The Good, the Bad and the Muffled: the Impact of Different Degradations on Internet Speech

Anna Watson and M. Angela Sasse
Department of CS
University College London, London, UK

Proceedings of ACM Multimedia
November 2000

Introduction

- Multimedia conferencing is a growing area
- Well-known that need good quality audio for conferencing to be successful
- Much research focused on improving delay, jitter, loss
- Many think bandwidth will cure all problems
 - But bandwidth has been increasing exponentially while quality has not!

Motivation

- Large field trial from 1998-1999
 - 13 UK institutions
 - 150 participants
- Recorded user Perceptual Quality (PQ)
 - Beginning, Middle, End
 - (Why not only at end?)
 - (Why not continuously?)
- Matched with objective network performance metrics
- Analysis suggested that network was not primary influence on PQ!

Problems Cited

- Missing words
 - Cause?
- · Variation in volume
 - Cause?
- · Variation in quality among participants
 - Cause?

Problems Cited – Probably Causes

- Missing words
 - Likely causes: packet loss, poor speech detection, machine glitches
- · Variation in volume
 - Likely causes: insufficient volume settings (mixer), poor headset quality
- · Variation in quality among participants
 - Likely causes: high background noise, poor headset quality
- Experiments to measure which affect quality

Outline

- Introduction
- Experiments
- Results
- Conclusions

Audioconference Fixed Parameters

- Robust Audio Tool (RAT)
 - Home brewed in UCL
 - Does some repair of packets lost
- · Coded in DVI
- 40 ms sample size
- Use "repetition" to repair lost packets
 - Good for small packets (20ms)
 - Not as good for large packets (80ms)
 - (Why not?)

Audioconference Variables

- · Packet loss rates
 - 5% (typical of multicast) and 20% (upper limit of tolerance)
- "Bad" microphone
- Hard to measure, but Altai A087F
- Echo
 - From open microphone
 - (What is this?)
- Volume differences
 - Quiet, normal, loud through "pilot studies"
 - (Why can't users just adjust volume?)

Measurement Method: Perceptual Quality

- Not ITU standard (paper at ACM MM '99)
 - Text labels bad
 - Built for television quality
- Subjective through "slightly" labeled scale

 "Fully subscribe that ... speech quality should not be treated as a unidimensional phenomenon..."

But ..

Measurement Method: Physiological

- User "cost"
 - Fatigue, discomfort, physical strain
- Measure user stress
 - Using a sensor on the finger
- Blood Volume Pulse (BVP)
 - Decreases under stress
- Heart Rate (HR)
 - Increases under stress ("Fight" or "Flight")

Experimental Material

- Take script from "real" audioconference
- Act-out by two males without regional accents
- Actors on Sun Ultra workstations on a LAN
 - Only audio recorded
 - 16 bit samples (DVI compresses to 4 bits)
 - Used RAT
- With silence deletion (hey, project 1!)
- Vary volume and feedback (speakers to mic)
- Split into 2-minute files, 8Khz, 40 ms packets
- Repetition when loss

Experimental Conditions

- Reference non-degraded
- 5% loss both voices, with repetition
- 20% loss both voices, with repetition
- Echo one had open mic, no headset
- Quiet one recorded low volume, other norm
- Loud one recorded high volume, other norm
- Bad mic one had low quality mic, other norm
- → Determined "Intelligibility" not affected by above

Subjects

- 24 subjects
 - 12 men
 - 12 women
- · All had good hearing
- Age 18 28
 - (Probably students)
- · None had previous experience in Internet audio or videoconferencing

Procedure

- Each listened to seven 2-minute test files twice
 - Played out by their audio tool
- Used 1-100 slider
- First file had no degradations ("Perfect")
- Users adjusted volumeWere told it was "best"
- · Randomized order of files
 - Except "perfect" was 1st and 8th
 - So, 7 conditions heard once than in another order
- · Baseline physiological readings for 15 min
- · When done, explain rating (tape-recorded)

Outline

- Introduction
- Experiments
- Results
- Conclusions

Statistical Significance Tests

- ANOVA Test
 - For comparing means of two+ groups: first hearing and second hearing
 - No statistical difference between the two groups
- Analysis of variance
 - Degradation effect significant
 - Reference and mean of all others are different
 - Reference and 5% loss the same
 - Reference and Quiet the same
 - 5% Loss and Quiet the same
 - 20% Loss and Echo and Loud the same

Physiological Statistical Significance Tests

- Bad mic, loud and 20% loss all significantly more stressful than quiet and 5% loss
- *Echo* significantly more stressful than *quiet* in the HR data only
- · Contrast to quality!
 - Bad Mic worse than 20% loss
 - Least stressful were quiet and 5% loss

Qualitative Results

- · Asked subjects to describe why each rating
- · Could clearly identify
 - quiet, loud and echo
- Bad mic
 - 'distant', 'far away' or 'muffled'
 - 'on the telephone', 'walkie-talkie' or 'in a box'

Qualitative Results of Loss

- 5% loss
 - 'fuzzy' and 'buzzy' (13 of 24 times)
 - From waveform changing in the missing packet and not being in the repeated packet
 - 'robotic', 'metallic', 'electronic' (7 times)
- 20% loss
 - 'robotic', 'metallic', 'digital', 'electronic' (15 times)
 - 'broken up' and 'cutting out' (10 times)
 - 'fuzzy' and 'buzzy' infrequently (2 times)
- 5 said 'echo', 10 described major volume changes
 - Not able to reliably see the cause of the degradation

Discussion

- 5% loss is different than reference condition (despite stats) because of descriptions
 - But subjects cannot identify it well
 - Need a tool to identify impairments
- 20% loss is worse than bad mic based on quality, but is the same based on physiological results
 - $\boldsymbol{-}$ need to combine physiological and subjective
- Methodology of field trials to design controlled experiments can help understand media quality issues

Conclusion

- Audio quality degradation not primarily from loss
 - Volume, mic and echo are worse
 - And these are easy to fix! Educating users harder.
- By getting descriptions, should be easier to allow users to diagnose problems
 - Ex: 'fuzzy' or 'buzzy' to repetition for repair
- · Volume changes harder
 - Could be reflected back to the user
 - Could do expert system to make sure certain quality before being allowed in

Future Work?

Future Work

- Delay and jitter compared with other degradations
- Interactive environments rather than just listening
 - Ex: echo probably worse
- · Combination effects
 - Ex: bad mic plus too loud