Sharp or Smooth? Comparing the Effects of Quantization vs. Frame Rate for Streamed Video

J. McCarthy, M. A. Sasse and D. Miras

ACM Conference on Human Factors in Computing Systems
Vienna, Austria, April 2004

Introduction (1 of 2)

• Streaming sports (football) are popular Internet service
 – The NFL ... but they mean soccer
 – Key business for mobile services
• Little known about quality levels required
 – Minimum for acceptable quality?
• For given constraint, what is best?
 – Note, constraint may be bitrate capacity or power or...
• Recent IBM QoS policy says:
 – “The priority for smooth video is higher than the priority for frame quality”
• Yet, available evidence suggests sports are relatively insensitive to changes in frame rate

Introduction (2 of 2)

• Discover functions relating physical quality to perceived quality
 – Graphs give service providers knowledge to manage resources
• New methodology
 – Test sports on sports enthusiasts (may buy)
 – Gradually increase or decrease video perf within clip to determine acceptability edge
 – Investigate effects of frame rate and quality (quantization) on acceptability
 – Get subjective responses and eye movements
 – Examine palmtop and desktop

Outline

• Introduction (done)
• Background
• Method
• Study 1 (Desktop)
• Results
• Study 2 (Palmtop)
• Results
• Conclusions
Background – Perceived QoS

• Typically, show short (~10 second) clip and measure with 5-point rating [11]
 – Problematic when network conditions vary over time
 – Problematic when content changes over time
• Continuous quality evaluation using slider [3,4,8,14]
 – But can be intrusive for real-time tasks

Background – Physical QoS

• Physical metrics impacting quality: resolution, frame rate, frame quality (quantization) [6]
 – For MPEG type compression, quantization of DCT coefficient dominates
• Other metrics that impact quality: size of display, distance between observer and display
• For service provider, primary factors they can control are frame rate and frame quality
 – Focus on those in this study

Background – Service Providers and Acceptability

• Service providers need metric to relate physical quality to perceived quality
 – Neither MOS nor slider give good indication of acceptability (Ex: is MOS of 3 acceptable?)
• Some researchers have used 5-point acceptability scale [5,9]
• Draw upon this work for new metric:
 – Easy to understand
 – Less disruptive than continuous techniques
 – Can be used with variable video quality
 – Is more relevant to service providers

Background – Relevant Studies

• Most related work shows sports insensitive to frame rate changes
 – Apteker et al. [2] study frame rates 5, 10, 15 fps and show acceptability of sports highlights little difference
 – Ghinea and Thomas [7] show information content same for 5, 15, 25 fps
 – Wang et al. [15] manipulate frame rate and quantization for 8 second video (American football)
 • “Quantization distortion is generally more objectionable than motion judder”
• All run against intuition that higher motion needs higher frame rate
Outline

- Introduction (done)
- Background (done)
- Method
- Study 1 (Desktop)
- Results
- Study 2 (Palmtop)
- Results
- Conclusions

Method

- Method of Limits (Fechner in [5]):
 - Gradually increase stimulus in steps until it is just detectible
 - Give subject binary (yes/no) to detect
 - Also run in reverse (decrease stimulus in steps)
- Authors:
 - Variant of this: ask users if acceptable or not
- Use 210 second clips, increase/decrease quality every 30 seconds (7 types)
 - But don’t tell users, only “varied in quality”

Quality Gradients

- Three types
 - Temporal: Frame rate (fps)
 - Quality: Quantization
 - Both
- Each has 7 levels
 - (30 seconds x 7 = 210 s)
- User free to say “acceptable” or “unacceptable” as much as want

Eye Tracking

- Measure where users looked using remote eye-tracking camera
 - Measure with EyeGaze from LC technologies [13]
 - Record where looking with EyeSpy (open source)
- Help identify regions of interest → could, someday, make compression use info
 - More detail for area user looking at (ex: ball and person kicking)
 - Less detail for background (ex: pitch, fans)
Source Material

• Sourced from DVD of recent match between Manchester United and Arsenal

<table>
<thead>
<tr>
<th>Clip</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Match intro and opening 2 minutes of play</td>
</tr>
<tr>
<td>B</td>
<td>Highlights of Manchester United chances</td>
</tr>
<tr>
<td>C</td>
<td>Highlights of Arsenal chances, floodlights and Arsenal celebrations</td>
</tr>
</tbody>
</table>

• Three clips, include variety of camera angles and shots (including replays)
• CIF (252x288) for study 1, QCIF (176x144) for study 2
• H.263 encoded for quality gradients
• Re-encode to MPEG so could use commercial (e.g., RealPlayer)
• Audio for all clips is 64 kbps
• Total of 18 clips for study 1, Total of 9 clips for study 2

Outline

• Introduction (done)
• Background (done)
• Method (done)
• Study 1 (Desktop)
 • Results
 • Study 2 (Palmtop)
 • Results
 • Conclusions

Study 1 – Small Screen on Desktop

• 41 participants (29 male, 12 female)
 – Average age 22
• Paid 5 pounds (about $8)
• Tried to recruit those who liked football (soccer) and watched regularly
 – 59% one+ per week, 88% rooted for some team, 50% supported one team in clip
• 352x288 resolution on LCD with 1024x768
• RealPlayer set to theater mode (rest is black)

Study 1 – (Continued Design)

• Each saw 6 clips: FPS, Quant, FPS+Quant
 – both increasing and decreasing gradients
• Counter-balance with “Greco Latin” squares design (no sequences appear more than once row or column)
• Participants briefed first
 – Told Telecom company wanted acceptable region

Study 1 – (Continued Design)

<table>
<thead>
<tr>
<th>F</th>
<th>0.25</th>
<th>A</th>
<th>0</th>
<th>B</th>
<th>0</th>
<th>C</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quant</td>
<td>FPS+Quant</td>
<td>FPS</td>
<td>Quant</td>
<td>FPS</td>
<td>Quant</td>
<td>FPS</td>
<td>Quant</td>
<td>FPS</td>
<td>Quant</td>
<td>FPS</td>
<td>Quant</td>
<td>FPS</td>
</tr>
</tbody>
</table>

Group 1A | Group 2A | Group 3A | Group 4A
Group 1B | Group 2B | Group 3B | Group 4B
Group 5 | Group 6 | Group 7 | Group 8

Increasing Quality	Decreasing Quality	Increasing Quality	Decreasing Quality
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
Outline

- Introduction (done)
- Background (done)
- Method (done)
- Study 1 (Desktop) (done)
- Results
- Study 2 (Palmtop)
- Results
- Conclusions

Perceived Quality and Frame Rate

- Transform binary (yes/no) to ratio by calculating which portion of 30 seconds acceptable (Ex: unacceptable at 20s of the 30 would be 0.667)
- ANOVA test says all different
- At 6 FPS, quality is acceptable 80% of the time

Perceived Quality and Quantization

- ANOVA test says difference
- Sharp drop after 8 quantization
- Interesting shape

Quantization and Frame Rate

- ANOVA test says difference
- Similar to quantization alone
- Suggest quantization dominates
Eye Movements

- Similar across all clips – focus is on center.
- May be because nature of video – action is in center.
- Could use this region of interest in compression
 + use more bits on area where gaze is focused

Averaged over all clips

Study 2 – Study on Palmtop

- 37 participants (31 male, 6 female)
 – Mean age 22
- Paid 5 pounds (about $8)
- Tried to recruit those who liked football (soccer) and watched regularly
 – 65% one+ per week, 84% rooted for some team with 38% supporting one team in clip
 – (Me: not clear of participant overlap between studies)
- 176x144 resolution, iPAQ h2210
- Additional clip to study critical values

Outline

- Introduction (done)
- Background (done)
- Method (done)
- Study 1 (Desktop) (done)
- Results (done)
- Study 2 (Palmtop)
- Results
- Conclusions

Perceived Quality and Frame Rate

- Low FPS less acceptable on palmtop than desktop
- Driven by one clip (B) with panning and action
- Still acceptable at least 50% of time at 6 FPS
Perceived Quality and Quantization

Quantization and Frame Rate

Critical Values, Acceptability and Bandwidth

Qualitative Comments

- When “unacceptable”, users give reasons:
 - 84% said recognizing players was impossible
 - 65% had problems following the ball
 - 35% said close up shots fine, but distant camera shots very poor
 - 21% cited jerky movement as one problem

- Summary statement:
 - “I’d rather have jerky video and better quality pictures”
Conclusions

- Limitations of approach
 - Additional degradations are not factored in (packet errors, changing capacity, etc.)
- Substantive findings
 - Response curve relating perceived quality to physical quality
 - Population of users with clear interest (i.e., would be consumers and pay for service)
 - At 6 fps, 80% of the time video is acceptable
 - Challenges assumption that sports must be high frame rate
- Methods of limits
 - Provides stable metric
 - Curves in line with ITU logistic with quality

Future Work?

Future Work

- Screen size (inches) and resolution (pixels)
 - Mobile device/player could pick if difference
- Other video content
 - Include measure of motion
- Investigate using eye tracking data for compression
 - Need computationally cheap way to save bandwidth without impacting quality
- Same bitrate for quality versus frame rate (versus resolution)