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- Based on the paper “The Big Data Ecosystem at
LinkedIn”, written by Roshan Sumbaly, Jay Kreps, and
Sam Shah.
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Data Integration Problem



“Some analysts performed this integration
themselves. In other cases, analysts—
especially application users and scripters —
relied on the IT team to assemble this data for
them.”

—Sean Kandel et al. Enterprise Data Analysis and Visualization: An Interview
Study



Ecosystem at LinkedIn



Online datacenters

Hadoop for ETL

Offline production datacenters Offline development datacenters




Online datacenters




E 1L

Extract- Transform-Load

More information about ETL is available from Cloudera



Online Datacenters

- Voldemort

- Oracle



Voldemort

- Combines In-memory caching and storage
system

- Possible to emulate the storage layer
- Reads and Writes scale horizontally
- Simple API

- Transparent data partitioning

More information about Voldemort is available at: http./www.project-voldemort.com/voldemort/



http://www.project-voldemort.com/voldemort/

Next

- Ingress and egress out of
Hadoop system

- Data flows



INgress

From online to offline



Online datacenters




Online

datacenters

-

Hadoop for ETL

J

- Database

iIncludes information about users,
companies, connections, and
other primary site data.

- Event data

includes logs of page views
being served, search queries,
and clicks.



Challenges

- Provide infrastructure that can
make all data available without
manual intervention or
processing.



Challenges

- Datasets are so large
- Data Is diverse
- Data schemas are evolving

- Data monitoring and validating



Kafka

A high-throughput
distributed
messaging system,
for all activity data.




- Persists messages In a
write-ahead log, partitioned
and distributed over multiple
brokers

- Allows data publishers to
add records to a log

- New data streams to be
added and scaled
iIndependent of one another.



Example

- Collecting data about searches being
performed. The search service would
produce these records and publish
them to a topic named
“SearchQueries” where any number
of subscribers might read these
messages.



Data Evolution

- Requires schemas changes

- Two common solutions:

- Load data streams in whatever form they appeatr.

- Manually map the source data into a stable, well-thought-
out schema.



L inkedIn’s Solution

- Retains the same structure throughout our data pipeline

- Enforces compatibility and other correctness
conventions

- Schema evolves automatically
- Schema check is done at compile and run time.

- Review process.



. oad Iinto Hadoop

- Pull data from Kafka to Hadoop with
a Map-only |oD.

- Recurrence every 10 minutes.

- Scheduled by Azkaban scheduling
sysiem



Onl/ne Da tacenters

- Two Kafka clusters
kKept synchronized
automatically.

Serwees Services

Kafka |

——r——— | . 1116 primary Kafka
— | supports

Kafka _____J| production.

Offllne Development Dataeenters e *



- Each step in the flow
all publish an audit trall

- Consist of the topic,
machine name, etc.

- Confirm all published
event reached all
consumers by
aggregating audit data.



Workflow




Workflow
In Hadoop

- A directed acyclic graph of

dependencies.

- Wrappers help restrict data

being read to a certain time
range based on parameters
specified.

- Hadoop-Katka data pull job

places the data into time-
partitioned folders.



- A directed acyclic graph of
Workflow dependencies.
In Hadoop

- One workflow can have a size of
50-100 jobs.



Azkaban

An open-sourced workflow scheduler.



- Supports multiple job types
 Run as individual or chained

- Configurations and
dependencies are maintained

- Visualize and manipulate
dependencies via graphs in
Ul.



- Experimenting, massage It into
a useful form

Construction
- Transform features into

O f feature vectors

WOrkfIOWS - Trained Into models

- lterate workflows
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Azkaban
[ Staging | Hadoop for |
Voldemort Read— |&——1  production |

|Offline Production Datacenters |



Egress

Back online!




- Usually pushed to other systems

ReSUItS (Back online or for further

consumption)



Three main mechanism

Key-Value
Streams
OLAP




- Based on Amazon’s Dynamo

- Distributed and Elastic

VOIdemO rt - Horizontally scalable

- Bulk load pipeline from Hadoop

- Simple to use

Reference: Slides of The big data ecosystem at LinkedIn, presented at SIGMOD 2013



- Implemented using Hadoop AP|

Stream output - Each MR slot acts as a Kafka produce

per formed by - More details available at
Kafka http://kafka.apache.org



http://kafka.apache.org

Avatara

- Automatically generates

corresponding Azkaban job
pipelines.

- Small cubes are multidimensional

arrays of tuples

- Each tuple is combination of

dimension and measure pairs

- Output cubes to Voldemort as a

read-only store.



Applications
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“People you may know”

Collaborative Filtering

Skill Endosements

Related Searches

News Feed Updates

Email

Relationship Strength

“‘Who's viewed my profile?”

“Who’s viewed this job?”
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Future Work




- MapReduce for processing large
graphs

- Streaming System for near line
low-latency data processing



