CS529 Multimedia Networking

Introduction

Objectives

- Brief introduction to:
 - Digital Audio
 - Digital Video
 - Perceptual Quality
 - Network Issues
- · Get you ready for research papers!
- Introduction to:
 - Silence detection (for Project 1)

Groupwork

- Let's get started!
- Consider audio or video on a computer
 - Examples you have seen, or
 - Systems you have built
- What are two conditions that degrade quality?
 - Describing appearance is ok
 - Giving technical name is ok

Introduction Outline

- Foundation
 - Internetworking Multimedia (Ch 4)
 - Perceptual Coding: How MP3 Compression Works (Sellars)
 - Graphics and Video (Linux MM, Ch 4)
 - Multimedia Networking (Kurose, Ch 7)
- Audio Voice Detection (Rabiner)
- Video Compression

Internetworking
And Agents
in blancari

[CHW99] J. Crowcroft, M. Handley, and I. Wakeman. Internetworking Multimedia, Chapter 4, Morgan Kaufmann Publishers, 1991, ISBN 1-55860-584-3.

Digital Audio

- Sound produced by variations in air pressure
 - Can take any continuous value
 - Analog component

- Computers work with digital
 - Must convert analog to digital
 - Use sampling to get discrete values

(These Slides)

Digital Sampling

• Sample rate determines number of discrete values

Digital Sampling • Half sample rate a. Original Analog Waveform c. Sampling Rate N/2

Digital Sampling

• Quarter sample rate

Sample Rate

- Shannon's Theorem: to accurately reproduce signal, must sample at twice highest frequency
- Why not always use high sampling rate?

Sample Rate

- Shannon's Theorem: to accurately reproduce signal, must sample at twice highest frequency
- Why not always use high sampling rate?
 - Requires more storage
 - Complexity and cost of analog to digital hardware
 - Human's can't always perceive
 - Dog whistle
 - Typically want an "adequate" sampling rate
 - "Adequate" depends upon use of reconstructed signal

Sample Size

• Samples have discrete values

- How many possible values?
 - Sample Size
 - Say, 256 values from 8 bits

Sample Size

- Quantization error from rounding
 - Ex: 28.3 rounded to 28
- Why not always have large sample size?

Sample Size

- Quantization error from rounding
 - Ex: 28.3 rounded to 28
- Why not always have large sample size?
 - Storage increases per sample
 - Analog to digital hardware becomes more expensive

Groupwork

- Think of as many uses of computer audio as you can
- Which require a high sample rate and large sample size? Which do not? Why?

Audio

- Encode/decode devices are called codecs
 - Compression is the complicated part
- For voice compression, can take advantage of speech:

- · Many similarities between adjacent samples
 - Send differences (ADPCM)
- · Use understanding of speech
 - Can 'predict' (CELP)

Audio by People

- Sound by breathing air past vocal cords
 - Use mouth and tongue to shape vocal tract
- Speech made up of phonemes
 - Smallest unit of distinguishable sound
 - Language specific
- Majority of speech sound from 60-8000 Hz
 - Music up to 20,000 Hz
- Hearing sensitive to about 20,000 Hz
 - Stereo important, especially at high frequency
 - Lose frequency sensitivity with age

Typical Encoding of Voice

- Today, telephones carry digitized voice
- 8000 samples per second
 - Adequate for most voice communication
- 8-bit sample size
- For 10 seconds of speech:
 - 10 sec x 8000 samp/sec x 8 bits/samp
 - = 640,000 bits or 80 Kbytes
 - Fit 2 years of raw sound on typical hard disk
- Ok for voice (but Skype better), but what about music?

Typical Encoding of Audio

- Can only represent 4 KHz frequencies (why?)
- Human ear can perceive 10-20 KHz
 - Full range used in music
- CD quality audio:
 - sample rate of 44,100 samples/sec
 - sample size of 16-bits
 - 60 min x 60 secs/min x 44100 samp/sec x 2 bytes/samp x 2 channels (stereo)
 - = 635,040,000, about 600 Mbytes (typical CD)
- Can use compression to reduce
 - mp3 ("as it sounds)", RealAudio
 - 10x compression rate, same audible quality

Sound File Formats

- Raw data has samples (interleaved w/stereo)
- Need way to 'parse' raw audio file
- Typically a header
 - Sample rate
 - Sample size
 - Number of channels
 - Coding format
 - ...
- Examples:
 - .au for Sun μ -law, .wav for IBM/Microsoft
 - .mp3 for MPEG-laver 3

Introduction Outline

- Background
 - Internetworking Multimedia (Ch 4)
 - Perceptual Coding: How MP3 Compression Works (Sellars)
 - Graphics and Video (Linux MM, Ch 4)
 - Multimedia Networking (Kurose, Ch 7)
- Audio Voice Detection (Rabiner)
- Video Compression

MP3 - Introduction (1 of 2)

- "MP3" abbreviation of "MPEG 1 audio layer 3"
- "MPEG" abbrev of "Moving Picture Experts Group"
- 1990, Video at about 1.5 Mbits/sec (1x CD-ROM)
- Audio at about 64-192 kbits/channel
- Committee of the International Standards Organization (ISO) and International Electrotechnical Commission (IEC)
- (Whew! That's a lot of acronyms (TALOA))
- MP3 differs in that it does not try to accurately reproduce PCM (waveform)
- Instead, uses theory of "perceptual coding"
 - PCM attempts to capture a waveform "as it is"
 - MP3 attempts to capture it "as it sounds"

MP3 – Introduction (2 of 2)

- Ears and brains imperfect and biased measuring devices, interpret external phenomena
 - Ex: doubling amplitude does not always mean double perceived loudness. Factors (frequency content, presence of any background noise...) also affect
- Set of judgments as to what is/not meaningful
 - Psychoacoustic model
- Relies upon "redundancy" and "irrelevancy"
 - Ex: frequencies beyond 22 KHz redundant (some audiophiles think it does matter, gives "color"!)
 - Irrelevancy, discarding part of signal because will not be noticed, was/is new

MP3 - Masking

- Listener prioritizes sounds ahead of others according to context (hearing is adaptive)
 - Ex: a sudden hand-clap in a quiet room seems loud. Same handclap after a gunshot, less loud (time domain)
 - Ex: guitar may dominate until cymbal, when guitar briefly drowned (frequency domain)

 Above examples of time-domain and frequency-domain
- masking, respectively

 Two sounds occur (near) simultaneously, one may be partially
 - masked by the other

 Depending relative volumes and frequency content
- MP3 doesn't just toss masked sound (would sound odd) but uses fewer bits for masked sounds

MP3 - Sub-Bands (1 of 2)

- · MP3 not method of digital recording
- Instead, removes irrelevant data from existing recording
- Encoding typically 16-bit sample size at 32, 44.1 and 48 kHz sample rate
- First, short sections of waveform stream filtered
 - How, not specified by standard
 - Typically Fast Fourier Transformation or Discrete Cosine Transformation
 - Method of reformatting signal data into spectral sub-bands of differing importance

MP3 – Sub-Bands (2 of 2)

- Divide into 32 "sub-bands" that represent different parts of frequency spectrum
- Why frequency sub-bands? So MP3 can prioritize bits for each
 - Ex
 - Low-frequency bass drum, a high-frequency ride cymbal, and a vocal in-between, all at once
 - If bass drum irrelevant, use fewer bits and more for cymbal or vocals

MP3 - Frames

- Sub-band sections are grouped into "frames"
- Determine where masking in frequency and time domains will occur
 - Which frames can safely be allowed to distort
- Calculate mask-to-noise ratio for each frame
 - Use in the final stage of the process: bit allocation

MP3 - Bit Allocation

- Decides how many bits to use for each frame
 - More bits where little masking (low ratio)
 - Fewer bits where more masking (high ratio)
- Total number of bits depends upon desired bit rate
 - Chosen before encoding by user
- For quality, a high priority (music) 128 kbps common
 - Note, CD is about 1400 kbps, so 10x less

MP3 – Playout and Beyond

- Save frames (header data for each frame).
 Can then play with MP3 decoder.
- MP3 decoder performs reverse, but simpler since bit-allocation decisions are given
 - MP3 decoders cheap, fast (ipod!)
- · What does the future hold?
 - Lossy compression not needed since bits irrelevant (storage + net)?
 - Lossy compression so good that all irrelevant bits are banished?

Introduction Outline

- Background
 - Internetworking Multimedia (Ch 4)
 - Perceptual Coding: How MP3 Compression Works (Sellars)
 - Graphics and Video (Linux MM, Ch 4)
 - Multimedia Networking (Kurose, Ch 7)
- Audio Voice Detection (Rabiner)
- Video Compression

[Tr96] J. Tranter. Linux Multimedia Guide, Chapter 4, O'Reilly & Associates, 1996, ISBN: 1565922190

Graphics and Video

"A Picture is Worth a Thousand Words"

- People are visual by nature
- Many concepts hard to explain or draw
- Pictures to the rescue!
- Sequences of pictures can depict motion
 Video!

Video Images

- Traditional television is 646x486 (NTSC)
- HDTV is 1920x1080 (1080p), 1280x720 (720p), 852x480 (480p)
- Often Internet video smaller
 - 352x288 (H.261), 176x144 (QCIF)
- Monitors higher resolution than traditional TV (see next slide)
- Computer video sometimes called "postage stamp"
 - If make full screen, then pixelated (jumbo pixels)

Video Image Components

- Luminance (Y) and Chrominance: Hue (U) and Intensity (V) - YUV
 - Human eye less sensitive to color than luminance, so those sampled with less resolution (e.g. 4 bits for Y, 2 for U, 2 for V – 4:2:2)
- YUV has backward compatibility with BW televisions (only had Luminance)
 - Monitors are typically Red Green Blue (RGB)
 - (Why are primary colors Red Yellow Blue?)

Graphics Basics

- Display images with graphics hardware
- Computer graphics (pictures) made up of pixels
 - Each pixel corresponds to region of memory
 - Called video memory or frame buffer
- Write to video memory
 - Traditional CRT monitor displays with raster cannon
 - LCD monitors align crystals with electrodes

Monochrome Display Video Memory Display 480 480 Pixels are on (black) or off (white) - Dithering can make area appear gray

Sequences of Images – Video (Guidelines)

- Series of frames with changes appear as motion
- Units are frames per second (fps or f/s)
 - 24-30 fps: full-motion video
 - 15 fps: full-motion video approximation
 - 7 fps: choppy
 - 3 fps: very choppy
 - Less than 3 fps: slide show

Video Sizes

• Raw video bitrate:

color depth * vertical rez * horizontal rez * frame rate e.g. 1080p: 10-bit (4:4:2) @ 1920 x 1080 @ 29.97fps

= ~120 MB per/sec or ~430 GB per/hr

RESOLUTION	FORMAT	UNCOMPRESSED 124.29 Mbps	
720x480	480i 29.97fps		
1,280x720	720p30	0 663 Mbps	
1,280x720	720p60	1.66 Gbps	
1,920x1,080	1080i60	1.49 Gbps	
1,920x1,080	1080p24	1.19 Gbps	

Uncompressed video is big!

Video Compression

RESOLUTION	FORMAT	UNCOMPRESSED	COMPRESSED
720x480	480i 29.97fps	124.29 Mbps	2.49 Mbps
1,280x720	720p30	663 Mbps	13.26 Mbps
1,280x720	720p60	1.66 Gbps	33.2 Mbps
1,920x1,080	1080i60	1.49 Gbps	29.8 Mbps
1,920x1,080	1080p24	1.19 Gbps	25 Mbps

- Image compression: about 25 to 1
- Video compression: about 100 to 1
- Options: Lossless or Lossy
 (Q: why not always lossless?)
- (Q: why not always <u>lossless</u>?)
 Intracoded or Intercoded
 - Take advantage of dependencies between frames → Motion (more later)

Introduction Outline

- Background
 - Internetworking Multimedia (Ch 4)
 - Perceptual Coding: How MP3 Compression Works (Sellars)
 - Graphics and Video (Linux MM, Ch 4)
 - Multimedia Networking (Kurose, Ch 7)
- Audio Voice Detection (Rabiner)
- Video Compression

Section Outline

• Overview: multimedia on Internet

• Audio

- Example: Skype

Video

- Example: Netflix

Protocols

- RTP, SIP

• Network support for multimedia

Internet Traffic

- Internet has many text-based applications
 - Email, File transfer, Web browsing
- Very sensitive to loss
 - Example: lose one byte in your blah.exe program and it crashes!
- Not very sensitive to delay
 - 10's of seconds ok for Web page download
 - Minutes ok for file transfer
 - Hours ok for email to delivery
- Multimedia traffic emerging (especially as fraction of bandwidth!)
 - Video already dominant on some links

Multimedia on the Internet

- Multimedia not as sensitive to loss
 - Words from speech lost still ok
 - Frames of video missing still ok
- Multimedia can be very sensitive to *delay*
 - Interactive session needs one-way delays less than $\ensuremath{\mathcal{V}}_2$ second!
- New phenomenon is effects of variation in delay, called *delay jitter* or just *jitter*!
 - Variation in bandwidth can also be important

Multimedia: Audio

- Analog audio signal sampled at constant rate
 - phone: 8000 samples/sec
 - CD music: 44,100 samples/sec
- Each sample quantized (rounded)
 - e.g., 28=256 possible quantized values
 - each quantized value represented by bits, e.g., 8 bits for 256

Multimedia: Audio

- Example: 8000 samples/sec, 256 quantized values: 64,000 bps
- · Receiver converts bits back to analog signal:
 - some quality reduction

Example rates

- CD: 1.411 Mbps
- MP3: 96, 128, 160 Kbps
- Internet telephony: 5.3 Kbps and up

Multimedia: Video

- Video: sequence of images displayed at constant rate
 - e.g. 24 images/sec
- Digital image: array of pixels
 - each pixel represented by
- · Coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

Multimedia: Video

- CBR (constant bit rate): video encoding rate fixed
- VBR (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes
- Examples:
- MPEG 1 (CD-ROM) 1.5 Mb/s
- MPEG2 (DVD) 3-6 Mb/s
- MPEG4 (often used in Internet, < 1 Mb/s)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

Some Types of Multimedia Activities over the Internet

- Streaming, stored audio, video
- Conversational voice (& video)
- Streaming live audio, video

Streaming Stored Media

- Streaming, stored audio, video
 - Pre-recorded
 - streaming: can begin playout before downloading entire file
 - stored (at server): can transmit faster than audio/video will be rendered (implies storing/buffering at client)
- 1-way communication, unicast
- Interactivity, includes pause, ff, rewind...
- Examples: pre-recorded songs, video-on-demand e.g. YouTube, Netflix, Hulu
- Delays of 1 to 10 seconds or so tolerable
- Need reliable estimate of bandwidth
- Not very sensitive to jitter

Conversational Voice/Video

- Conversational voice/video
 - interactive nature of human-to-human conversation limits delay tolerance
- "Captured" from live camera, microphone
- 2-way (or more) communication
- e.g., Skype, Facetime
- Very sensitive to delay
 - < 150 ms one-way delay good
 - < 400 ms ok
 - > 400 ms bad
- · Sensitive to jitter

Streaming Live Media

- Streaming live audio, video
 - streaming: can begin playout before downloading entire file
- Not pre-recorded, so cannot send faster than rendered
- · "Captured" from live camera, microphone
- May be 1-way communication, unicast but may be more
 More potential for "flash crowd"
- Interactivity, includes pause, ff, rewind...
- Delays of 1 to 10 seconds or so tolerable
- Need reliable estimate of bandwidth
- · Not very sensitive to jitter
- Basically, like stored but:
 - May be harder to optimize/scale (less time)
 - May be 2+ recipients (flash crowd)

Hurdles for Multimedia on the Internet

- IP is best-effort
 - No delivery guarantees
 - No bitrate guarantees
 - No timing guarantees
- So ... how do we do it?
 - Not as well as we would like
 - This class is largely about techniques to make it better!

Groupwork: TCP or UDP?

• Above IP we have UDP and TCP as the de-facto transport protocols. Which to use?

Streaming, stored audio, video? Conversational voice (& video)? Streaming live audio, video?

TCP or UDP?

- TCP
 - + In order, reliable (no need to control loss)
 - Congestion control (hard to pick encoding level right)
- UDP
 - Unreliable (need to control loss)
 - + Bandwidth control (easier to control sending rate)

An Example: VoIP (Mini Outline)

- Specification
- Removing Jitter
- Recovering from Loss

VoIP: Specification

- 8000 bytes per second, send every 20 msec (why every 20 msec?)
 - 20 msec * 8000/sec = 160 bytes per packet
- Header per packet
 - Sequence number, time-stamp, playout delay
- End-to-end delay requirement of 150 400 ms
 - (So, why might TCP cause problems?)
- UDP
 - Can be delayed different amounts (need to remove iitter)
 - Can be lost (need to recover from loss)

Client-side Buffering, Playout variable fill level, playout rate, e.g., CBR r client 1. don't play immediately - initial fill of buffer t₀ 2. playout begins at t_p, 3. buffer fill level varies over time as fill rate x(t) varies and playout rate r is constant

Projects

- Project 1:
 - Read and Playback from audio device
 - Detect Speech and Silence
 - Evaluate (1a)
- Project 2:
 - Build a VoIP application
 - Evaluate (2b)
- Project 3:
 - Pick your own (video conf, thin game, repair ...)

Section Outline

• Overview: multimedia on Internet (done)

• Audio (done)

– Example: Skype (done)

• Video (next)

- Example: Netflix

Protocols

- RTP, SIP

• Network support for multimedia

Streaming Stored Video: Challenges

- Continuous playout constraint: once client playout begins, playback must match original timing
 - ... but network delays are variable (jitter), so will need client-side buffer to match playout requirements
- Other challenges:
 - client interactivity: pause, fast-forward, rewind, jump through video
 - video packets may be lost, retransmitted

Streaming Multimedia: UDP

- · Server sends at rate appropriate for client
 - Often: send rate = encoding rate = constant rate
 - Transmission rate can be oblivious to congestion levels!
- Short playout delay (2-5 seconds) to remove bandwidth (and delay) jitter
- Error recovery: application-level, time permitting
- RTP [RFC 2326]: multimedia payload types (later)
- UDP often not allowed through firewalls

Streaming Multimedia: HTTP

- · Basis for many: Apple, Microsoft Silverlight, Adobe, Netfilx
- Multimedia file retrieved via HTTP GET
- Send at maximum possible rate under TCP

- Fill rate fluctuates due to TCP congestion control, retransmissions (in-order delivery)
- Larger playout delay to smooth out TCP delivery rate
- HTTP/TCP passes more easily through firewalls

Streaming Multimedia: DASH

- DASH: Dynamic, Adaptive Streaming over HTTP
 - Now a standard, basis for Netflix streaming
- Server:
 - divides video file into multiple chunks
 - each chunk stored, encoded at different rates
 - manifest file: provides URLs for different chunks
- Client:
 - periodically measures server-to-client bandwidth
 - consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on available bandwidth at time)

Streaming Multimedia: DASH

- "intelligence" at client: client determines
 - when to request chunk (so that buffer starvation, or overflow does not occur)
 - what encoding rate to request (higher quality when more bandwidth available)
 - where to request chunk (can request from URL server that is "close" to client or has high available bandwidth)

Content Distribution Networks

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 1: single, large "mega-server"
 - single point of failure
 - point of network congestion
 - long path to distant clients
 - multiple copies of video sent over outgoing link
-quite simply: this solution doesn't scale

Content Distribution Networks

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 2: store/serve multiple copies of videos at multiple geographically distributed sites (content distribution network, or CDN)
 - enter deep: push CDN servers deep into many access networks
 - close to users
 - used by Akamai, 1700 locations
 - bring home: smaller number (10's) of larger clusters in near (but not within) access networks
 - used by Limelight

CDN: "Simple" Content Access Scenario Bob (client) requests video http://netcinema.com/6Y7B23V video stored in CDN at http://kingCDN.com/NetC6y&B23V 1. Bob gets URL for for video http://netcinema.com/6Y7B23V from netcinema.com/6Y7B23V from netcinema.com/6Y7B23V 2. resolve http://netcinema.com/6Y7B23V wis bob's local DNS 485. Resolve http://kingCDN.com/NetC6y&B23V vik KingCDN's authoritative DNS, which returns IP address of KingCDN server with video 3 inetcinema's authoritative DNS kingCDN.com kingCDN.com kingCDN.com kingCDN authoritative DNS

CDN Cluster Selection Strategy

- challenge: how does CDN DNS select "good" CDN node to stream to client
 - $\boldsymbol{-}$ pick CDN node geographically closest to client
 - pick CDN node with shortest delay (or min # hops) to client (CDN nodes periodically ping access ISPs, reporting results to CDN DNS)
 - IP anycast same addresses routed to one of many locations (routers pick, often shortest hop)
- alternative: let client decide give client a list of several CDN servers
 - client pings servers, picks "best"
 - Netflix approach?

Case Study: Netflix Figure 1 HTTP Adaptive Streaming in practice Mark Watson (with thanks to the Netflix adaptive streaming team!) ACM MM5ys 2011 – 22-24 February 2011, San Jose, CA

Netflix Overview

- 20+ million subscribers in 2011 (15% of US households)
- 20% downstream US traffic at peak hours
- Bitrates up to 4.8 Mb/s
- Known for "recommendations"
- Many Netflix-ready devices (next slide)

Netflix Network Approach

Client-centric

- · Client has best view of network conditions
- No session state in network *
 - Better scalability
- But, must rely upon client for operational metrics
 - Only client knows what happened, really

CDN

- Own little infrastructure, use 3rd parties
- Own registration, payment servers Amazon cloud services:
- Cloud hosts Netflix web pages for user browsing
 Netflix uploads studio master to Amazon cloud
- create multiple version of movie (different encodings) in cloud
 Upload versions from cloud to CDNs
- Three 3rd party CDNs host/stream Netflix content: *Akamai, Limelight, Level-3*

Netflix Importance of Client Metrics

- · Metrics are essential
 - Detecting and debugging failures
 - Managing performance
 - Experimentation (new interfaces, features)
- Absence of server-side metrics places onus on
- What is needed?
 - Reports of what user did (or didn't) see
 - Which part of which stream when
 - Reports of what happened in network
 - Requests sent, responses received, timing, throughput

Netflix Quality

- Reliable transport (HTTP is over TCP)
- Quality characterized by
 - Video quality (how it looks)
 - At startup, average and variability (different layers)
 - Startup delay
 - Time form use action to first frame displayed
 - Rebuffer rate
 - Rebuffers per viewing hour, duration of rebuffer pauses

NetFlix Future Work Needs

- Good models of future bandwidth (based on history)
 - Short term history
 - Long term history (across multiple sessions)
- Tractable representations of future choices
- Including scalability, multiple streams
- Quality goals with "right" mix of visual quality and performance (rebuffering)
- Convolution of future bandwidth models with possible plans
 - Efficiently, maximizing quality goals

Section Outline

- Overview: multimedia on Internet (done)
- Audio (done)
 - (done) - Example: Skype
- Video (done) - Example: Netflix (done)
- Protocols (next)
 - RTP, SIP
- Network support for multimedia

Real-Time Protocol (RTP) [RFC 3550]

- RTP specifies packet structure for packets carrying audio, video data
- RTP packet provides
 - payload type identification
 - packet sequence number
 - time stamp
- · RTP runs in end systems, not routers
- RTP packets encapsulated in UDP segments
- Interoperability potential
 - e.g. if two VoIP applications run RTP, they may be able to work together

RTP Runs on Top of UDP

- RTP libraries provide transport-layer interface that extends UDP:
 - Port numbers, IP addresses
 - Payload type identification
 - Packet sequence numbers
 - Time stamps

RTP Example

Example: sending 64 kb/s PCM-encoded voice over

- application collects encoded data in chunks, e.g., every 20 msec = 160 bytes in chunk
- audio chunk + RTP header form RTP packet → encapsulated in UDP segment
- RTP header indicates type of audio encoding in each packet
 - sender can change encoding during conference
- RTP header also contains sequence numbers, timestamps

RTP and Quality of Service (QoS)

- RTP does not provide any mechanism to ensure timely data delivery or other QoS guarantees
- RTP encapsulation only seen at end systems (not by intermediate routers)
 - routers provide best-effort service, making no special effort to ensure that RTP packets arrive at destination in timely matter

Real-Time Control Protocol (RTCP)

- Works in conjunction with Each RTCP packet RTP
- Each participant in RTP session periodically sends RTCP control packets to all other participants

- contains sender and/or receiver reports
 - report statistics useful to application: # packets sent, # packets lost, interarrival iitter
- Feedback used to control performance
 - sender may modify its transmissions based on feedback

SIP: Session Initiation Protocol [RFC 3261]

Long-term vision:

- All telephone calls, video conference calls take place over Internet
- People identified by names or e-mail addresses, rather than by phone numbers
- Can reach callee (if callee so desires), no matter where callee roams, no matter what IP device callee is currently using
- SIP comes from IETF: borrows much of its concepts from HTTP
 - SIP has "Web flavor"
 - Alternative approaches (e.g. H.323) have "telephony flavor"
- SIP uses KISS principle: Keep It Simple Stupid

SIP Services

- SIP provides mechanisms for call setup:
 - for caller to let callee know s/he wants to establish a call
 - so caller, callee can agree on media type, encoding
 - to end call

- Determine current IP address of callee:
 - maps mnemonic identifier to current IP address
- · Call management:
 - add new media streams during call
 - change encoding during call
 - invite others
 - transfer, hold calls

Example: Setting Up Call to Known IP Address

- Alice's SIP invite message indicates her port number, IP address, encoding she prefers to receive (PCM µlaw)
- Bob's 200 OK message indicates his port number, IP address, preferred encoding (GSM)
- SIP messages can be sent over TCP or UDP; here sent over RTP/UDP
- Default SIP port is 5060

Setting Up a Call (more)

- Codec negotiation:
 - suppose Bob doesn't have PCM µlaw encoder
 - Bob will instead reply with 606 Not Acceptable reply, listing his encoders. Alice can then send new INVITE message, advertising different encoder
- Rejecting call
 - Bob can reject with replies "busy," "gone," "payment required," "forbidden"
- Media can be sent over RTP or some other protocol

SIP Name Translation, User location

- Caller wants to call callee, but only has callee's name or e-mail address.
- Need to get IP address of callee's current host:
 - user moves around
 - DHCP protocol
 - user has different IP devices (PC, smartphone, car device)
- Result can be based on:
 - time of day (work, home)
 - caller (don't want boss to call you at home)
 - status of callee (calls sent to voicemail when callee is already talking to someone)

SIP Registrar

- One function of SIP server: registrar
- When Bob starts SIP client, client sends SIP REGISTER message to Bob's registrar server

register message:

REGISTER sip:domain.com SIP/2.0 Via: SIP/2.0/UDP 193.64.210.89 From: sip:bob@domain.com To: sip:bob@other-domain.com Expires: 3600

SIP Proxy

- Another function of SIP server: proxy
- Alice sends invite message to her proxy server
 - contains address sip:bob@domain.com
 - proxy responsible for routing SIP messages to callee, possibly through multiple proxies
- Bob sends response back through same set of SIP proxies
- Proxy returns Bob's SIP response message to Alice

 contains Bob's IP address
- SIP proxy analogous to local DNS server plus TCP setup

Section Outline

• Overview: multimedia on Internet (done)

• Audio (done)

– Example: Skype (done)

• Video (done)

Example: Netflix (done)

• Protocols (done)

- RTP, SIP (done)

Network support for multimedia (next)

Network Support for Multimedia

Approach	Granularity	Guarantee	Mechanisms	Complex	Deployed?
Making best of best effort service	All traffic treated equally	None or soft	No network support (all at application)	low	everywhere
Differentiated service	Traffic "class"	None of soft	Packet market, scheduling, policing.	med	some
Per- connection QoS	Per- connection flow	Soft or hard after flow admitted	Packet market, scheduling, policing, call admission	high	little to none

- Most of Internet is "best effort" and is focus of this class
- But there is some differentiated services
- And issues are useful for all

Capacity Planning in Best Effort Networks

- Approach: deploy enough link capacity so that congestion doesn't occur, multimedia traffic flows without delay or loss
 - low complexity of network mechanisms (use current "best effort" network)
 - high bandwidth costs
- · Challenges:
 - capacity planning: how much bandwidth is "enough?"
 - estimating network traffic demand: needed to determine how much bandwidth is "enough" (for that much traffic)

Providing Multiple Classes of Service

- Thus far: making the best of best effort service
 - "one-size fits all" service model
- Alternative: multiple classes of service
 - partition traffic into classes
 - network treats different classes of traffic differently (analogy: VIP service versus regular service)
- Granularity: differential service among multiple classes, not among individual connections

Scheduling Policies: Still More

Weighted Fair Queuing (WFQ):

- Generalized Round Robin
- Each class gets weighted amount of service in each cycle
- real-world example?

Policing Mechanisms

Goal: limit traffic to not exceed declared parameters Three commonly-used criteria:

- (long term) average rate: how many packets can be sent per unit time (in long run)
 - crucial question: what is the interval length: 100 packets per sec or 6000 packets per min have same average!
- peak rate: e.g., 600 pkts per min (ppm) avg.; 1500 ppm peak rate
- (max) burst size: max number of pkts sent consecutively (with no intervening idle)

Policing Mechanisms: Implementation

token bucket: limit input to specified burst size (b) and average rate (r)

- Bucket can hold b tokens
- Tokens generated at rate r token/sec unless bucket full
- Over interval of length t: number of packets admitted less than or equal to (rt + b)

Policing and QoS Guarantees

 Token bucket, WFQ combine to provide guaranteed upper bound on delay, i.e., QoS guarantee!

Differentiated Services (DiffServ)

- Want "qualitative" service classes
 - "behaves like a wire"
 - Relative service distinction: Platinum, Gold, Silver
- Scalability: simple functions in network core, relatively complex functions at edge routers (or hosts)
 - signaling, maintaining per-flow router state difficult with large number of flows
- Don't define service classes, provide functional components to build service classes

DiffServ Architecture Edge router: • per-flow traffic management • marks packets as in-profile and out-profile Core router: • per class traffic management • buffering and scheduling based on marking at edge • preference given to in-profile packets over out-of-profile packets

Introduction Outline

• Foundation (done)

- Internetworking Multimedia (Ch 4) (done)

- Perceptual Coding: MP3 Compression (done)

- Graphics and Video (Linux MM, Ch 4) (done)

- Multimedia Networking (Kurose, Ch 7) (done)

• Audio Voice Detection (Rabiner) (done)

(next)

• Video Compression

- (Next slide deck)