Evaluation of Speech Detection Algorithm

Project 1b

Due: February 23

Overview
- Experiments to evaluate performance of your Speech Detection project (Project 1)
- Focus not only on how the algorithm performs, but also
 - the formulation of hypotheses
 - design, implementation and analysis of experiments to test the hypotheses
 - Writeup
- Can be done in groups of 2

Measures of Performance
- **User perception.** Some possibilities are:
 - User opinion (rating) on quality
 - Understandability
 - Errors in listening ...
- **System impact.** Some possibilities are:
 - CPU load
 - Size (in bytes) of sound recorded (without silence)
 - Processing time
 - Memory use...
- Decide on how each is to be measured
 - Example: Scale 1-10 for perception
 - Example: Time for CPU

Independent Variables
- Must choose at least two.
- Possibilities:
 - Speaking tests: counting, vocabulary, ...
 - Other languages: Hindi, Chinese, Pig-Latin, ...
 - Personal characteristics: Gender, Age, Shoe size ...
 - Background noise: quiet, noisy, Patriot's game, ...
 - Systems: OS version, CPU, sound card ...
 - Other hardware: cheap microphone, sound card
 - Other audio quality parameters: rate, size, ...
 - ...

Algorithm Modifications
- Must choose at least 1.
- Possibilities include:
 - Thresholds.
 - Sound chunk size.
 - Endpoint detection length.
 - Other modifications specific to your implementation.
 - ...

 * Formulate hypotheses
 - About how a change in the independent variables affects your measures of performance

Results and Analysis
- Details on results and analysis
- Results are numeric measures
 - graphs, charts or tables
- Analysis manipulates data
 - understand relationships
 - interpreting the results
- Consider if data supports or rejects the hypotheses
Report

- Introduction
 - hypotheses and motivation for them
 - (not on silence detection, in general)
- Background on your algorithm
- Design of your experiments
 - details on all of above
- Analysis
- Conclusions
 - summarize findings
- Abstract
 - 1 paragraph that abstracts whole report
 - Write last, goes first

Guidelines for Good Graphs (1 of 5)

- "Art" not "rules". Learn with experience. Recognize good/bad when see it. Many trials
 - Require minimum effort from reader
 - Perhaps most important metric
 - Given two, can pick one that takes less reader effort

Guidelines for Good Graphs (2 of 5)

Maximize Information

- Make self-sufficient
- Key words in place of symbols
 - Ex: "P3, 850 MHz" and not "System A"
 - Ex: "Daily CPU Usage" not "CPU Usage"
- Axis labels as informative as possible
 - Ex: "Response Time in seconds" not "Response Time"
- Can help by using captions, too
 - Ex: "Transaction response time in seconds versus offered load in transactions per second."

Guidelines for Good Graphs (3 of 5)

Minimize Ink

- Maximize information-to-ink ratio
- Too much unnecessary ink makes chart cluttered, hard to read
 - Ex: no gridlines unless needed to help read
 - Chart that gives easier-to-read for same data is preferred

Guidelines for Good Graphs (4 of 5)

Use commonly accepted practices

- Present what people expect
 - Ex: origin at (0,0)
- Ex: independent (cause) on x-axis, dependent (effect) on y-axis
- Ex: x-axis scale is linear
- Ex: increase left to right, bottom to top
- Ex: scale divisions equal
- Departures are permitted, but require extra effort from reader so use sparingly

Guidelines for Good Graphs (5 of 5)

Avoid ambiguity

- Show coordinate axes
- Show origin
- Identify individual curves and bars
- Do not plot multiple variables on same chart
Hand In

- Hardcopy!
- Online turnin (see Web page)
- Turn in:
 - Any testing Code/Scripts used/modified
 - Makefile/Project file