (not checksums)
- Unexpected issues:
 - Latency is high
 - DDOS

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating

Conclusion

- Provide overview of multiplayer game networking topics
- Future work:
 - Test different aspects of released games
 - Look into upcoming encryption for better security
 - Inform game makers of advances in research