
How Soccer Players Would do Stream Joins

Jens Teubner
Systems Group, Dept. of Computer Science

ETH Zurich, Switzerland
jens.teubner@inf.ethz.ch

Rene Mueller
IBM Almaden Research Center

San Jose, CA, USA
muellerr@us.ibm.com

ABSTRACT
In spite of the omnipresence of parallel (multi-core) systems,
the predominant strategy to evaluate window-based stream
joins is still strictly sequential, mostly just straightforward
along the definition of the operation semantics.

In this work we present handshake join, a way of describ-
ing and executing window-based stream joins that is highly
amenable to parallelized execution. Handshake join nat-
urally leverages available hardware parallelism, which we
demonstrate with an implementation on a modern multi-
core system and on top of field-programmable gate arrays
(FPGAs), an emerging technology that has shown distinc-
tive advantages for high-throughput data processing.

On the practical side, we provide a join implementation
that substantially outperforms CellJoin (the fastest pub-
lished result) and that will directly turn any degree of par-
allelism into higher throughput or larger supported window
sizes. On the semantic side, our work gives a new intuition
of window semantics, which we believe could inspire other
stream processing algorithms or ongoing standardization ef-
forts for stream query languages.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query Processing

General Terms
Algorithms

Keywords
stream joins, parallelism, data flow

1. INTRODUCTION
One of the key challenges in building database implemen-

tations has always been an efficient support for joins. The
problem is exacerbated in streaming databases, which do not
have the option to pre-compute access structures and which
have to adhere to window semantics in addition to value-
based join predicates.
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Figure 1: Handshake join idea.

In this work we present handshake join, a stream join
implementation that naturally supports hardware accelera-
tion to achieve unprecedented data throughput. Handshake
join is particularly attractive for platforms that support very
high degrees of parallelism, such as multi-core CPUs, field-
programmable gate arrays (FPGAs), or massively parallel
processor arrays (MPPAs) [5]. FPGAs were recently pro-
posed as an escape to the inherent limitations of classical
CPU-based system architectures [23, 24].

The intuition behind handshake join is illustrated in Fig-
ure 1. We let the two input streams flow by in opposing
directions—like soccer players that walk by each other to
shake hands before a match. As we detail in the remainder
of this report, this view on the join problem has interesting
advantages with respect to parallel execution and scalability.

Our main contribution is a stream join algorithm that,
by adding compute cores, can trivially be scaled up to han-
dle larger join windows, higher throughput rates, or more
compute-intensive join predicates (handshake join can deal
with any join predicate, including non-equi-joins). As a side
effect, our work provides a new look on the semantics of
stream joins. This aspect of our work might be inspiring for
ongoing efforts toward a standard language and semantics
for stream processors [4, 16]. Likewise, we think that the
design principles of handshake join, mainly its data flow-
oriented mode of execution, could have interesting applica-
tions outside the particular stream processing problem. As
such, our work can help cut the multi-core knot that hard-
ware makers have given us.

We first recap the semantics of stream joins in Section 2,
along with typical implementation techniques in software.
Section 3 introduces handshake join. Section 4 discusses how
handshake join could be implemented in computing systems,
which we realize with a prototype implementation on top of
a modern multi-core CPU (Section 5) and with a massively
parallel implementation for FPGAs (Section 6). In Section 7
we relate our work to others’, before we wrap up in Section 8.
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Figure 2: Window join (figure adopted from [17]).

2. STREAM JOINS
It is the very nature of stream processing engines to deal

with unbounded, “infinite”, input data. These data arrive by
means of a stream and have to be processed immediately, in
real time.

2.1 Windowing
Infinite input data causes obvious semantic problems when

some of the classical database operators—most notably joins
and aggregates—are to be evaluated over data streams. This
has lead to the notion of windows in the streaming commu-
nity. By looking at a finite subset of the input data (a win-
dow), all algebraic operations become semantically sound
again.

Figure 2 (adopted from [17]) illustrates this for the case
of a join operation. The join is always evaluated only over
finite subsets taken from both input streams. Windows over
different input data can span different numbers of tuples, as
indicated by the window sizes in Figure 2.

Various ways have been proposed to define suitable win-
dow boundaries depending on application needs. In this
work we focus on sliding windows which, at any point in
time, cover all tuples from some earlier point in time up to
the most recent tuple. Usually, sliding windows are either
time-based, i.e., they cover all tuples within the last τ time
units, or tuple-based, i.e., they cover the last w tuples in
arrival order. Handshake join will deal with both types of
window specification equally well.

2.2 Sliding-Window Joins
The exact semantics of window-based joins (precisely which

stream tuple could be paired with which?) in existing work
was largely based on how the functionality was implemented.
For instance, windowing semantics is implicit in the three-
step procedure devised by Kang et al. [17]. The procedure
is performed for each tuple r that arrives from input stream
R:

1. Scan stream S’s window to find tuples matching r.

2. Insert new tuple r into window for stream R.

3. Invalidate all expired tuples in stream R’s window.

Tuples s that arrive from input stream S are handled sym-
metrically. Sometimes, a transient access structure is built
over both open windows, which accelerates Step 1 at the
cost of some maintenance effort in Steps 2 and 3.

The three-step procedure carries an implicit semantics for
window-based stream joins:

Semantics of Window-Based Stream Joins. For r ∈ R
and s ∈ S, the tuple 〈r, s〉 appears in the join result R 1p S
iff (ti denote tuple arrival timestamps, Ti denote window
sizes)

(a) r arrives after s (tr > ts) and s is in the current S-
window at the moment when r arrives (i.e., tr < ts+TS)
or

(b) r arrives earlier than s (ts > tr) and r is still in the
R-window when s arrives (ts < tr + TR)

and r and s pass the join predicate p.

A problem of the three-step procedure is that it is not
well suited to exploit the increasing degree of parallelism
that modern system architectures support.

Optimal use of many-core systems demands local availabil-
ity of data at the respective compute core, because systems
increasingly exhibit non-uniform memory access (NUMA)
characteristics, where the cost of memory access increases
with the distance of an item in memory to the processing
core that requests it. Such non-uniformity is contrary to
the nature of the join problem, where any input tuple might
have to be paired with any tuple from the opposite stream
to form a result tuple.

Gedik et al. [10] discuss partitioning and replication as
a possible solution. Thereby, either the in-memory repre-
sentation of the two windows is partitioned over the avail-
able compute resources or arriving tuples are partitioned
over cores. Local data availability then needs to be estab-
lished explicitly by replicating the corresponding other piece
of data (input tuples or the full in-memory windows).

Partitioning and replication are both rather expensive op-
erations. The latter involves data movement which—in ad-
dition to the necessary CPU work—may quickly overload the
memory subsystem as the number of CPU cores increases.
A dedicated coordinator core has to re-partition the dataset
every k input tuples (where k is a small configuration pa-
rameter), at a cost that grows linearly with the number of
processing cores n [10]. Such cost may still be acceptable
for the eight cores of the Cell processor, but will be hard to
bear on upcoming systems with large n.

In this work, by contrast, we aim for a work distribution
scheme that remains scalable even when the number of pro-
cessing cores grows very large (we tested with hundreds of
cores).

3. HANDSHAKE JOIN
In the most generic case, the three-step procedure of Kang

et al. [17] corresponds to a nested loops-style join evaluation.
To evaluate a stream join R 1p S, the scan phase first enu-
merates all combinations 〈r, s〉 of input tuples r ∈ R and
s ∈ S that satisfy the window constraint. Then, the re-
sulting tuple pairs are filtered according to the join predi-
cate p and added to the join result. Only for certain join
predicates (such as equality or range conditions), specialized
in-memory access structures, typically hash tables or tree in-
dices, can help reduce the number of pairs to enumerate.

3.1 Soccer Players
The enumeration of join candidates may be difficult to dis-

tribute efficiently over a large number of processing cores.
Traditional approaches (including CellJoin) assume a central
coordinator that partitions and replicates data as needed
over the available cores. But it is easy to see that this will
quickly become a bottleneck as the numbers of cores in-
crease. The aim of our work is to scale out to very high de-
grees of parallelism, which renders any enumeration scheme
unusable that depends on centralized coordination.
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Figure 3: Handshake join sketch. Streams flow by
each other in opposite directions; comparisons (and
result generation) happens in parallel as the streams
pass by.

It turns out that we can learn from soccer players here.
Soccer players know very well how all pairs of players from
two opposing teams can be enumerated without any exter-
nal coordination. Before the beginning of every game, it is
custom to shake hands with all players from the opposing
team. Players do so by walking by each other in opposite
directions and by shaking hands with every player that they
encounter.

3.2 Stream Joins and Handshaking
The handshake procedure used in sports games inspired

the design of handshake join, whose idea we illustrated in
Figure 3 (this particular illustration assumes tuple-based
windows).

Tuples from the two input streams R and S, marked as
rectangular boxes , are pushed through respective join win-
dows. When entering the window, each tuple pushes all ex-
isting window content one step to the side, such that always
the oldest tuple “falls out” of the window and expires (we
detail later how to implement such behavior). Both join
windows are lined up next to each other in such a way that
window contents are pushed through in opposing directions,
much like the players in soccer (cf. Figure 3).

Whenever two stream tuples r ∈ R and s ∈ S encounter
each other (in a moment we will discuss what that means
and how it can be implemented), they “shake hands”, i.e.,
the join condition is evaluated over r and s, and a result
tuple 〈r, s〉 appended to the join result if the condition is
met. Many “handshakes” take place at the same time, work
that we will parallelize over available compute resources.

We next look at handshake join and its characteristics
from the abstract side. In Sections 4–6 we then discuss
techniques to implement handshake join on different types of
actual hardware, including multi-core systems and FPGAs.

3.3 Semantics
To understand the semantics of handshake join, consider

the situation at moment tr when tuple r enters its join win-
dow (illustrated in Figure 4).

A tuple from S can now relate to r in either of the follow-
ing three ways (indicated in Figure 4 as s1 through s3):

(1) Tuple s1 is so old that it already left the join window
for input stream S, i.e., tr > ts1 + TS . Thus, r will not
see s1 and no attempt will be made to join r and s1.

window for R

R

window for S

S

r

s1 s2 s3

Figure 4: Handshake join semantics.
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Figure 5: Parallelized handshake join evaluation.
Each compute core processes one segment of both
windows and performs all comparisons locally.

(2) Tuple s2 is somewhere in the join window of S when r
enters the arena, i.e., s2 is older than r (tr > ts2), but
still within the S-window (that is, tr < ts2 + TS).

As r and s2 move along their join windows, the two
tuples are guaranteed to meet eventually, and 〈r, s2〉 will
be added to the join result if they pass the join predicate.

(3) Tuple s3 has not arrived yet (i.e., tr < ts3). Whether or
not a join r 1 s3 will be attempted depends on s3’s time
of arrival and on the window specification for stream R.
Once s3 arrives, both factors will determine whether r
takes a role that is symmetric to cases (1) or (2) above.

Cases (1) and (2) are the ones where r arrives after s,
and a join will be attempted when tr < ts + TS . Hence,
these cases coincide with part (a) of the classical definition of
stream join semantics (Section 2.2). Case (3) is the situation
where r arrives earlier than s. It follows by symmetry that
this case yields the same output tuples as covered by part
(b) in Section 2.2.

In summary, handshake join produces the exact same out-
put tuples that the classical three-step procedure would, and
we can use handshake join as a safe replacement for existing
stream join implementations.

Handshake join typically produces its output in a different
tuple order. A certain degree of local disorder is prevalent
in real applications already (and stream processors may ex-
plicitly be prepared to deal with it [18]). If necessary, it
can be corrected with standard techniques such as punctua-
tions [21].

Even though our view at window-based stream join dif-
fers significantly problem’s classical treatment, handshake
join still yields the same output semantics. On the one
hand side, this may provide new insights into ongoing work
on defining standards and abstract specifications for stream
processors [4, 16]. On the other hand, handshake join opens
opportunities for effective parallelization on modern hard-
ware. Next, we will demonstrate how to exploit the latter.

3.4 Parallelization
Figure 5 illustrates how handshake join can be parallelized

over available compute resources. Each processing unit (or



“core”) is assigned one segment of the two join windows. Tu-
ple data is held in local memory (if applicable on a partic-
ular architecture), and all tuple comparisons are performed
locally.

Data Flow vs. Control Flow. This parallel evaluation
became possible because we converted the original control
flow problem (or its procedural three-step description) into
a data flow representation. Rather than synchronizing join
execution from a centralized coordinator, processing units
are now driven by the flow of stream tuples that are passed
on directly between neighboring cores. Processing units can
observe locally when new data has arrived and can decide
autonomously when to pass on tuples to their neighbor.

The advantages of data flow-style processing have been
known for a long time. Their use in shared-nothing systems
was investigated, e.g., by Teeuw and Blanken [28]. Modern
computing architectures increasingly tend toward shared-
nothing setups. Recently, we demonstrated how data flow-
oriented approaches can thus be advantageous to compute
distributed joins [9] or to solve the frequent item problem
on FPGAs [29].

Communication Pattern. In addition, we have estab-
lished a particularly simple communication pattern. Pro-
cessing units only interact with their immediate neighbors,
which may ease inter-core routing and avoid communication
bottlenecks. In particular, handshake join is a good fit for ar-
chitectures that use point-to-point links between processing
cores—a design pattern that can be seen in an increasing
number of multi-core platforms (examples include Hyper-
Transport links; the QuickPath interconnect used in Intel
Nehalem systems; the messaging primitives in Intel’s SCC
prototype [14]; or Tilera’s iMesh architecture with current
support for up to 100 cores).

Scalability. Both properties together, the representation as
a data flow problem and the point-to-point communication
pattern along a linear chain of processing units, ensure scala-
bility to large numbers of processing units. Additional cores
can either be used to support larger window sizes without
negative impact on performance, or to reduce the workload
per core, which will improve throughput for high-volume
data inputs.

Soccer Players. We note that the same properties are
what make the handshake procedure in soccer effective. Most
importantly, soccer players organize themselves using only
local interaction.

In addition, the soccer analogy exhibits the same local-
ity property that is beneficial for us. While soccer players
emphasize locality for the limited length of their arms, in
handshake join we benefit from an efficient use of hardware
with NUMA-style memory characteristics.

3.5 Encountering Tuples
We yet have to define what exactly it means that stream

tuples in the two windows “encounter” each other and which
pairs of stream elements need to be compared at any one
time. Note that, depending on the relative window size con-
figuration, stream items might never line up in opposing
positions exactly. Both our previous handshake join illus-
trations were examples of such window size configurations
(only every second R-tuple lines up exactly with every third
S-tuple in Figure 5, for instance).

core k − 1 core k core k + 1

R

S

(a) Tuple from stream R entered segment.

core k − 1 core k core k + 1

R

S

(b) Tuple from stream S entered segment.

Figure 6: Immediate scan strategy. A tuple entering
from stream R or S will trigger immediate compar-
isons or in the segment of processing core k
(respectively).

For proper window join semantics, the only assumption
we made in Section 3.3 was that an item that enters either
window will encounter all current items in the other window
eventually. That is, there must not be a situation where two
stream items can pass each other without being considered
as a candidate pair. Thus, any local processing strategy
that prevents this from happening will do to achieve correct
overall window semantics.

Immediate Scan Strategy. One particular strategy (which
we will call immediate scan strategy) that can be used to
process a segment k is illustrated in Figure 6. In this il-
lustration, we assume that every tuple r ∈ R is compared
to all S-tuples in the segment immediately when r enters
the segment. Figure 6(a) shows all tuple comparisons that
need to be performed when a new R-tuple is shifted into the
segment.

Likewise, when a new tuple s ∈ S enters the segment, it
is immediately compared to all R-tuples that are already in
the segment, as illustrated in Figure 6(b). The strategy will
operate correctly regardless of how window sizes relate to
each other.

The latter property is interesting when it comes to the
distribution of load within a handshake join configuration.
In particular, it means that segment borders can be cho-
sen arbitrarily, which can be used to very flexibly balance
load between the involved processing cores. Our software
implementation (details in Sections 4 and 5) autonomously
re-balances segment boundaries to achieve an even load dis-
tribution over all participating cores.

Other Strategies. Observe that locally on each processing
core, immediate scanning is essentially identical to the three-
step procedure of Kang et al. [17]. The difference is that the
procedure is used only as part of an overall join execution.
Further, we allow the processing cores some flexibility to
arrange with their neighbors on the precise segmentation



(i.e., on the local window size). In a sense, the algorithm
of Kang et al. is only one particular instance of handshake
join that runs with a single processing unit and uses the
immediate scan strategy.

One consequence is that we can plug in any (semantically
equivalent) stream join implementation to act as a local pro-
cessing core. This includes algorithms that use additional
access structures or advanced join algorithms (as they might
apply for certain join predicates; handshake join is agnostic
to that). Handshake join then becomes a mechanism to dis-
tribute and parallelize the execution of an existing algorithm
over many cores.

3.6 Handshake Join and its Alternatives
Among existing approaches to parallelize the execution

of stream joins in a multi-core environment, CellJoin [10]
clearly has been most successful. In essence, CellJoin treats
stream joins as a scheduling and placement problem. A cen-
tral coordinator assigns workload chunks (“basic windows”
of input data) to individual cores for processing. Thereby,
CellJoin assumes that all chunks have to be fetched from a
global memory beforehand.

The nature of a nested loops-style join evaluation makes
such a strategy difficult to scale. During join processing,
every pair of tuples has to be co-located on some core at least
once.1 The movement of data is thus much more inherent to
the join problem than the placement of CPU work or data.

This is why we address the problem from a data flow per-
spective instead. While the handshake join strategy does
not necessarily reduce the aggregate amount of moved data,
it leads to a much more regular and organized communica-
tion pattern. In particular, there is no hot spot that could
become a bottleneck if the system is scaled up. In Section 5,
we illustrate the communication pattern for a concrete piece
of hardware and show how handshake join leads to linear
scaling even for very large core counts.

4. REALIZING HANDSHAKE JOIN
Our discussion so far was primarily based on a high-level

intuition of how tuples flow between segments in a hand-
shake join setup. We now map the handshake join intuition
onto communication primitives that can be used to imple-
ment handshake join on actual hardware, including com-
modity CPUs or FPGAs.2

4.1 Lock Step Forwarding
In Section 3, we assumed that a newly arriving tuple

would synchronously push all tuples of the same stream
through the respective window. Essentially, this implies an
atomic operation over all participating processing cores. For
instance, upon a new tuple arrival, all cores must simultane-
ously forward their oldest tuple to the respective left/right-
next neighbor.

Obviously, an implementation of such lock step processing
would obliterate a key idea behind handshake join, namely
high parallelism without centralized coordination. This prob-
lem arises at least for commodity hardware, such as multi-
core CPU systems. It turns out that lock step processing is

1CellJoin first replicates all new input tuples to every core.
That is, all data is moved to every core at least once.
2We currently experiment with graphics processors (GPUs)
as another promising platform to implement handshake join.

r2r3r4r6r7r8· · · · · ·
r5

s7s6s5s3s2s1· · · · · ·
s4

core k core k + 1

Figure 7: Missed-join pair problem. Tuples sent via
message queues might miss each other while on the
communication channels.

still a viable route for FPGA-based implementations, as we
shall see in Section 6.2.

4.2 Asynchronous Message Queues
Handshake join can also be run in an asynchronous com-

munication mode. We will now demonstrate how to im-
plement handshake join based on message passing between
neighboring cores, a communication mode that is known for
its scalability advantages with increasing core counts [3].

In particular, one pair of FIFO queues (indicated as ar-
rows below) between any two neighboring processing cores
is sufficient to support data propagation along the chain of
cores in either direction:

core k core k + 1 core k + 2 .

FIFO queues can be tuned for high efficiency and provide
fully asynchronous access. In particular, no performance-
limiting locks or other atomic synchronization primitives
are necessary to implement point-to-point message queues.
Some architectures even provide explicit messaging primi-
tives in hardware [14].

Though supportive of increased parallelism, asynchronous
communication between cores can bear an important risk.
As illustrated in Figure 7, tuples from opposing streams
might miss each other if they both happen to be in the
communication channel at the same time (in Figure 7, tu-
ples r5 and s4 are both in transit between the neighboring
cores k and k+1; thus, no comparison is attempted between
tuples r5 and s4).

Two-Phase Forwarding. To avoid the missing of join
candidates, we have to make sure that in such cases, the
two in-flight tuples will still meet on exactly one of the two
neighboring cores, say the right one, Cright . To this end,
we use an asymmetric core synchronization protocol. Cright

(and only Cright) will keep around copies of sent data for
short moments of time. These copies will be used to join
tuples on Cright that would otherwise have missed each other
in-flight.

More specifically, we introduce two-phase forwarding on
the right core. Whenever the right core Cright places a tuple
si into its left send queue, it still keeps a copy of si in the
local join window, but marks it as forwarded. This is illus-
trated in Figure 8(a): tuple s4 was sent to Cleft and marked
as forwarded on Cright (indicated using a dashed box).

The forwarded tuple remains available for joining on Cright

until the second phase of tuple forwarding, which is initiated
by an acknowledgment message from Cleft (indicated as a
diamond-shaped message in Figure 8). In the example, s4
is still kept around on Cright to partner with r5.
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Figure 8: Two-phase tuple forwarding (on right
core). Tuples are kept in Cright-local join window
and removed only after an acknowledgment message
from Cleft .

Figure 8(b) shows the state after Cleft and Cright have pro-
cessed the data on their message queues. s4 was joined with
r6, r7, . . . on Cleft and r5 saw s4, s3, . . . on Cright . Cleft fur-
ther indicated its reception of s4 with the acknowledgment
message s4 , then forwarded another tuple r6 to its right
neighbor.

Message s4 notifies Cright that any tuple sent afterward
will already have seen s4. Thus, Cright removes the tuple
from its local join window (cf. Figure 8(c)) before accepting
the next tuple r6. This way, each necessary tuple pairing is
performed exactly once (on some core).

FIFO Queues. Note that tuple data and acknowledge mes-
sages must be sent over the same message channels. In the
example of Figure 8, correct semantics is only guaranteed if
the acknowledgment for s4 is received and processed by the
right core in-between the two tuples r5 and r6.

Figure 9 describes an implementation of handshake join
based on asynchronous message passing. This code is run
on every participating core. Procedure handshake_join ()

selects one of the two incoming message queues and invokes
a process_... () handler to process the message.

The process_... () handlers essentially implement the
three-step procedure of Kang et al. [17]. In addition, ac-
knowledgment messages are placed in the queues whenever
a new input tuple was accepted. The removal of tuples from
the two windows is asymmetric. S-tuples are marked for-
warded after sending (line 26) and removed when the ac-
knowledgment was seen (line 15). R-tuples, by contrast,
are removed from their window immediately after sending
(line 29).

Our illustrations in Figure 8 suggested an explicit tuple
reference in each acknowledgment message. In practice, this
information is redundant, since an acknowledgment will al-
ways reference the oldest tuple in the predecessor core. This
is reflected in line 15 of Figure 9, which does not actually
inspect the content of the acknowledgment message.

1 Procedure: handshake_join ()

2 while true do
3 if message waiting in leftRecvQueue then
4 process_left () ;

5 if message waiting in rightRecvQueue then
6 process_right () ;

7 forward_tuples () ;

8 Procedure: process_left ()

9 msg ← message from leftRecvQueue ;
10 if msg contains a new tuple then
11 ri ← extract tuple from msg ;
12 scan S-window to find tuples that match ri ;
13 insert ri into R-window ;

14 else
/* msg is an acknowledgment message */

15 remove oldest tuple from S-window ;

16 Procedure: process_right ()

17 msg ← message from rightRecvQueue ;
18 if msg contains a new tuple then
19 si ← extract tuple from msg ;
20 scan R-window to find tuples that match si ;
21 insert si into S-window ;
22 place acknowledgment for si in rightSendQueue ;

23 Procedure: forward_tuples ()

24 if S-window is larger than that of left neighbor then
25 place oldest non-forwarded si into leftSendQueue ;
26 mark si as forwarded ;

27 if R-window is larger than that of our right neighbor
then

28 place oldest ri into rightSendQueue ;
29 remove ri from R-window ;

Figure 9: Handshake join with asynchronous mes-
sage passing (ran on each core).

core 1 core 2 core 3 core 4 core 5

R

S

Figure 10: Data items need not be distributed
evenly over processing cores for a correct join re-
sult.

4.3 Autonomic Load Balancing
We expect the highest join throughput when all available

processing cores run just at the maximum load they can
sustain without becoming a bottleneck in the system. To
this end, load should be balanced over compute resources in
a flexible manner and—to maintain scalability—without a
need for centralized control.

The handshake join code in Figure 9 includes such an auto-
nomic load balancing scheme, realized by the tuple forward-



· · ·
window

size

core1 2 3 4 · · · n−1 n

send si send si′

Figure 11: Tuple forwarding based on local window
sizes; results in autonomous load balancing.

ing procedure forward_tuples (). This scheme is based on
the insight that the produced join output is not affected by
the exact distribution of tuples over processing segments.
In fact, the join output would still be correct even when the
distribution was very skewed, as illustrated in Figure 10.

This gives us the freedom to forward data (i.e., forward
work) at an arbitrary time and we use load to guide the
forwarding mechanism. Procedure forward_tuples () im-
plements this in a fairly simple manner, which in practice
we found sufficient to achieve good load balancing even when
the number of cores becomes large or when input data be-
comes bursty.

The idea is illustrated in Figure 11 for stream S. All pro-
cessing cores have mostly even-sized local S-windows. New
data is pushed in on the right end, which increases the load
on core n. Tuple expiration (discussed below) removes tuples
from core 1. Cores n and 2 will observe the local imbalances
and send S tuples toward their left. Like water in a pipe,
tuples will be pushed through the handshake join window,
evenly distributed over all processing cores.

The strategy works well in homogeneous environments like
ours, where load is directly proportional to window sizes.
To tune handshake join for different environments, such as
cloud infrastructures or virtualized hardware, all necessary
code changes remain local to forward_tuples ().

4.4 Synchronization at Pipeline Ends
Observe that the algorithm in Figure 9 did not explic-

itly mention the desired window configuration, neither the
window type (tuple- or time-based) nor any window size.
Instead, handshake join assumes that tuple insertion and re-
moval are signaled by an outside driver process that knows
about the precise window configuration.

Since the exact flow of tuples through the handshake join
pipeline is immaterial to the join result (see above), these
signals only have to be sent to the two ends of the processing
pipeline. That is, for each input stream the driver process
feeds data into one end of the pipeline and takes out expired
tuples at the opposite end.

The mechanism to realize tuple insertion and removal by
the driver process uses the same acknowledgment messages
that helped us avoid the missed-join pair problem above.
Earlier we reacted to acknowledgments by removing “for-
warded” tuples from the join window. As illustrated in Fig-
ure 12, the driver process now takes advantage of this reac-
tion and simply sends acknowledgment messages to trigger
the removal of tuples at the far end of each stream window.

The generation of acknowledgment messages is straight-
forward to implement in the driver process. Depending on
the window configuration, the driver either has to count tu-
ples (tuple-based windows) or it must keep a list of the tuples
in each window and monitor timestamps accordingly.

In Figure 9, we constructed two-phase forwarding in an
asymmetric way and ignored acknowledgment messages for

R-tuples
S-acknowl.

} {
R-acknowl.
S-tuplesS

R

Figure 12: A driver sends tuple data and acknowl-
edgments to opposite ends of the pipeline to realize
a given window configuration.

17 Procedure: process_right ()

24 else
25 /* msg is an acknowledgment message */

25a remove oldest tuple from R-window ;

25 Procedure: forward_tuples ()

29 if R-window is larger than that of our right neighbor
then

30 place oldest ri into rightSendQueue ;
31 mark ri as forwarded ;

Figure 13: Rightmost core runs a slightly different
code to handle tuple removal via acknowledgment
messages.

R (this was to make sure that in-flight tuples will be pro-
cessed on Cright only). Messages from the driver process, by
contrast, must be interpreted in a symmetric way (the join
problem itself is symmetric). To this end, the right-most
code in any handshake join setup runs a slightly different
code that is symmetric to both input streams. Figure 13
lists the necessary changes, based on the handshake_join ()

code in Figure 9.
To make handshake join sound at both ends of the pipeline,

we further assume that window sizes are 0 for non-existent
“neighbors.” This helps to“pull”data from both input streams
toward the respective pipeline end.

Explicit signals that trigger tuple removal have interesting
uses also outside handshake join. In fact, they have become
a common implementation technique for stream processors,
referred to as − elements (Stanford STREAM, [2]), nega-
tive tuples (Nile, [11]), or deletion messages (Borealis, [1])
depending on the system. These systems will readily pro-
vide all necessary functionality to plug in handshake join
seamlessly.

5. HANDSHAKE JOIN IN SOFTWARE
Handshake join can effectively leverage the parallelism of

modern multi-core CPUs. To back up this claim, we eval-
uated the behavior of handshake join on a recent 2.2 GHz
AMD Opteron 6174 “Magny Cours” machine. The machine
contains 48 real x86-64 cores, distributed over 8 NUMA re-
gions. The system was running Ubuntu Linux, kernel ver-
sion 2.6.32.

5.1 Non-Uniform Memory Access
The eight NUMA regions are connected through a set of

point-to-point HyperTransport links, indicated as dashed
lines in Figure 14 (refer to [6] for details). Observe that
HyperTransport links do not form a fully connected mesh.
Rather, two CPU cores can be up to two HyperTransport
hops apart (e.g., a core in NUMA region 0 and a core in
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Figure 14: AMD“Magny Cours”architecture (8 dies
× 6 cores). Handshake join pipeline laid out along
point-to-point HyperTransport links.

NUMA region 3). Similar topologies have become prevalent
in modern many-core systems.

Handshake join is well prepared to support a system of
this kind. As indicated by the arrow in Figure 14, the data
flow of the algorithm can be laid out over the available CPU
cores such that only short-distance communication is needed
and no congestion occurs on any link or at any NUMA site.

Our prototype implementation3 uses the libnuma library
to obtain a data flow as shown in Figure 14 and an asyn-
chronous FIFO implementation similar to that of [3] (within
NUMA regions as well as across).

5.2 Experimental Setup
For easy comparison with existing work we used the same

benchmark setup that was also used to evaluate CellJoin [10].
Two streams R = 〈 x : int, y : float, z : char[20] 〉 and S = 〈 a :
int, b : float, c : double, d : bool 〉 are joined via the two-
dimensional band join

WHERE r.x BETWEEN s.a− 10 AND s.a + 10
AND r.y BETWEEN s.b− 10. AND s.b + 10. .

The join attributes contain uniformly distributed random
data from the interval 1–10,000, which results in a join hit
rate of 1 : 250, 000. As in [10], we ran all experiments with
symmetric data rates, that is |R| = |S|.4

We implemented handshake join processing cores as Linux
threads. Two additional threads asynchronously generate
input data (driver process) and collect join results.

5.3 SIMD Optimization
Like most modern general-purpose processors, the AMD

Opteron provides a number of vector (or SIMD) instruc-
tions, using which the computational density of each CPU
core can be increased substantially. In handshake join, the
scan step is a candidate for SIMD optimization. The ma-
jority of the CPU work is spent in this phase.

With the 128 bit-wide SIMD registers of our machine, up
to four value comparisons can be performed within a single
CPU instruction. The idea has a catch, however. In x86-64
architectures, SIMD instructions operate largely outside the
main CPU execution unit and have only limited function-
ality. Most importantly, there are no branching primitives
that operate on SIMD registers and it is relatively expensive

3Source code can be downloaded via http://people.inf.
ethz.ch/jteubner/publications/soccer-players/.
4Workload and output data rates grow with |R| × |S| or
quadratically with the reported stream rate.
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Figure 15: Effect of SIMD optimization. Use of
SIMD compiler intrinsics yields a two-fold perfor-
mance improvement (15 min windows).

to move data between SIMD registers and general-purpose
registers (e.g., to perform branching there).

Therefore, we modified our code to evaluate full join pred-
icates eagerly using bit-wise SIMD operations (effectively
the full predicate is evaluated even when one band condi-
tion was early found to fail). The positive effect on this
strategy on branch (mis)prediction was already investigated
by Ross [26]. Here we additionally benefit from a reduc-
tion of data movement between register sets; only the final
predicate result is moved to general-purpose registers after
SIMD-only evaluation.

As shown in Figure 15, vectorization using SIMD instruc-
tion yields significant performance advantages. The SIMD-
optimized implementation can sustain more than double the
load of the non-optimized code.

In CellJoin, Gedik et al. [10] used similar techniques to
leverage the SIMD capabilities of the Cell SPE processors
(also with substantial performance improvements). The ad-
ditional low-level optimizations in [10] (loop unrolling and
instruction scheduling) should be applicable to handshake
join, too. Unfortunately, such optimizations make code highly
processor dependent, while our current code only uses back-
end-independent intrinsics to guide an optimizing C com-
piler (gcc).

5.4 Scalability
The main benefit of handshake join is massive scalabil-

ity to arbitrary core counts. To verify this scalability, we
ran handshake join instances with 4 to 44 processing cores
(we left four CPU cores available for the driver and collector
threads as well as for the operating system). For each config-
uration, we determined the maximum throughput that the
system could sustain without dropping any data.

Figure 16 illustrates the throughput we determined for
window sizes of ten and fifteen minutes (the y-axis uses a
quadratic scale, since the workload grows with the square
of the input data rate). The result confirms the scalability
advantages of handshake join with respect to core counts
and input data rates. Somewhat harder to see in Figure 16
is that, alternatively, additional cores can be used to support
larger join windows while maintaining throughput.
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Figure 16: Handshake join scalability on multi-core
CPU (AMD Opteron “Magny Cours”; immediate
scan strategy). y-axis uses quadratic scale.

Comparison to CellJoin. The scalability evaluation for
CellJoin is limited to the eight SPEs available on the Cell
processor. For 15-minute windows, Gedik et al. [10] report a
sustained throughput of at most 750 tuples/sec when using
the Cell PPE unit plus all eight SPEs and their “SIMD-
noopt” implementation (which is best comparable to our
code; with low-level optimizations, Gedik et al. pushed
throughput up to 1000 tuples/sec). With eight CPU cores,
handshake join sustained a load of 1400 tuples/sec—a 2–3.5-
fold advantage considering the quadratic workload increase
with throughput.

We note that the workload of this benchmark (consisting
of band joins) favors an architecture like Cell. The task is
very compute-intensive (including single-precision floating-
point operations toward which the Cell processor has been
optimized) and amenable to SIMD optimizations. On such
workloads, the Cell should benefit more from its higher clock
speed (3.2 GHz vs. 2.2 GHz) than the Opteron can take ad-
vantage of its super-scalar design.

For the workload sizes at hand, both join algorithms have
to fetch all data from main memory during the scan phase (in
15 minutes, a stream rate of 1000 tuples/sec accumulates to
around 40 MB—too large for any on-chip cache). Thereby,
CellJoin inherently depends on a high-bandwidth centralized
memory (25.6 GB/s for that matter). Handshake join, by
contrast, keeps all memory accesses local to the respective
NUMA region and thus achieves high aggregate bandwidth
even when the local bandwidth is more modest (21.3 GB/s
with DDR3-1333 memory).

6. HANDSHAKE JOIN ON FPGAS
48 CPU cores clearly do not mark the end of the multi-

core race. To see how handshake join would scale to very
large core numbers, we used field-programmable gate arrays
(FPGAs) as an emulation platform, where the only limit to
parallelism is the available chip space. FPGAs themselves
are an interesting technology for database acceleration [23,
24, 29], but our main focus here is to demonstrate scalability
to many cores (in particular, we favor simplicity over per-
formance if that helps us instantiate more processing cores
on the chip).
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Figure 17: FPGA Implementation of Handshake
Join for Tuple-based Windows.

6.1 FPGA Basics
In essence, an FPGA is a programmable logic chip which

provides a pool of digital logic elements that can be config-
ured and connected in arbitrary ways. Most importantly the
FPGA provides configurable logic in terms of lookup tables
(LUTs) and flip-flop registers that each represent a single
bit of fast distributed storage. Finally, a configurable inter-
connect network can be used to combine lookup tables and
flip-flop registers into complex logic circuits.

Current FPGA chips provide chip space to instantiate up
to a few hundred simple join cores. The cores contain local
storage for the respective window segments of R and S and
implement the join logic. In this paper we implement simple
nested loops-style processing. To keep join cores as simple
as possible, we only look at tuple-based windows that fit into
on-chip memory (flip-flop registers).

6.2 Implementation Overview
Figure 17 illustrates the high-level view of our handshake

join implementation on an FPGA. The windows of the R
and S streams are partitioned among n cores. The cores
are driven by a common clock signal that is distributed over
the entire chip. The clock signal allows us to realize lock-step
forwarding at negligible cost, which avoids the need for FIFO
queues and reduces the complexity of the implementation.
Effectively, the windows represent large shift registers, which
are directly supported by the underlying hardware.

Following the basic handshake join algorithm (Figure 9)
for each core we need to provide a hardware implementation
of the segment for the R and S windows, a digital circuit for
the join predicate, and scheduling logic for the tuples and the
window partitions. The figure shows the two shift registers
(labeled ‘R window’ and ‘S window’, respectively) that hold
the tuple data. When a new tuple is received from either
stream, the tuple is inserted in the respective shift register
and the key is compared against all keys in the opposite
window (using a standard nested-loops implementation).

Result Collection. As illustrated in the top half of Fig-
ure 17, each join core will send its share of the join result
into a FIFO queue (indicated as ). A merging network
will merge all sub-results into the final join output at the
top of Figure 17.
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Figure 18: Scalability of FPGA Handshake join with
a constant segment size of 8 tuples per window and
core.

6.3 Experimental Setup
We stick to a simple stream format where join keys and

payload are all 32-bit integers. We assume an equi-join and
return 96 bit-wide result tuples (32-bit key plus 2× 32 bits
of payload).

Again our main interest is in measuring the scalability of
handshake join. To this end, we instantiate up to 200 join
cores on a Virtex-6 XC6VLX760T FPGA chip. Each of the
join cores can hold eight tuples per input stream (i.e., with
n = 100 cores the overall window size will be 100× 8 = 800
tuples per stream). For each configuration we determine the
maximum clock frequency at which the resulting circuit can
be operated.

In hardware design, clock frequency is an excellent in-
dicator for scalability. In many circuit designs, the clock
frequency has to be reduced according to a n−k law as the
circuit size is increased (larger circuit areas generally lead
to longer signal paths). Only highly scalable designs allow
a constant clock frequency over a large range of circuit sizes
(k ≈ 0).

6.4 Scalability and Performance
As shown in Figure 18, clock frequencies for our design

remain largely unaffected by the core count (the absolute
value of 150∼ 170 MHz is not relevant for this assessment).
This confirms the good scalability properties of handshake
join.

Even on the right end of Figure 18, the drop in clock fre-
quency is not very significant. On this end our design occu-
pies more than 96 % of the available chip area. This means
we are operating our chip already far beyond its maximum
recommended resource consumption of 70–80 % [8]. The fact
that our circuit can still sustain high frequencies is another
indication for good scalability.

By contrast, earlier work on FPGA-based stream join pro-
cessing suffered a significant drop in clock speeds for the
window sizes we consider, even though their system oper-
ated over only 4 bit-wide tuples [25].

6.5 Parallelism and Power Considerations
Handshake join allows to losslessly trade individual core

performance for parallelism. This opens up interesting op-
portunities for system designers. Here we show how the flex-
ibility of handshake join can be used to minimize the power

Table 1: Power consumption and circuit size for
two windows of size 100 and a throughput of
500 ktuples/sec implemented using different num-
bers of cores and clock rates.

clock power (mW)
cores (MHz) dynamic static total LUTs

1 50 100 4398 4498 1.54 %
2 25 64 4396 4459 1.59 %
5 10 62 4395 4447 2.01 %

10 5 68 4306 4464 2.78 %

Table 2: Power consumption weighted by area.

clock weighted (mW)
cores (MHz) dynamic static total

1 50 100 68 168
2 25 64 69 133
5 10 62 88 150

10 5 68 120 188

consumption of an application system. More specifically,
we try to find the most power-efficient handshake join con-
figuration that satisfies a given throughput demand (which
comes from the application requirements).

Again we use our FPGA framework to illustrate the con-
cept. Assume the system has to provide a throughput of
500 ktuples/sec with a window size of 100 tuples. Config-
urations with 1, 2, 5, and 10 join cores can guarantee this
throughput if operated at clock frequencies of 50, 25, 10, or
5 MHz, respectively. For the same throughput, however, the
four configurations will require different amounts of electri-
cal power.

Table 1 shows how core counts and clock frequencies affect
the power consumption of our FPGA chip. The total power
consumption of a chip results from two components: dy-
namic power losses are a result of the switching transistors
(charge transfers due to parasitic capacities and short-circuit
currents in CMOS technology), while static power losses are
caused by leaking currents due to the high chip integration
density.

Dynamic losses directly depend on the clock frequency of
the circuit; leakage is proportional to the chip area. This can
be seen in Table 1, where the dynamic component strongly
decreases with the clock frequency (even though the number
of cores grows). The static component, by contrast, is barely
affected by the circuit configuration.

Also apparent in Table 1 is that the total power consump-
tion is strongly dominated by the static part. This is a sole
artifact of the FPGA technology that we use for this evalu-
ation (and not indicative of the situation in custom silicon
chips). In FPGAs, static losses occur on the entire chip
space, even though our design occupies only 1.5 %–2.8 % of
the available lookup tables (last column in Table 1). For
a fair comparison with custom silicon devices, Kuon and
Rose [20] suggest to weight the static FPGA power con-
sumption by the used chip area.

Table 2 shows the weighted power consumption for our
four chip configurations. Clearly, among the configurations



that we looked at, the one that uses two cores is the most
power-efficient. In terms of absolute numbers, this result
may be different for other architectures, in particular for re-
alistic multi-core machines. But the ability to tune a system
in this way is a general consequence of handshake join’s scal-
ability properties, with potentially significant power savings
in real-world scenarios.

7. RELATED WORK
The handshake join mechanism is largely orthogonal to a

number of (very effective) techniques to accelerate stream
processing. As motivated in Section 3.5, handshake join
could, for instance, be used to coordinate multiple instances
of double-pipelined hash join [15, 30] or window joins that
use indexes [12]. If handshake join alone is not sufficient to
sustain load, load shedding [27] or distribution [1] might be
appropriate countermeasures.

Handshake join’s data flow is similar to the join arrays
proposed by Kung and Lohman [19]. Inspired by the then-
new concept of systolic arrays in VLSI designs, their pro-
posed VLSI join implementation uses an array of bit com-
parison components, through which data is shifted in oppos-
ing directions.

The model of Kung and Lohman can also be found in
cyclo-join [9], our own work on join processing of static
data in distributed environments. In cyclo-join, fragments
of two input relations are placed on network hosts in a ring
topology. For join processing, one relation is rotated along
this ring, such that tuples encounter each other much like
in handshake join. A key difference is that handshake join
properly deals with streaming joins, even though the seman-
tics of such joins is highly dynamic by nature.

The only work we could find on stream joins using FPGAs
is the M3Join of Qian et al. [25], which essentially imple-
ments the join step as a single parallel lookup. This ap-
proach is known to be severely limited by on-chip routing
bottlenecks [29], which causes the sudden and significant
performance drop observed by Qian et al. for larger join
windows [25]. The pipelining mechanism of handshake join,
by contrast, does not suffer from these limitations.

A potential application of handshake join outside the con-
text of stream processing might be a parallel version of Diag-
Join [13]. Diag-Join exploits time-of-creation clustering in
data warehouse systems and uses a sliding window-like pro-
cessing mode. The main bottleneck there is usually through-
put, which could be improved by parallelizing with hand-
shake join.

8. SUMMARY
The multi-core train is running at full throttle and the

available hardware parallelism is still going to increase. Hand-
shake join provides a mechanism to leverage this parallelism
and turn it into increased throughput for stream processing
engines. In particular, we demonstrated how window-based
stream joins can be parallelized over very large numbers
of cores with negligible coordination overhead. Our proto-
type implementation reaches throughput rates that signif-
icantly exceed those of CellJoin, the best published result
to date [10]. Alternatively, the scalability of handshake join
can be used to optimize system designs with respect to their
power consumption.

Key to the scalability of handshake join is to avoid any
coordination by a centralized entity. Instead, handshake
join only relies on local core-to-core communication (e.g.,
using local message queues) to achieve the necessary core
synchronization. This mode of parallelization is consistent
with folklore knowledge about systolic arrays, but also with
recent research results that aim at many-core systems [3].

The principles of handshake join are not bound to the as-
sumption of a single multi-core machine. Rather, it should
be straightforward to extend the scope of handshake join
to distributed stream processors in networks of commodity
systems (such as the Borealis [1] research prototype) or to
support massively-parallel multi-FPGA setups (such as the
BEE3 multi-FPGA system [7] or the Cube 512-FPGA clus-
ter [22]). As mentioned before, we already demonstrated
the former case for static input data with cyclo-join [9]. In
ongoing work we investigate the use of graphics processors
(GPUs) to run handshake join.
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Windows over Online Data Streams. In Proc. of the
9th Int’l Conference on Extending Database
Technology (EDBT), Crete, Greece, 2004.

[13] S. Helmer, T. Westmann, and G. Moerkotte.
Diag-Join: An Opportunistic Join Algorithm for 1:N
Relationships. In Proc. of the 24th Int’l Conference on
Very Large Databases (VLDB), New York, NY, USA,
1998.

[14] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,
G. Ruhl, D. Jenkins, H. Wilson, N. Borkar,
G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada,
S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries,
T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, R. v. d. Wijngaart, and T. Mattson.
A 48-Core IA-32 Message-Passing Processor with
DVFS in 45nm CMOS. In 2010 IEEE International
Solid-State Circuits Conference, San Francisco, CA,
USA, February 2010.

[15] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. S.
Weld. An Adaptive Query Execution System for Data
Integration. In Proc. of the Int’l Conference on
Management of Data (SIGMOD), Philadelphia, PA,
USA, 1999.

[16] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke,
J. Widom, H. Balakrishnan, U. Çetintemel,
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