An Algorithm for Determining the Endpoints for Isolated Utterances

L.R. Rabiner and M.R. Sambur

The Bell System Technical Journal, Vol. 54, No. 2, Feb. 1975, pp. 297-315

- Solution
- Algorithm
- Summary

Motivation

- Word recognition needs to detect word boundaries in speech
- Recognizing silence can reduce:
 - Processing load
 - (Network not identified as savings source)
 - (Hands-free operation not identified as convenience)
- Relatively easy in sound proof room, with digitized tape

The Problem

- Noisy computer room with background noise
 - Weak fricatives: /f, th, h/
 - Weak plosive bursts: /p, t, k/
 - Final nasals (ex: "nine")
 - Voiced fricatives becoming devoiced (ex: "five")
 - Trailing off of sounds (ex: "binary", "three")
- Need to do with simple, efficient processing

 Avoid hardware costs

The Solution

- Two measurements:
 - Energy
 - Zero crossing rate
- Show: simple, fast, accurate

Zero (Level) Crossing Rate

- Remember, digital audio values are changes in air pressure (higher or lower than base)
- Base/midpoint is "zero"
 - But is always positive if unsigned (e.g., 127 if unsigned byte)
- Zero crossing rate is number of zero crossings per 10 ms
 - Normal number of cross-overs during silence
 - Increase in cross-overs during speech

The Algorithm: Startup

- At initialization, record sound for 100ms
 - A measure background noise
 - Assume 'silence'
- Compute average (IZC') and std dev (σ) of zero crossing rate
- Choose zero-crossing threshold (IZCT)
 - Threshold for unvoiced speech
 - IZCT = min(25 / 10ms, IZC' + 2 σ)

The Algorithm: Thresholds

Compute energy, E(n), for interval

Get max, IMX
Have 'silence' energy, IMN
Compute to values:
11 = 0.03 * (IMX - IMN) + IMN
(3% of peak energy)
12 = 4 * IMN
(4x silent energy)

Get energy thresholds (ITU and ITL)

ITL = MIN(11, 12)
ITU = 5 * ITL

The Algorithm: Energy Computation

- Search sample for energy greater than ITL
 Save as start of speech, say s
- Search for energy greater than ITU
 - s becomes start of speech
 - If energy falls below ITL, restart
- Search for energy less than ITL
 - Save as end of speech
- Results in conservative estimates
 - Endpoints may be outside

The Algorithm: Zero Crossing Computation

- Search back 250 ms
 - Count number of intervals where rate exceeds
 IZCT
 - If 3+, set starting point, s, to first time
 - Else s remains the same
- · Do similar search after end

Evaluation: Part 2

- 10 speakers
- Count 0 to 9
- No errors at all

Evaluation: Part 3

• Your Project 1b...