Reinforcement Learning In Multiagent Systems

Anthony Andrade
Overview

- Multiagent Learning
- Reinforcement Learning
- Examples
Multiagent Learning

- Centralized Vs Decentralized
 - Definitive Characteristics
Centralized Vs Decentralized

- **Centralized**
 - executed in all parts by a single agent
 - requires no interaction with other agents

- **Decentralized**
 - several agents engaged in the same learning process
Characteristics Describing Strictly Decentralized learning

- Degree of decentralization
- Interaction-specific features
- Involvement-specific features
- Goal-specific features
Degree of decentralization

- Distributedness
- Parallelism
Interaction-specific features

- level of interaction
 - Observation to complex dialogues
- persistence of interaction
 - Short-term to long-term
- frequency of interaction
 - Low to high
- pattern of interaction
 - Unstructured to hierarchical
- variability of interaction
 - Fixed to changeable
Involvement-specific features

- relevance of involvement
- role played
 - generalist (centralized learning)
 - specialist (decentralized learning)
Goal-specific features

- type of improvement
 - individual improvement
 - group improvement
- compatibility of the learning goals
 - conflicting goals
 - complementary goals
Credit Assignment Problem

- The problem of assigning credit for an overall performance change
- A fundamental learning problem
 - Inter-agent CAP
 - Intra-agent CAP
Inter-agent CAP

- assignment for an overall performance change to the external actions of the agents
- the degree to which an agent's action changes overall performance
- particularly difficult in multiagent systems
- Who did it?
Intra-agent CAP

- assignment for a particular external action of agent to its underlying internal inferences and decision
- The knowledge, inferences, and decisions that led to an action
- How did the agent do it?
Reinforcement Learning

- An agent's goal is to maximize the utility of its actions.
- An agent predicts the best action to execute in the current situation and executes it.
- The agent then adjusts its estimates of the executed action’s utility based on environmental feedback.
- The agent may also adjust the rates of the actions that led up to the current action.
Reinforcement Learning (cont.)

- can include a model of the environment.
- Represented by a 4-tuple (S, A, P, r)
 - S set of states
 - A set of actions
 - P probability of moving from one state to another given a particular action
 - r reward function
Reinforcement Learning (cont.)

- policy maps current state to desirable action(s)
- π Policy that maps the current state to desirable actions
Q-Learning

- Essentially finds a policy for agent without the use of an explicit model
- Instead of a model, it stores an estimate for each state-pair
Learning Classifier Systems

- adjusts rule strengths from environmental feedback
- discovers new rules through a genetic algorithm
Bucket Brigade Algorithm

- rule strength for classifier firing is increased by environmental feedback
- rule strength is slightly decreased when fired, the amount is reassigned to the rule fired before that rule
Isolated, Concurrent Reinforcement Learners

- Agent seeks to maximize environmental feedback
- Other agents are not explicitly modeled
- RL is well suited to situations where information about the domain and the capabilities of other agents is limited.
Why not communicate

- Doesn’t guarantee coordination
- Can distract an agent
- Agents can become overly reliant on communication
Features that determine good CIRL domains

- Agent coupling
 - Tightly coupled
 - *Loosely coupled*

- Agent Relationships
 - Cooperative
 - *Indifferent*
 - *Adversarial*
Features that determine good CIRL domains (cont.)

- Feedback Timing
 - *Immediate*
 - Delayed

- Optimal behavior combinations
 - Single
 - *Multiple*
As long as favorable features exist, agents can acquire coordination knowledge for friends and foes.

Cooperative situations
- Complimentary policies
 - Role specialization

Coordination knowledge transfers
- When used in a similar situation
Interactive Reinforcement Learning of Coordination

- Explicit Communication to decide on both group and individual actions
- Uses a modification of the Bucket Brigade Algorithm for learning and a contract net for coordination
 - Action Estimation Algorithm (ACE)
 - Action Group Estimation Algorithm (AGE)
Cellular Channel Allocation

- **Cells**
 - Particular geographical area over which communication will occur

- **Channels**
 - Different frequencies used to transfer calls

- **Minimum Separation Distance**
 - The minimum number of cells that must separate two cells using the same channel
Cellular Channel Allocation

- The Problem
 - As new calls come in, keep the channel assignment optimal for that area, so as to drop as few calls as possible
Algorithms

- Fixed Assignment (FA)
 - In use in many cellular systems today
- Borrowing with Directional Channel Locking (BDCL)
 - Complicated and computationally expensive
 - Regarded as a powerful heuristic
- Reinforcement Learning
 - Based on Temporal Difference RL, TD(0)
Performance of FA, BDCL, & RL

(a) 150 calls/hr

(b) 200 calls/hr

(c) 350 calls/hr

(d) Non-Uniform
Results

- RL out performed both Fixed Assignment and Borrowing with Directional Channel Locking
Demo

- Cellular Channel Allocation Java Demo