MPEG: A Video Compression Standard for Multimedia Applications

Didier Le Gall

Communications of the ACM Volume 34, Number 4 Pages 46-58, 1991

Introduction

- 1980's technology made possible full-motion video over networks
 - Television and Computer Video seen moving closer
 - (Today, Sony and Microsoft are squaring off)
- Needed a standard
 - Often, triggers needed volume production
 - Ala facsimile (fax)
 - Avoid de facto standard by industry
- 1988, Established the Motion Picture Experts Group (MPEG)
 - Worked towards MPEG-1
 - Primarily video but includes audio (MP3)

Dance of 2 elepha

The Need for Video Compression

- High-Definition Television (HDTV)
 - 1920x1080
 - 30 frames per second (full motion)
 - 8 bits for each three primary colors (RGB)
 - →Total 1.5 Gb/sec!
- Cable TV: each cable channel is 6 MHz
 - Max data rate of 19.2 Mb/sec
 - Reduced to 18 Mb/sec w/audio + control ...
 - →Compression rate must be ~ 80:1!

Outline

 \leftarrow

- Introduction (done)
- MPEG Goals
- MPEG Details
- Performance and Such
- Summary

Requirements

- ices Random Access, Reverse, Fast Forward, Search
 - At any point in the stream (within ½ second)
 - Can reduce quality somewhat during this task, if needed
 - Audio/Video Synchronization
 - Robustness to errors
 - Not catastrophic if some bits are lost
 - Lends itself to Internet streaming
 - Coding/Decoding delay under 150ms
 - For interactive applications
 - Ability to Edit
 - Modify/Replace frames

Compatibility Goals

- 1990: CD-ROM and DAT key storage devices
 - 1-2 Mbits/sec for 1x CD-ROM
- Two types of application videos:
 - Asymmetric (encoded once, decoded many)
 - Video games, Video on Demand
 - Symmetric (encoded once, decoded once)
- Video phone, video mail ...
 (Q: How do you think the two types might influence design?)

Video at about 1.5 Mbits/sec

• Audio at about 64-192 kbits/channel

Relevant Standards

- Joint picture Experts Group (JPEG)
 - Compress still images only
- Expert Group on Visual Telephony (H.261)
 - Compress sequence of images
 - Over ISDN (64 kbits/sec)
 - Low-delay
- Other high-bandwidth "H" standards:
 - H21 (34 Mbits/sec)
 - H22 (45 Mbits/sec)

Outline

Introduction

(done)

MPEG Goals

(done)

MPEG Details

- Performance and Such
- Summary

MPEG Compression

- · Compression through
 - Spatial
 - Temporal

Spatial Redundancy

 Take advantage of similarity among most neighboring pixels

Spatial Redundancy Reduction

- RGB to YUV
 - less information required for YUV (humans less sensitive to chrominance)
- Macro Blocks
- Take groups of pixels (16x16)
- Discrete Cosine Transformation (DCT)
 - Based on Fourier analysis where represent signal as sum of sine's and cosine's
 - Concentrates on higher-frequency values
- Represent pixels in blocks with fewer numbers
- Quantization
 - Reduce data required for co-efficients
- Entropy coding
 - Compress

Groupwork

 When may spatial redundancy reduction be ineffective? What kinds of images/movies?

Groupwork

- When may spatial redundancy reduction be ineffective?
 - High-resolution images and displays
 - May appear 'coarse'
 - A varied image or 'busy' scene
 - Many colors, few adjacent

Group of Pictures (GOP)

- Starts with an I-frame
- Ends with frame right before next I-frame
- "Open" ends in B-frame, "Closed" in P-frame
 - (What is the difference?)
- MPEG Encoding a parameter, but 'typical':
 - I B B P B B P B B
 - I B B P B B P B B P B B
- Why not have all P and B frames after initial I?

Groupwork

• When may temporal redundancy reduction be ineffective?

Groupwork

- When may temporal redundancy reduction be ineffective?
 - Many scene changes
 - High motion

Non-Temporal Redundancy

• Many scene changes vs. Few scene changes

"Standard" Movies Akiyo Coast guard Hall

Non-Temporal Redundancy

• Sometimes high motion

"Standard" Movies Foreman

Possible MPEG Parameters

Parameters	Value
Image resolution	384x 288
Quantization factor	8
Frances between I pictures	5
Frances between P pictures	2
F zannes sequence as to be displayed	IBBPBBI
Rate control	None

Possible Compression Performance (YMMV)

Type Size Compression

7:1 18 KB Ρ 6 КВ 20:1 2.5 KB 50:1 Avg 4.8 KB 27:1

· Note, results are variable bit Rate (VBR), even if frame rate is constant

MPEG Today

- MPEG video compression widely used
 - digital television set-top boxes
 - HDTV decoders
 - DVD players
 - video conferencing
 - Internet video
- Principles are basis for other compression algorithms
 - e.g. H.264

MPEG Today

- MPEG-2
 - Super-set of MPEG-1
 - Rates up to 10 Mbps (720x486)
 - Can do HDTV (no MPEG-3)
- - Around Objects, not Frames
 - Lower bandwidth
 - Has some built-in repair (header redundancy)
- MPEG-7
- Allows content-description (ease of searching)
- MP3
 - For audio
 - MPEG Layer-3