Aspects of Networking in Multiplayer Computer Games

By Jouni Smed, Timo Kaukoranta, and Harri Hakonen c. 2001

Presented by Cody Olivier
Intro / Motivation

• Virtual reality realm of computing:
 ○ c1980 Military Simulations
 ■ Distributed Interactive Simulation (DIS)
 ○ c1990 Virtual Reality
 ■ Distributed virtual environments (DVE)
 ○ c1990 Computer Supported Collaborative Work
Intro / Motivation

- Share similarities with online games
- Games not seen in scientific literature
- Game companies starting to publishing ideas
- Bridge gap: Layout explicit problems
Topics

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating
Networking Resources

- **Bandwidth**
 - Amount of data sent per unit time
- **Latency**
 - Jitter: variance in latency
 - Rule of Thumb: 0.1 - 1 sec
- **Computational Power**
 - Handling traffic
 - 100,000 objects ⇒ 80 percent CPU
 - 500Mhz processor
Topics

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating
DC - Communication Architectures

- Split Screen
- Peer-to-Peer
 - Great for LAN
- Client / Server
 - Very common today
- Server - Network
 - Upgrade: hierarchy of server-network
DC - Data and Control Architectures

● Data and Control Attributes
 ○ Consistency: same data everywhere
 ○ Responsiveness: how responsive are changes

● 2 setups:
 ○ Two-way relay
 ■ Commands sent directly to server
 ○ Short-Circuit
 ■ Send to server and locally updated
DC - Data and Control Architectures

- Architectures:
 - Centralized
 - All data on one server
 - Consistency, two-way relay
 - Distributed
 - Subsets of data on a server
 - Responsiveness, short-circuit relay
 - Replicated
 - Duplicates of data
 - Responsiveness, short-circuit relay
DC - Compensatory Management

- Reducing traffic between nodes
- Message Compression and Aggregation
 - Compress data
 - Aggregating messages
 - Less header info
- Tradeoff - less data sent, more computation
Interest Management

- Nodes express interest in what they want
- Aura or area of interest
 - Only send relevant data to clients
 - 2 entity auros intersect, made aware of each other
 - Symmetric
Interest Management

- Finer grade: nimbus and focus
 - When Focus intersects other entity nimbus, update
Dead Reckoning

- Predicting future data
 - Based on navigational techniques
- Position and velocity known, extrapolate future positions
- Increase time between transmissions
- Update when new messages are arrive
Topics

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating
Scalability - Serial & Parallel Execution

- Speedup based on # nodes and parallel part
- Serializable part immutable
- Extreme 1: no serialize part exists
- Extreme 2: no parallelizable part
- Real-time must be between these
- Client / Server works best
Scalability - Communication Capacity

- Serialized scalability communication limited
- P2P Server-Network: n clients, m servers
- Hierarchical Server-Network: $\sim n$ capacity

<table>
<thead>
<tr>
<th>Deployment architecture</th>
<th>Capacity requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single node</td>
<td>0</td>
</tr>
<tr>
<td>Peer-to-peer</td>
<td>$\sim n \ldots n^2$</td>
</tr>
<tr>
<td>Client/server</td>
<td>$\sim n$</td>
</tr>
<tr>
<td>Peer-to-peer server-network</td>
<td>$\sim \frac{n}{m} + m \ldots \frac{n}{m} + m^2$</td>
</tr>
<tr>
<td>Hierarchical server-network</td>
<td>$\sim n$</td>
</tr>
</tbody>
</table>
Ultimate Hierarchical Server-Network

- Sublinear communications
- k-ary tree of hierarchical server-network
- Server sends 1/kth of client data up the tree
 - Aggregation and compression
 - Very unlikely to reduce data to 1/kth
 - Instead, perform interest management
 - Use dead reckoning to limit messages sent
Topics

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating
S&C - Packet and Traffic Tampering

● Issues
 ○ Reflex Augmentation
 ○ Packet Interception
 ○ Replay Attack

● Solutions:
 ○ Use checksums (MD5) to detect packet tampering
 ○ Encrypt and add state information (such as random numbers)
S&C - Information Exposure

● Crack clients
 ○ RTS: see where other players’ units are
 ○ FPS: wallhacks

● Solution:
 ○ Data encrypted, memory locations hard to find
 ○ Make sure commands coming into server are valid
 ○ In replicable arch, determine what is valid by majority
S&C - Design Defects

- Exploits
- Backend design choices
 - Client trust
 - Solution: Server commands (not checksums)
- Unexpected issues:
 - Latency is high
 - DDOS
Topics

- Networking Resources
- Distributed Concepts
- Scalability
- Security and Cheating
Conclusion

● Provide overview of multiplayer game networking topics

● Future work:
 ○ Test different aspects of released games
 ○ Look into upcoming encryption for better security
 ○ Inform game makers of advances in research