
An Empirical Study of Delay Jitter Management Policies

D. Stone and K. Jeffay Computer Science Department University of North Carolina, Chapel Hill

> ACM Multimedia Systems Volume 2, Number 6 January 1995

Introduction

- Want to support interactive audio
- "Last mile" is LAN (including bridges, hubs) to desktop
 - Study that
 - (MLC: 1995 LANs looked a lot like today's WANs)
- Transition times vary, causing gaps in playout
 - Can ameliorate with display queue (buffer)

- Display latency time from acquisition at sender to display at receiver (gap occurs if > previous frame)
- End-to-end delay time from acquisition to decompression
 - Varies in time (transmit + (de)compress), delay jitter
- Queuing delay time from buffer to display (change size)

Gaps versus Delay

- · Can prevent gaps by having constant delay
 - Network reserves buffers
 - Ala telephone networks
 - But *not* today's Internet
- Plus
 - will still have (unreserved) LAN as "last mile"
 - OS and (de)compression can still cause jitter
- Thus, tradeoff between gaps and delay must be explicitly managed by conferencing system
 - Change size of display queue
 - The larger the queue, the larger the delay and the fewer the gaps and vice versa

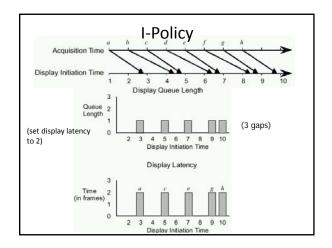
This Paper

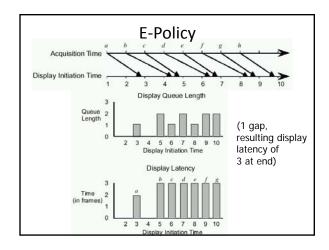
- Evaluates 3 policies for managing display queue
 - I-policy and E-policy from [NK92]
 - (I is for late data ignored, E is for late data expand time)
 - Queue Monitoring from this paper
- Empirical study
 - Audioconference (VoIP) on a LAN
 - Capture traces
- Simulator to compute delay and gaps

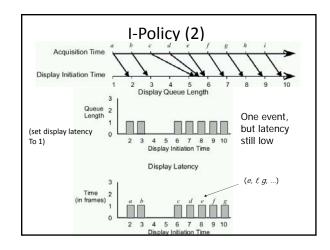
Outline

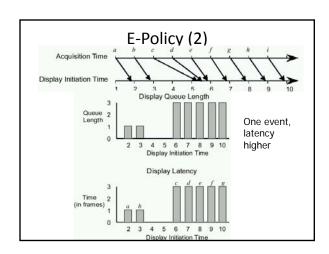
• Introduction

(done)


• The I- and E-policies


(next)


- The Queue Monitoring policy
- Evaluation
- The Study
- Summary


The Effect of Delay Jitter

- If display latency worse than largest end-to-end latency, then no gaps
 - (When is this not what we want?)
- Playout with low latency and some gaps preferable to high-latency and no gaps
- What if a frame arrives after its playout time?
- Two choices:
 - *I-policy* single fixed latency (the queue parameter), so discard
 - E-policy late frames always displayed, so expand playout time

Policy Summary

- Display latency chosen implicitly with E-policy
- Choose it explicitly with *I-policy*
- What is the right display latency amount?
 - Depends on application
 - Example: surgeon interacting during operation vs. viewing televised lecture
 - Depends on network and machines
 - Can vary across a long run
- So, need a policy that allows display latency to be chosen dynamically

Outline

- Introduction (done)
- The I- and E-policies (done)
- The Queue Monitoring policy (next)
- Evaluation
- The Study
- Summary

Adjusting Display Latency

- VoIP with silence detection can be modeled as series of *talkspurts*
 - Sound and then silence
- Adjust display latency between talkspurts
- [NK92] said observe last *m* fragments, discard *k* largest delays and choose display latency as greatest delay
 - Recommend m > 40 and k = 0.07 x m
- (Other approaches proposed, since)

Monitor the Display Queue

- Measuring end-to-end latency is difficult because needs synchronized clocks
- · Instead, observe length of display queue over time
- If end-to-end delay constant, queue size will remain the same
 - If end-to-end delay increases, queue shrinks
- If end-to-end delay decreases, queue expands
- If queue length > 2 for some time, can reduce queue (hopefully) without causing a gap
 - "some time" is parameter, n, in frame times
 - Implement with counters for each of m frames in queue
 - If any of the m times > n, discard frame and reset
 - (However, keep queue at least 2)
 Use QM-120 as default
 - Adjust every 120 frames (about 2 seconds)

Outline

- Introduction (done)
 - (done)
- The I- and E-policies
- v (dono)
- The Queue Monitoring policy
- cy (done)
- Evaluation

(next)

- The Study
- Summary

Comparing Policies

- If A has lower latency and gaps than B, then A is better
- If A lower latency, but also A more gaps then which is better?
 - Depends upon
 - relative amounts
 - resolution
 - application requirements
 - Few standards

Comparing Policies

- Assume:
 - Differences in latency of 15 ms or more significant
 - Difference in gap rate of 1 per minute significant
- A is better than B if either gap or latency better and other is same or better
- Equal if same in both dimensions
- Incomparable if each is better in one dimension
- Note, for *I-policy*, synchronized clocks difficult
 - Instead, delay first packet for amount of time (try 2 and 3 frames in this paper)

Outline

- Introduction (done)
- The I- and E-policies (done)
- The Queue Monitoring policy (done)
- Evaluation (done)
- The Study (next)
- Summary

The Study

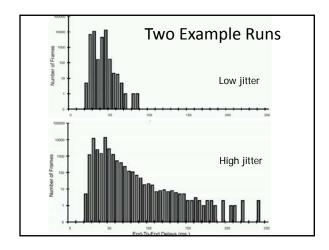
- Run videoconference
 - Use audio only
- Record end-to-end delay
- Input into simulator to evaluate different policies
 - Effectively, a trace-driven simulation
 - Ensures network conditions "the same" when comparing policies

Videoconference

- Built at UNC
- Runs on IBM PS/2
- Uses UDP
- IBM-Intel ActionMedia 750
 - 30 fps, 256x240, 8-bit color (6-8 k frames)
 - But video is disabled
 - Audio 60 fps, 128 kb/second into 16.5ms frames (266 byte packets)

Network

- 10 Mb Ethernets and 16 Mb token rings
- 400 Unix workstations and Macs
- NFS and AFS (file systems)
- Send machine → token-ring → gateway →
 department Ethernet → bridge →
 department Ethernet → gateway → tokenring → Display machine


Data

- Gather data for 10 minute interval
- 28 Runs total
 - 24 runs between 6am and 5pm
- 4 runs between midnight and 1am
- Record:
- Acquisition times
- Display times
- Adjust times for clock difference and drift
- Input traces into simulator
 - Outputs average display latency
 - Outputs average gap rate

Basic Data

Run	Time of Day	Avg. Delay ms.	Max. Delay ms.	Lost Frames	Duplicate Frames
1	06:03	38	76	- 1	0
2	06:25	38	88	3	0
3	06:36	37	171	5	0
4	06:47	37	105	1	0
5	08:03	38	115	1	0
6	08:14	37	73	2	0
5 6 7 8	08:25	38	184	7	0
8	08:36	39	157	1	0
9	10:02	41	186	23	0
10	10:16	40	124	4	0
11	10:31	41	213	7	0
12			40 140		0
13	11:57	39	110	5	0
14	12:08	41	138	5	0

(Comments?)

Run	1-Policy 2 (I-2)		I-Policy 3 (I-3)		E-Policy		QM (QM-120)		QM vs.	QM vs.	QM vs.
	Latency ms.	Gaps /min.	Latency ms.	Gaps /min.	Latency ms.	Gaps /min.	Latency ms.	Gaps /min.	12	13	E
1	80	0.1	97	0.1	75	0.2	66	0.3	0	+	0
2	75	0.5	91	0.3	72	0.5	66	0.6	0	+	0
3	69	3.6	86	2.8	140	0.9	68	1.4	+	+	+
4	65	0.7	82	0.4	104	0.6	65	0.6	0	+	+
5	71	0.6	88	0.4	93	0.5	68	0.5	0	+	+
6	70	0.3	86	0.2	76	0.4	70	0.5	0	+	0
7	73	2.9	90	1.6	106	1.2	72	1.9	+	+	+
8	62	5.1	79	2.4	106	0.9	75	1.3	+	+	+
9	81	23.0	98	12.6	118	2.8	87	7.6	+	+	
10	70	14.6	87	3.6	113	0.8	78	3.9	+	0	
11	66	25.2	83	6.9	133	1.4	83	4.8		+	
12	71	9.6	87	3.4	114	0.9	76	2.7	+	0	
13	67	9.6	84	2.8	96	0.8	72	2.1	+	0	
14	72	15.1	88	3.9	101	1.1	80	3.9	+	0	

ı
1
1
+
1
1
+
0
0
+
0

Summary Results

(I-2 has gap per 2 seconds vs per 11 seconds)

QM Better	18	18	8
QM Equivalent	9	9	6
QM Worse	0	1	0
Incomparable	-1	0	14

• If want low latency, not large gap rate

→ QM out performs all I-policies, E-policies

Threshold as a Parameter

- Vary thresholds for adjusting queue latency
- 30 frame times (.5s)
- 60 frame times (1s)
- 120 frame times (2s)
- 600 frame times (10s)
- 3600 frame times (1 min)

Run	QM (30)		QM (60)		QM (120)		QM (600)		QM (3600)		120	120	120	120
	Latency ms.	Gaps /min.	vs. 30	vs. 60	vs. 600	vs. 3600								
1	64	0.3	65	0.3	66	0.3	73	0.3	75	0.2	0	0	0	0
2	65	0.7	65	0.7	66	0.6	66	0,6	67	0,6	0	0	0	0
3	67	1.7	67	1.4	68	1.4	74	1.4	103	1.1	0	0	0	+
4	65	0.6	65	0.6	65	0.6	69	0.6	83	0.6	0	0	0	+
5	67	0.5	68	0.5	68	0.5	69	0.5	81	0.5	0	.0	0	0
6	70	0.5	70	0.5	70	0.5	70	0.5	76	0.4	0	0	0	0
7	70	2.3	71	1.9	72	1.9	77	1.7	95	1.4	0	0	0	+
8	68	2.0	70	1.5	75	1.3	83	1.0	97	1.0	0	0	0	+
9	77	13.1	83	9.0	87	7.6	102	4.9	117	3.0	+	+		
10	72	6.6	75	5.0	78	3.9	89	1.6	98	1.0	+	+		
11	72	8.3	76	6.3	83	4.8	98	3.4	124	1.7	+	+		
12	72	5.3	.74	3.3	76	2.7	86	1.9	103	1.2	+	0	0	
13	69	3.5	70	2.7	72	2.1	82	1.4	91	1.0	+	0	0	
14	74	6.7	76	6.0	80	3.9	92	1.8	99	1.2	+	+		

Comments?

Summary

QM-120 Better	13	8	0	5
QM-120 Equivalent	15	20	17	9
QM-120 Worse	0	0	7	0
Incomparable	0	0	4	14

- QM-600 is best relative to QM-120
- QM-120 better than all others
- (MLC: what about in between? Should be optimal for each setting)
- Also:
 - QM-3600 similar to E-policy
 - QM-30 and QM-60 similar to I-2

Decay Thresholds

- Want to converge slowly to lowest latency
- Define base threshold for queue length of 3
- Define decay factor for other queue lengths
- Base of 3600, decay of 2 would have:
 - Wait 3600 frame times when queue is 3
 - -1800 for 4
 - 900 for 5
 - **–** ..

Results

Run	QM (I	20)	QM (1)	20,2)	QM (6)	00,2)	QM (36	(00,2)	120	120	120
	Latency ms.	Gaps /min.	Latency ms.	Gaps /min.	Latency ms.	Gaps /min.	Latency ms.	Gaps /min.	vs. 120,2	vs. 600,2	vs. 3600,2
1	66	0.3	66	0.3	73	0.3	75	0.2	0	0	0
2	66	0.6	66	0.6	66	0.6	67	0.6	0	0	0
3	68	1.4	67	1.6	68	1.4	78	1.4	0	0	0
4	65	0.6	65	0.6	68	0.6	82	0.6	.0	0	+
5	68	0.5	68	0.5	68	0.5	72	0.5	0	0	0
6	70	0.5	70	0.5	70	0.5	76	0.4	0	0	0
7	72	1.9	71	1.9	72	1.8	82	1.5	0	0	0
8	75	1.3	74	1.5	79	1.0	89	1.0	0	0	0
9	87	7.6	85	8.5	97	5.7	113	3.2	0		2000
10	78	3.9	78	4.2	88	1.7	97	1.0	0	- 52	ı
11	83	4.8	81	5.2	91	3.6	110	2.1	0	-	ı
12	76	2.7	75	2.8	82	2.0	94	1.3	0	0	ı
13	72	2.1	72	2.1	81	1.4	91	1.0	0	0	ı
14	80	2.0	70	4.0	90	2.0	99	1.2	0	0.00	

Summary Results

QM-120 Better	1	0	2
QM-120 Equivalent	27	17	12
QM-120 Worse	0	11	1
Incomparable	0	0	13

- QM-(120,2) didn't help
- QM-(600,2) better than QM-120
- Also better than QM-600 by decreasing latency and gap rate almost the same
- QM-(3600,2) better than QM-120
 - Also better than QM-3600
- So, decay is useful for large base thresholds, but may hurt for small base thresholds

Summary

- Will always be delay
 - From network or OS or ...
- Need to adjust queue latency
 - QM-(600,2) is the best, QM-120 almost as good
- Queue monitoring can be effective
 - 35-40 ms delay, variation up to 200ms, even 80 ms when quiet
- Run 3 Best vs. E-policy
 - E: 140ms, .9 gaps/min
 - QM-(600,2): 68ms, 1.4 gaps/min
- Run 24 Best vs. I-policy
 - I: 93 ms, 15 gaps/min
- QM-(600,2): 90 ms, 4 gaps/min
- QM is flexible, can be tuned to app or user

Future Work?

Future Work

- Compare against I-policy where threshold changes each talkspurt
- Compare using different metrics, say that combine latency and gaps or looks at distribution
 - PQ studies to measure tradeoffs
- Larger networks
- Combine with repair
- Other decay strategies for QM