An Algorithm for Determining the Endpoints for Isolated Utterances

L.R. Rabiner and M.R. Sambur

The Bell System Technical Journal, Vol. 54, No. 2,
Feb. 1975, pp. 297-315

Motivation

- Word recognition needs to detect word boundaries in speech
- Recognizing silence can reduce:
- Processing load
- (Network not identified as savings source)
- (Hands-free operation not identified as convenience)
- Relatively easy in sound proof room, with digitized tape

Outline

- Intro to problem
- Solution
- Algorithm
- Summary

Visual Recognition

- Easy
- Note how quiet beginning is (tape)

Slightly Tougher Visual Recognition

"Six"

- "sss" starts crossing the 'zero' line, so can still detect

Tough Visual Recognition

- Eye picks ' B ', but ' A ' is real start
- /f/ is a weak fricative

- Eye picks ' A ', but ' B ' is real endpoint
- V becomes devoiced

Tough Visual Recognition

END

- Difficult to say where final trailing off ends

The Problem

- Noisy computer room with background noise
- Weak fricatives: /f, th, h/
- Weak plosive bursts: /p, t, k/
- Final nasals (ex: "nine")
- Voiced fricatives becoming devoiced (ex: "five")
- Trailing off of sounds (ex: "binary", "three")
- Need to do with simple, efficient processing
- Avoid hardware costs

The Solution

- Two measurements:
- Energy
- Zero crossing rate
- Show: simple, fast, accurate

Energy

- Sum of magnitudes of 10 ms of sound, centered on interval:

$$
-E(n)=\sum_{i=5001050}|s(n+i)|
$$

Zero (Level) Crossing Rate

- Remember, digital audio values are changes in air pressure (higher or lower than base)
- Base/midpoint is "zero"
- But is always positive if unsigned (e.g., 127 if unsigned byte)
- Zero crossing rate is number of zero crossings per 10 ms
- Normal number of cross-overs during silence
- Increase in cross-overs during speech

The Algorithm: Startup

- At initialization, record sound for 100 ms
- A measure background noise
- Assume 'silence'
- Compute average (IZC') and std dev (σ) of zero crossing rate
- Choose zero-crossing threshold (IZCT)
- Threshold for unvoiced speech
$-I Z C T=\min \left(25 / 10 \mathrm{~ms}, I Z C^{\prime}+2 \sigma\right)$

The Algorithm: Thresholds

- Compute energy, $E(n)$, for interval
- Get max, IMX
- Have 'silence' energy, IMN
- Compute to values:
$I 1=0.03 *(\mathrm{IMX}-\mathrm{IMN})+I \mathrm{MN}$
(3\% of peak energy)
$12=4 * \operatorname{IMN}$
($4 x$ silent energy)
- Get energy thresholds (ITU and ITL)
$-\operatorname{ITL}=\operatorname{MIN}(11,12)$
$-\mathrm{ITU}=5^{*}$ ITL

The Algorithm: Zero Crossing

Computation

- Search back 250 ms
- Count number of intervals where rate exceeds IZCT
- If $3+$, set starting point, s, to first time
- Else s remains the same
- Do similar search after end

The Algorithm: Energy Computation

- Search sample for energy greater than ITL
- Save as start of speech, say s
- Search for energy greater than ITU
$-s$ becomes start of speech
- If energy falls below ITL, restart
- Search for energy less than ITL
- Save as end of speech
- Results in conservative estimates
- Endpoints may be outside

Algorithm: Examples

- Caught trailing /f/

Evaluation: Part 1

- 54-word vocabulary
- Read by 2 males, 2 females
- No gross errors (off by more than 50 ms)
- Some small errors
- Losing weak fricatives
- None affected recognition

Evaluation: Part 2

- 10 speakers
- Count 0 to 9
- No errors at all

Evaluation: Part 3

- Your Project 1b...

