MPEG: A Video Compression Standard for Multimedia Applications

Didier Le Gall

Communications of the ACM
Volume 34, Number 4
Pages 46-58, 1991

Introduction

• 1980's technology made possible full-motion video over networks
 – Television and Computer Video seen moving closer
 – (Today, Sony and Microsoft are squaring off)
• Needed a standard
 – Often, triggers needed volume production
 – Ala facsimile (fax)
 – Avoid de facto standard by industry
• 1988, Established the Motion Picture Experts Group (MPEG)
 – Worked towards MPEG-1
 – Primarily video but includes audio (MP3)

The Need for Video Compression

• High-Definition Television (HDTV)
 – 1920x1080
 – 30 frames per second (full motion)
 – 8 bits for each three primary colors (RGB)
 →Total 1.5 Gb/sec!
• Cable TV: each cable channel is 6 MHz
 – Max data rate of 19.2 Mb/sec
 – Reduced to 18 Mb/sec w/audio + control ...
 →Compression rate must be ~ 80:1!

Outline

• Introduction (done)
• MPEG Goals
• MPEG Details
• Performance and Such
• Summary

Compatibility Goals

• 1990: CD-ROM and DAT key storage devices
 – 1-2 Mbits/sec for 1x CD-ROM
• Two types of application videos:
 – Asymmetric (encoded once, decoded many)
 • Video games, Video on Demand
 – Symmetric (encoded once, decoded once)
 • Video phone, video mail ...
• (Q: How do you think the two types might influence design?)
• Video at about 1.5 Mbits/sec
• Audio at about 64-192 kbits/channel

Requirements

• Random Access, Reverse, Fast Forward, Search
 – At any point in the stream (within ½ second)
 – Can reduce quality somewhat during this task, if needed
• Audio/Video Synchronization
• Robustness to errors
 – Not catastrophic if some bits are lost
 – Lends itself to Internet streaming
• Coding/Decoding delay under 150ms
 – For interactive applications
• Ability to Edit
 – Modify/Replace frames
Relevant Standards

• Joint picture Experts Group (JPEG)
 – Compress still images only
• Expert Group on Visual Telephony (H.261)
 – Compress sequence of images
 – Over ISDN (64 kbits/sec)
 – Low-delay
• Other high-bandwidth “H” standards:
 – H21 (34 Mbits/sec)
 – H22 (45 Mbits/sec)

Outline

• Introduction (done)
• MPEG Goals (done)
• MPEG Details
• Performance and Such
• Summary

MPEG Compression

• Compression through
 – Spatial
 – Temporal

Spatial Redundancy

• Take advantage of similarity among most neighboring pixels

Spatial Redundancy Reduction

• RGB to YUV
 – less information required for YUV (humans less sensitive to chrominance)
• Macro Blocks
 – Take groups of pixels (16x16)
• Discrete Cosine Transformation (DCT)
 – Based on Fourier analysis where represent signal as sum of sine’s and cosine’s
 – Concentrates on higher-frequency values
 – Represent pixels in blocks with fewer numbers
• Quantization
 – Reduce data required for co-efficients
• Entropy coding
 – Compress

Spatial Redundancy Reduction

• “Intra-Frame Encoded”
Groupwork

- When may spatial redundancy reduction be ineffective? What kinds of images/movies?

Loss of Resolution

- Original (63 kb)
- Low (7 kb)
- Very Low (4 kb)

Temporal Redundancy

- Take advantage of similarity between successive frames

Temporal Activity

- "Talking Head"

Temporal Redundancy Reduction

- Macro blocks
- Search Area Centre of Search Area Current Macroblock
- Best Match Position
- Current Macroblock
- Time
Temporal Redundancy Reduction

• I frames are independently encoded
• P frames are based on previous I, P frames
 – Can send motion vector plus changes
• B frames are based on previous and following I and P frames
 – In case something is uncovered

Group of Pictures (GOP)

• Starts with an I-frame
• Ends with frame right before next I-frame
• “Open” ends in B-frame, “Closed” in P-frame
 – (What is the difference?)
• MPEG Encoding a parameter, but ‘typical’:
 – I B B P B B P B B
 – I B B P B B P B B B
• Why not have all P and B frames after initial I?

Groupwork

• When may temporal redundancy reduction be ineffective?

Non-Temporal Redundancy

• Many scene changes vs. Few scene changes

 “Standard” Movies
 Akiyo
 Coast guard
 Hall

Groupwork

• When may temporal redundancy reduction be ineffective?
 – Many scene changes
 – High motion
Non-Temporal Redundancy

- Sometimes high motion

“Standard” Movies
Foreman

Possible MPEG Parameters

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame rate</td>
<td>30fps</td>
</tr>
<tr>
<td>Quantization factor</td>
<td>8</td>
</tr>
<tr>
<td>Frame size</td>
<td>384x288</td>
</tr>
<tr>
<td>Frame reference picture count</td>
<td>2</td>
</tr>
<tr>
<td>Frame sequence to be displayed</td>
<td>JPEGEBB</td>
</tr>
<tr>
<td>Rate control</td>
<td>None</td>
</tr>
</tbody>
</table>

Possible Compression Performance (YMMV)

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>18 KB</td>
<td>7:1</td>
</tr>
<tr>
<td>P</td>
<td>6 KB</td>
<td>20:1</td>
</tr>
<tr>
<td>B</td>
<td>2.5 KB</td>
<td>50:1</td>
</tr>
<tr>
<td>Avg</td>
<td>4.8 KB</td>
<td>27:1</td>
</tr>
</tbody>
</table>

- Note, results are variable bit rate (VBR), even if frame rate is constant

MPEG Today

- MPEG-2
 - Super-set of MPEG-1
 - Rates up to 10 Mbps (720x486)
 - Can do HDTV (no MPEG-3)
- MPEG-4
 - Around Objects, not Frames
 - Lower bandwidth
 - Has some built-in repair (header redundancy)
- MPEG-7
 - Allows content-description (ease of searching)
- MP3
 - For audio
 - MPEG Layer-3

- MPEG video compression widely used
 - digital television set-top boxes
 - HDTV decoders
 - DVD players
 - video conferencing
 - Internet video
 - ...

- Principles are basis for other compression algorithms
 - e.g. H.264