
The “Big Data” Ecosystem at LinkedIn

Roshan Sumbaly, Jay Kreps, and Sam Shah

LinkedIn

ABSTRACT

The use of large-scale data mining and machine learning has prolif-
erated through the adoption of technologies such as Hadoop, with
its simple programming semantics and rich and active ecosystem.
This paper presents LinkedIn’s Hadoop-based analytics stack, which
allows data scientists and machine learning researchers to extract
insights and build product features from massive amounts of data.
In particular, we present our solutions to the “last mile” issues in
providing a rich developer ecosystem. This includes easy ingress
from and egress to online systems, and managing workflows as
production processes. A key characteristic of our solution is that
these distributed system concerns are completely abstracted away
from researchers. For example, deploying data back into the online
system is simply a 1-line Pig command that a data scientist can add
to the end of their script. We also present case studies on how this
ecosystem is used to solve problems ranging from recommendations
to news feed updates to email digesting to descriptive analytical
dashboards for our members.

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Systems; H.2.8 [Database Management]: Database Ap-
plications

General Terms: Design, Management
Keywords: big data, hadoop, data mining, machine learning, data

pipeline, offline processing

1. INTRODUCTION
The proliferation of data and the availability and affordability of

large-scale data processing systems has transformed data mining
and machine learning into a core production use case, especially in
the consumer web space. For instance, many social networking and
e-commerce web sites provide derived data features, which usually
consist of some data mining application offering insights to the user.

A typical example of this kind of feature is collaborative filtering,
which showcases relationships between pairs of items based on the
wisdom of the crowd (“people who did this also did that”). This
technique is used by several organizations such as Amazon [20],
YouTube [5], and LinkedIn in various recommendation capacities.
At LinkedIn, the largest professional online social network with
over 200 million members, collaborative filtering is used for people,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

job, company, group, and other recommendations (Figure 2b) and is
one of the principal components of engagement.

Other such derived data applications at LinkedIn include “People
You May Know,” a link prediction system attempting to find other
users you might know on the social network (Figure 2a); ad target-
ing; group and job recommendations; news feed updates (Figure 3a);
email digesting (Figure 3b); analytical dashboards (Figure 4a); and
others. As a smaller example, LinkedIn displays “related searches”
(Figure 2d) on the search results page. This feature allows users
to refine their searches or explore variants by pivoting to alternate
queries from their original search [27]. There are over a hundred of
these derived data applications on the site.

These applications are largely enabled by Hadoop [34], the open-
source implementation of MapReduce [6]. Among Hadoop’s advan-
tages are its horizontal scalability, fault tolerance, and multitenancy:
the ability to reliably process petabytes of data on thousands of com-
modity machines. More importantly, part of Hadoop’s success is
its relatively easy-to-program semantics and its extremely rich and
active ecosystem. For example, Pig [23] provides a high-level data-
flow language; Hive [33] provides a dialect of SQL; and libraries
such as Mahout [24] provide machine learning primitives.

This rich development environment allows machine learning re-
searchers and data scientists—individuals with modest software
development skills and little distributed systems knowledge—to
extract insights and build models without a heavy investment of
software developers. This is important as it decreases overall de-
velopment costs by permitting researchers to iterate quickly on
their own models and it also elides the need for knowledge transfer
between research and engineering, a common bottleneck.

While the Hadoop ecosystem eases development and scaling of
these analytic workloads, to truly allow researchers to “production-
ize” their work, ingress and egress from the Hadoop system must
be similarly easy and efficient, a presently elusive goal. This data
integration problem is frequently cited as one of the most difficult
issues facing data practitioners [13]. At LinkedIn, we have tried to
solve these “last mile” issues by providing an environment where re-
searchers have complete, structured, and documented data available,
and where they can publish the results of their algorithms without
difficulty. Thereafter, application developers can read these results
and build an experience for the user. A key characteristic of our
solution is that large-scale, multi-data center data deployment is a
1-line command, which provides seamless integration into existing
Hadoop infrastructure and allows the researcher to be agnostic to
distributed system concerns.

This paper describes the systems that engender effortless ingress
and egress out of the Hadoop system and presents case studies of
how data mining applications are built at LinkedIn. Data flows into
the system from Kafka [15], LinkedIn’s publish-subscribe system.

1125

Data integrity from this pipeline is ensured through stringent schema
validation and additional monitoring.

This ingress is followed by a series of Hadoop jobs, known as a
workflow, which process this data to provide some additional value—
usually some predictive analytical application. Azkaban, a workflow
scheduler, eases construction of these workflows, managing and
monitoring their execution. Once results are computed, they must
be delivered to end users.

For egress, we have found three main vehicles of transport are
necessary. The primary mechanism used by approximately 70% of
applications is key-value access. Here, the algorithm delivers results
to a key-value database that an application developer can integrate
with. For example, for a collaborative filtering application, the key
is the identifier of the entity and the value is a list of identifiers to
recommend. When key-value access is selected, the system builds
the data and index files on Hadoop, using the elastic resources of
the cluster to bulk-load Voldemort [31], LinkedIn’s key-value store.

The second transport mechanism used by around 20% of appli-
cations is stream-oriented access. The results of the algorithm are
published as an incremental change log stream that can be processed
by the application. The processing of this change log may be used
to populate application-specific data structures. For example, the
LinkedIn “news feed” provides a member with updates on their
network, company, and industry. The stream system permits any
application to inject updates into a member’s stream. An analytics
application (e.g., “What are the hot companies in your network?”)
runs its computation as a series of Hadoop jobs and publishes its
feed of new updates to the stream service at the end of its compu-
tation.

The final transport mechanism is multidimensional or OLAP
access. Here, the output is a descriptive statistics application, where
filtering and aggregation is used for cube materialization. This
output feeds frontend dashboards to support roll ups and drill downs
on multidimensional data. For example, LinkedIn provides analytics
across various features of a member’s profile view.

Given the high velocity of feature development and the difficulty
in accurately gauging capacity needs, these systems are all horizon-
tally scalable. These systems are run as a multitenant service where
no real stringent capacity planning needs to be done: rebalancing
data is a relatively cheap operation, engendering rapid capacity
changes as needs arise.

The main contribution of this work is an end-to-end description
and historical reasoning of a large-scale machine learning environ-
ment and the constituent systems that provide smooth, effortless
integration for researchers. These systems have been in use for over
three years at LinkedIn and have been widely successful in allowing
researchers to productionize their work. In fact, none of the ma-
chine learning teams at LinkedIn have any application developers or
systems programmers whose responsibility is productionization; the
researchers do this themselves.

The components described in this paper are open source and
freely available under the Apache 2.0 license.

2. RELATED WORK
There is little literature available on productionizing machine

learning workflows. Twitter has developed a Pig [23] extension for
stochastic gradient descent ensembles for machine learning [19]
that it uses internally. This provides ease of model development,
but the end-to-end production pipeline—which is regularly and
reliably delivering data updates to predictive analytical applications—
is not described. Similarly, Facebook uses Hive [33] for its data
analytics and warehousing platform [32], but little is known on
productionizing its machine learning applications.

In terms of ingress, ETL has been studied extensively. For
Hadoop ingress, in Lee et al. [16], the authors describe Twitter’s
transport mechanisms and data layout for Hadoop, which uses
Scribe [33]. Scribe was originally developed at Facebook and forms
the basis for their real-time data pipeline [3]. Yahoo has a similar sys-
tem for log ingestion, called Chukwa [26]. Instead of this approach,
we have developed Kafka [15], a low-latency publish-subscribe sys-
tem that unifies both near-line and offline use cases [11]. These
Hadoop log aggregation tools support a push model where the bro-
ker forwards data to consumers. In a near-line scenario, a pull model
is more suitable for scalability as it allows consumers to retrieve
messages at their maximum rate without being flooded, and it also
permits easy rewind and seeking of the message stream.

In terms of egress from batch-oriented systems like Hadoop,
MapReduce [6] has been used for offline index construction in
various search systems [21]. These search layers trigger builds on
Hadoop to generate indexes, and on completion, pull the indexes
to serve search requests. This approach has also been extended to
various databases. Konstantinou et al. [14] and Barbuzzi et al. [2]
suggest building HFiles offline in Hadoop, then shipping them to
HBase [9], an open source database modeled after BigTable [4].
In Silberstein et al. [30], Hadoop is used to batch insert data into
PNUTS [29], Yahoo!’s distributed key-value solution, in the reduce
phase.

OLAP is a well studied problem in data warehousing, but there is
little related work on using MapReduce for cubing and on serving
queries in the request/response path of a website. MR-Cube [22]
efficiently materializes cubes using the parallelism of a MapReduce
framework, but does not provide a query engine.

None of these egress systems explore the data pipeline or describe
an end-to-end pipeline for data mining applications.

3. THE ECOSYSTEM
Figure 1 shows the architecture of LinkedIn’s data pipeline. Mem-

ber and activity data generated by the online portion of the website
flows into our offline systems for building various derived datasets,
which is then pushed back into the online serving side. As early
adopters of the Hadoop stack, LinkedIn has been using HDFS [28],
the distributed filesystem for Hadoop, as the sink for all this data.
HDFS then acts as the input for further processing for data features.

The data coming into HDFS can be classified into two categories:
activity data (2 in Figure 1) and core database snapshots (3 in
Figure 1). The database change-logs are periodically compacted into
timestamped snapshots for easy access. The activity data consists
of streaming events generated by the services handling requests on
LinkedIn. For example, a member viewing another profile would
count as a single event. Events are grouped into semantic topics and
transported by LinkedIn’s publish-subscribe system, Kafka. These
topics are eventually pulled into a hierarchical directory structure
onto HDFS. We discuss this pipeline in more detail in Section 4.

Once data is available into an ETL HDFS instance, it is then
replicated to two Hadoop instances, one for development and one
for production. Here, researchers and data scientists define a work-

flow of jobs to compute some value-added derived data. We use
Azkaban, LinkedIn’s open source scheduler, to manage these work-
flows. Azkaban maintains a global view of workflows, which aids
monitoring, resource locking, and log collection. A job in the con-
text of Azkaban is defined in an easy key-value configuration file
format with dependent jobs mentioned as part of the configuration.
Azkaban is a general purpose execution framework and supports
diverse job types such as native MapReduce, Pig, Hive, shell scripts,
and others. LinkedIn production workflows are predominantly Pig,
though native MapReduce is sometimes used for performance rea-

1126

Service

Internet

Service

KafkaOracle

Service

Voldemort

read-write

Service

Voldemort

read-only7

Avatara

Kafka

Hadoop for
development

workflows

Azkaban

Hadoop for
ETL

Azkaban

Hadoop for production
workflows

Azkaban

Staging

Voldemort

read-only

8 5

3

5

2

6 4

1

Online datacenters

Offline datacenters

Figure 1: Architecture of the data pipeline at LinkedIn. The online data center serves user requests while the offline data centers

host Hadoop for further offline processing

sons. To ease the development process of prototyping with our data,
user-defined functions are shared in a library called DataFu, which is
also open source. We discuss the deployment and usage of Azkaban
in Section 5.

Finally, the output of these workflows feeds back into our online
serving systems. Outlets of streams from Kafka (4 in Figure 1),
key-value databases using Voldemort (6 in Figure 1) and multidi-
mensional OLAP cubes using Avatara (7 in Figure 1) have a simple
single-line Pig statement at the end of a workflow.

Before deploying data back to the online serving systems, some
workflows may choose to push data to staging clusters (8 in Fig-
ure 1) with extra debugging information. This facilitates easy debug-
ging through “explain” commands to understand the nature of results
and the output of models. Section 6 covers the individual egress
systems as well as how they integrate into the complete application
workflow.

4. INGRESS
Data loaded into Hadoop comes in two forms: database and event

data. Database data includes information about users, companies,
connections, and other primary site data. Event data consists of a
stream of immutable activities or occurrences. Examples of event
data include logs of page views being served, search queries, and
clicks.

The primary challenge in supporting a healthy data ecosystem is
providing infrastructure that can make all this data available without
manual intervention or processing. There are several difficulties in
achieving this. First, datasets are large so all data loading must scale
horizontally. Second, data is diverse: LinkedIn maintains well over
a thousand different datasets that must be continuously replicated.
Third, data schemas are evolving as the functionality of the site itself
changes rather rapidly. This is particularly challenging for data that
is retained over time, as we must ensure new data is compatible with

older data. Finally, because data collection interacts with thousands
of machines in multiple data centers, each with various operational
considerations, monitoring and validating data quality is of utmost
importance. If a dataset is incomplete or incorrect, all processing on
it naturally produces incorrect results.

For simplicity, we will focus on the activity data pipeline, though
the database data goes through a similar process. LinkedIn has
developed a system called Kafka [15] as the infrastructure for all
activity data. Kafka is a distributed publish-subscribe system [8] that
persists messages in a write-ahead log, partitioned and distributed
over multiple brokers. It allows data publishers to add records to a
log where they are retained for consumers that may read them at their
own pace. Each of these logs is referred to as a topic. An example
of this might be collecting data about searches being performed.
The search service would produce these records and publish them
to a topic named “SearchQueries” where any number of subscribers
might read these messages.

All Kafka topics support multiple subscribers as it is common to
have many different subscribing systems. Because many of these
feeds are too large to be handled by a single machine, Kafka supports
distributing data consumption within each of these subscribing sys-
tems. A logical consumer can be spread over a group of machines so
that each message in the feed is delivered to one of these machines.
Zookeeper [12], a highly-available distributed synchronization ser-
vice, is used for these groups to select a consumer machine for every
Kafka topic partition and redistribute this load when the number of
consumers changes.

Activity data is very high in volume—several orders of magnitude
larger than database data—and Kafka contains a number of opti-
mizations necessary to cope with these volumes. The persistence
layer is optimized to allow for fast linear reads and writes; data is
batched end-to-end to avoid small I/O operations; and the network
layer is optimized to zero-copy data transfer.

1127

A critical part of making data available is that topics, consumers,
brokers, and producers can all be added transparently without man-
ual configuration or restart. This allows new data streams to be
added and scaled independent of one another.

4.1 Data Evolution
Data evolution is a critical aspect of the ecosystem. In early

versions of our data load processes, we did not directly handle
the evolution of data schemas, and as a result each such evolution
required manual intervention to issue schema changes. This is a
common problem for data warehouse ETL. There are two common
solutions. The first is to simply load data streams in whatever form
they appear, such as files of unstructured data. The problem with
this is that jobs that process these streams have no guarantees on
what may change in their feed, and it can be very difficult to reason
about whether a particular change in the producing application will
break any consumer of that data. The more traditional approach
in enterprise data warehousing is to manually map the source data
into a stable, well-thought-out schema and perform whatever trans-
formations are necessary to support this. The major disadvantage
of the latter approach is that it is extremely difficult to manage:
thousands of data sources means thousands of data transformations.
Unsurprisingly, having a central team responsible for all of these
transformations becomes a bottleneck.

Rather than loading unstructured data, our solution retains the
same structure throughout our data pipeline and enforces compati-
bility and other correctness conventions on changes to this structure.
To support this, we maintain a schema with each topic in a single
consolidated schema registry. If data is published to a topic with an
incompatible schema, it is flatly rejected; if it is published with a
new backwards compatible schema, it evolves automatically. This
check is done both at compile and run time to help flush out these
kinds of incompatibilities early. Each schema also goes through
a review process to help ensure consistency with the rest of the
activity data model. LinkedIn has standardized on Apache Avro as
its serialization format.

4.2 Hadoop Load
The activity data generated and stored on Kafka brokers is pulled

into Hadoop using a map-only job that runs every ten minutes on
a dedicated ETL Hadoop cluster as a part of an ETL Azkaban
workflow (2 in Figure 1). This job first reads the Kafka log offsets
for every topic from a previous run and checks for any new topics
that were created. It then starts a fixed number of mapper tasks,
distributes the partitions evenly, pulls data into HDFS partition
files, and finally registers it with LinkedIn’s various systems (e.g.,
register with Hive metastore for SQL queries). By load balancing
the partitions within a fixed number of tasks instead of using single
tasks per partition, the overhead of starting and stopping tasks for
low-volume topics is avoided. Also, automatically picking up new
topics helps engineers get their data into Hadoop for analysis quickly.
After data is available in the ETL cluster, this new data is copied to
the production and development Hadoop clusters (5 in Figure 1).
The use of an ETL cluster saves processing costs by performing
extraction and transformation only once.

Besides the frequent job, the ETL workflow also runs an aggre-
gator job every day to combine and dedup data saved throughout
the day into another HDFS location and run predefined retention
policies on a per topic basis. This combining and cleanup pre-
vents having many small files, which reduces HDFS NameNode
memory pressure (a common bottleneck) and improves MapReduce
performance. The final directory layout on HDFS is shown below.
We maintain the history of all topics since creation on a daily ba-

sis, while keeping only the last few days of data at a ten minute
granularity.

/data/<topic1>/day/2012/03/11/[*.avro]

...

/data/<topic1>/minute/2012/03/11/23/[*.avro]

...

At LinkedIn, we maintain two Kafka clusters for activity data:
a primary cluster that is used for production and consumption by
online services, and a secondary cluster that is a clone of the pri-
mary. The secondary cluster is used for offline prototyping and
data loading into Hadoop. The two clusters are kept in sync via a
mirroring process (1 in Figure 1) that is supported by Kafka. In
this process, every broker node in the secondary cluster acts as a
consumer to retrieve and store batched compressed data from the
primary cluster. The primary cluster also supports topics with pro-
ducers from Hadoop (4 from Figure 1), as further explained in
Section 6.2.

As of writing, the Kafka clusters maintain over 100 TB of com-
pressed data for approximately 300 topics. They handle more than
15 billion message writes each day with a sustained peak of over
200 thousand messages per second. Similarly, they support dozens
of subscribers and delivers more than 55 billion messages each day.

4.3 Monitoring
The flow of data between distributed systems and between ge-

ographically distributed data centers for a diverse set of data sets
makes diagnosing problems automatically of the utmost importance.
To achieve this, each step in the flow—producers, brokers, replica
brokers, consumers, and Hadoop clusters—all publish an audit trail
that allows assessing correctness and latency for each data stream
and each tier in the data pipeline. This audit data consists of the
topic, the machine name, the logical processing tier the machine
belongs to, a predetermined time window, and the number of events
seen by a particular machine in that window. By aggregating this
audit data, the system can check that all events published reached
all consumers. This audit is done continuously and alerts if com-
pleteness is not reached in a pre-determined time.

If a researcher or data scientist requires data that is currently not
available, they only need to talk to the engineering team respon-
sible for the feature to register an appropriate schema and make
a straightforward code change to fire said event. Thereafter, data
flows automatically and reliably to all offline systems: the data sci-
entist and the application engineer are completely agnostic to the
underlying process.

For more details on Kafka and LinkedIn’s ingress mechanism,
the reader is directed to Goodhope et al. [11].

5. WORKFLOWS
The data stored on HDFS is processed by numerous chained

MapReduce jobs that form a workflow, a directed acyclic graph of
dependencies. Workflows are built using a variety of available tools
for the Hadoop ecosystem: Hive, Pig, and native MapReduce are the
three primary processing interfaces. To support data interoperability,
Avro is used as the serialization format. Appropriate loaders for
Avro are available for many tools and if a loader is not available, it
is usually not difficult to write one.

Over time, we noticed workflows implementing common func-
tionality, which could easily be extracted out as a library. For exam-
ple, most workflows only require reading subsets of data partitioned
by time. Because the Hadoop-Kafka data pull job places the data
into time-partitioned folders, it became easy to provide wrappers
around input and output for this purpose. In the case of Hive, we cre-

1128

ate partitions for every event data topic during the data pull, thereby
allowing users to run queries within partitions as follows:

SELECT count(1) FROM SearchQueryEvent

WHERE datepartition=’2012-03-11-00’;

Similarly for Pig and native MapReduce, a wrapper helps restrict
data being read to a certain time range based on parameters specified.
Internally, if the data for the latest day is incomplete, the system
automatically falls back to finer granularity data (hourly or 10 minute
granularity). There is also a wrapper around storage formats to ease
writing of data.

These workflows can get fairly complex; it is not unusual to see
workflows of 50–100 jobs. To manage these workflows, LinkedIn
uses Azkaban, an open source workflow scheduler. Azkaban sup-
ports a diverse set of job types, and a collection of these jobs form
a workflow. Each job runs as an individual process and can be
chained together to create dependency graphs. Configuration and
dependencies for jobs are maintained as files of simple key-value
pairs. Through a user interface, researchers deploy their workflows
to a particular Azkaban instance.

Researchers can also visualize and manipulate these dependency
graphs in the Azkaban user interface. Azkaban allows scheduling of
this graph (or subgraph) while maintaining logs and statistics around
previous executions. The system provides monitoring and restart
capabilities for regularly running workflows. If a job should fail,
configurable alerts are triggered and once the problem is remedied,
only the failed subgraph needs to be restarted. For example, if a
pipeline of 100 jobs should fail at job 85, only successive jobs from
job 85 would be restarted. Azkaban also provides resource locking,
though this feature is often not used as most of our data is append
only.

The typical construction of a production workflow is as follows. A
researcher typically first starts experimenting with the data through a
script, trying to massage it into a form they need. If this is a machine
learning application, data cleaning and feature engineering typically
require the most time [13]. Each feature becomes an individual
Azkaban job followed by a join of the output of these jobs into a
feature vector. The researcher can simply set the predecessors of
the feature aggregation job to be each individual feature job. These
features can be trained into a model and we have several packaged
jobs to do this. As the researcher adds or modifies these features,
they configure Azkaban to only execute the changed jobs and their
dependencies; Azkaban handles the rest. As workflows are iterated
upon and mature, they naturally become more complex and Azkaban
becomes more useful.

LinkedIn maintains three Azkaban instances, one corresponding
to each of our Hadoop environments. Azkaban on the ETL grid
manages the Hadoop load (Section 4.2) and is completely hidden
from users of the Hadoop ecosystem. For the development and pro-
duction environments, a researcher first deploys their workflows on
the developer Azkaban instance to test the output of their algorithms.
Once tested in the development environment, every workflow goes
through a production review where basic integration tests are per-
formed and any necessary tuning is done. Post-review, the workflow
is deployed onto the production Azkaban instance. The datasets and
the tool suites are kept in sync across environments to allow easy
reproduction of results.

6. EGRESS
The result of these workflows are usually pushed to other systems,

either back for online serving or as a derived data-set for further
consumption. For this, the workflows appends an extra job at the
end of their pipeline for data delivery out of Hadoop.

This job consists of a simple 1-line command for data deployment.
There are three main mechanisms available depending on the needs
of the application:

• Key-value: the derived data can be accessed as an associative
array or collection of associative arrays;

• Streams: data is published as a change-log of data tuples;

• OLAP: data is transformed offline into multi-dimensional
cubes for later online analytical queries.

An interesting point is that the interface from the live service
is agnostic to this data being generated offline. In other words, a
feature can have its backend easily replaced with a real-time data
consuming implementation with no change to the live service.

6.1 Key-Value
Key-value is the most frequently used vehicle of transport from

Hadoop at LinkedIn and is made possible by the use of Volde-
mort. Voldemort is a distributed key-value store akin to Amazon’s
Dynamo [7] with a simple get(key) and put(key, value) in-
terface. Tuples are grouped together into logical stores, which
correspond to database tables. For example, a store for group recom-
mendations will have a key being the member id of the recommendee
and the value being the list of group ids that we recommend they
join. Each key is replicated to multiple nodes depending on the
preconfigured replication factor of its corresponding store. Every
node is further split into logical partitions, with every key in a store
mapped using consistent hashing to multiple partitions across nodes.

Voldemort was initially built for read-write traffic patterns with
its core single node storage engine using either MySQL or Berkeley
DB (BDB). With the introduction of Hadoop and the generation of
derived data on HDFS, it became important to quickly bulk load
data into the corresponding serving stores. The first use cases at
LinkedIn were recommendation features where we store a list of
recommendation entity ids and scored tuples as its values. Due to
the dynamic nature of our social graph, the immutability of these
values, and large changes in the score component between runs,
it became important to completely replace the full key-space that
was being served in Voldemort. Our initial prototype would build
MyISAM, one of the storage engines of MySQL [25], database files
on a per-partition basis as the last MapReduce job in a workflow,
and then copy the data over into HDFS. Voldemort would then pull
these files into a separate store directory and change the “table view”
serving the requests to the new directory. This was not particularly
scalable due to the data copy costs from the local task filesystem
to HDFS and the overhead of maintaining and swapping views on
MySQL tables.

Due to the pluggable nature of Voldemort, we were able to intro-
duce a custom storage engine tailored to HDFS to solve the copy
problem. The storage engine is made up of “chunk sets”—multiple
pairs of index and data files. The index file is a compact structure
containing a hash of the key followed by the offset to the correspond-
ing value in the data file, with the entire file sorted by the hashed
keys. A key lookup is achieved by running binary search within the
index, followed by a seek into data file. A MapReduce job takes as
its input a dataset and finally emits these chunk sets into individual
Voldemort node-specific directories.

The identity mappers in this MapReduce job only emit the hash of
the key “replication factor” number of times, followed by a custom
partitioner that routes the key to the appropriate reducer responsible
for the chunk set. The reducers finally receive the data sorted by the
hash of the key and perform an append to the corresponding chunk
set. This job supports producing multiple chunk sets per partition,
thereby allowing one to tweak the number of reducers to increase

1129

parallelism. The simple sorted format of chunk sets permits fast
construction.

On the Voldemort side, configurable number of versioned directo-
ries are maintained on a per-store basis with just one version serving
live requests while others acting as backups. After generating new
chunk sets on Hadoop, Voldemort nodes pull their corresponding
chunk sets in parallel into new versioned directories. By adopting a
pull methodology instead of push, Voldemort can throttle the data
being fetched. A check is also performed with pre-generated check-
sums to verify integrity of pulled data. After the pull operation has
succeeded, the chunk set files of the current live directory are closed
and the indexes in the new chunk sets are memory mapped, relying
on the operating system’s page cache. This “swap” operation runs in
parallel across machines and takes a sub-millisecond amount of time.
The last step, after the swap, is an asynchronous cleanup of older
versions to maintain the number of backups. Maintaining multiple
backup versions of the data per store aids in quick rollback to a good
state in case of either data or underlying algorithm problems.

This complete chunk generation, pull, and swap operation is ab-
stracted into a single line Pig StoreFunc that is added by the user to
the last job of their workflow. An example of this is shown below.
This builds chunk sets from data available in “/data/recommenda-
tion”, stores the node level output in a temporary location and then
informs Voldemort to pull data from this directory. Finally, once
the data is pulled completely by all the Voldemort nodes, a swap
operation is performed.

recs = LOAD ’/data/recommendations’ USING AvroStorage();

STORE recs INTO ’voldemort://url’ USING

KeyValue(’store=recommendations;key=member_id’);

As chunk sets generated in Hadoop are immutable and are at the
granularity of partitions, rebalancing of a Voldemort cluster is easy.
The addition of new nodes is equivalent to changing ownership of
partitions, which maps to moving corresponding chunk sets to the
new node. This cheap rebalancing allows us to grow our clusters
with increasing stores and request traffic. This is important, as it
alleviates the need for stringent capacity planning: users push and
change their stores and, as needed, the operations team grows and
rebalances these clusters.

At LinkedIn, we maintain production and development read-only
clusters. Researchers can deploy their data to the development clus-
ter for testing purposes and as a way to hook data validation tools.
We also run a “viewer application” that wraps common LinkedIn
specific entities returned by the development cluster along with
any researcher-specified metadata for displaying purposes. This
provides an “explain” command around any derived data. For ex-
ample, in a predictive analytics application, viewers usually show
the feature weights before model application. This goes a long way
into debugging issues, which can be difficult in a large and complex
workflow, by providing data provenance.

Key-value access is the most common form of egress from the
Hadoop system at LinkedIn. We have been successfully running
these clusters for the past 3 years, with over 200 stores in production.
We have seen consistent 99th percentile latency on most stores to be
below sub 10ms.

A detailed description of the Voldemort key-value egress mecha-
nism is described in Sumbaly et al. [31].

6.2 Streams
The second outlet for derived data generated in Hadoop is as a

stream back into Kafka. This is extremely useful for applications
that need a change log of the underlying data (e.g., to build their
own data structures and indexes.)

This ability to publish data to Kafka is implemented as a Hadoop
OutputFormat. Here, each MapReduce slot acts as a Kafka producer
that emits messages, throttling as necessary to avoid overwhelming
the Kafka brokers. The MapReduce driver verifies the schema to
ensure backwards compatibility as in the ingress case (Section 4.1).
As Kafka is a pull-based queue, the consuming application can read
messages at its own pace.

Similar to Hadoop and the Voldemort case, a Pig abstraction is
provided as a StoreFunc for ease of use. An example script to push a
stream of session-based page-views (into the “SessionizedPageView-
Event” topic) is shown below. A registered schema is required.

sessions = FOREACH pageviews GENERATE Sessionize(*);

STORE sessions INTO ’kafka://kafka-url’ USING

Streams(’topic=SessionizedPageViewEvent’);

Due to Kafka’s design for high throughput, there are no write-
once semantics: any client of the data must handle messages in an
idempotent manner. That is, because of node failures and Hadoop’s
failure recovery, it is possible that the same message is published
multiple times in the same push. This is not a burden for most
applications because they use the data in an idempotent manner as
well (e.g., to update an index.)

6.3 OLAP
The final outlet offered is for structured multidimensional data

(OLAP) for online queries. These online queries allow the end user
to look at the data by slicing and dicing across various dimensions.
Most enterprise OLAP solutions solve this problem by coupling the
two required subsystems: cube generation and dynamic query serv-
ing. At LinkedIn, we have developed a system called Avatara [35]
that solves this problem by moving the cube generation to a high
throughput offline system and the query serving to a low latency
system. By separating the two systems, we lose some freshness of
data, but are able to scale them independently. This independence
also prevents the query layer from the performance impact that will
occur due to concurrent cube computation.

Given that the resulting data cubes are to be served in the re-
quest/response loop of a website, queries must be satisfied in the
order of tens of milliseconds. Importantly, the use cases at LinkedIn
have a natural shard key thereby allowing the final large cube to be
partitioned into multiple “small cubes”. As an example, to provide
analytics on a member’s activity, the cube could be sharded by mem-
ber id as the product would not allow viewing results for another
member.

To generate cubes, Avatara leverages Hadoop as the offline engine
for running user-defined joins and pre-aggregation steps on the data.
To ease the development, we provide a simple configuration file
driven API that automatically generates corresponding Azkaban
job pipelines. The underlying format for these small cubes are
multidimensional arrays (i.e., arrays of tuples), where a tuple is
combination of dimension and measure pairs. This compact format
also makes it easy for the online engine to fetch the full data required
in a single disk fetch. The output cubes are then bulk loaded into
Voldemort as a read-only store for fast online serving. Due to its
extensible architecture, Avatara is not tied to Voldemort and can
support other online serving systems.

From the client query side, a SQL-like interface is provided to
run computations like filtering, sorting, and aggregation operations,
which the query engine optimizes by pushing down the predicate
to the storage system. Because Avatara provides the ability to
materialize at both the offline and online engine, the application
developer has the option to choose between faster response time or
flexible query combinations.

More details on Avatara are available in Wu et al. [35].

1130

(a) “People You May Know” (b) Collaborative Filtering

(c) Skill Endorsements (d) Related Searches

Figure 2: Examples of features using the Voldemort key-value egress mechanism. In these examples, the key is usually some type of

identifier (e.g., a member or company) with the value being a set of recommendations.

7. APPLICATIONS
Most features at LinkedIn rely on this data pipeline either

explicitly—where the data is the product, or implicitly—where
derived data is infused into the application. In this section, we cover
several of these features. All of these applications leverage the Kafka
ingress flow and use Azkaban as their workflow and dependency
manager to schedule their computation at some schedule (e.g., every
4 hours) or based on some trigger (e.g., when new data arrives).

7.1 Key-Value
Key-value access using Voldemort is the most common egress

mechanism from Hadoop. Over 40 different products use this mech-
anism and it accounts for approximately 70% of all Hadoop data
deployments at LinkedIn.

People You May Know.
“People You May Know,” as shown in Figure 2a, attempts to find

other members a user may know on the social network. This is a link
prediction problem [18] where one uses node and edge features in
the social graph to predict whether an invitation will occur between
two unconnected nodes.

The Hadoop workflow has evolved into a large set of feature ex-
traction tasks—signals such as the number of common connections,
company and school overlap, geographical distance, similar ages,
and many others—followed by a model application step. As of this
writing, there are close to a 100 Azkaban tasks and therefore several
hundred MapReduce jobs to build these recommendations every day.
Azkaban helps manage the size and complexity of this workflow:
the engineers on this project divide into particular sub-workflows
where they are each most knowledgeable.

The execution of this workflow is also managed by Azkaban
and alerts are sent to LinkedIn’s operations team if anything goes
awry. The team conducts numerous split or A/B tests and can
stitch in additional signals into the model, test the workflow on the
development Hadoop grid, then quickly publish the new workflow
into the executing system if the results are satisfactory.

The resulting data model of this workflow is to push a key-value
store where the key is a member identifier and the value is a list of
member id, score pairs. The online service for this feature retrieves
these results from the Voldemort store through a simple get, applies
business rules, before the frontend service decorates the results and
presents them to the user.

Collaborative Filtering.
Co-occurrence or association rule mining [1] results are shown

on the website as a navigational aid for the member to discover
related or serendipitous content from the “wisdom of the crowd.”
For example, on a member’s profile, co-occurrence of other viewed
profiles are displayed as shown in Figure 2b. Similarly, on a com-
pany entity page, co-occurrence of other companies users could
view are displayed.

This pipeline initially computed only member-to-member co-
occurrence, but quickly grew to meet the needs of other entity types,
including cross-type (e.g., member-to-company) recommendations.
LinkedIn’s frontend framework emits activity events on every page
visit as part of LinkedIn’s base member activity tracking. A parame-
terized pipeline for each entity type uses these events to construct a
co-occurrence matrix with some entity specific tuning. This matrix
is partially updated periodically depending on the needs of each
entity type (e.g., jobs are ephemeral and refresh more frequently
than companies, which are relatively static.) The resulting key-value
store is a mapping from an entity pair—the type of the entity and its
identifier—to a list of the top related entity pairs.

Skill Endorsements.
Endorsements are a light-weight mechanism where a member

can affirm another member in their network for a skill, which then
shows up on the endorsed member’s profile. As part of this feature,
recommendations on who to endorse are available as shown in
Figure 2c.

A workflow first determines skills that exist across the member
base. This is a deep information extraction problem, requiring dedu-

1131

plication, synonym detection (e.g., “Rails” is the same as “Ruby on
Rails”), and disambiguation (e.g., “search” could mean “informa-
tion retrieval” in a computer science sense or “search and seizure”
in a law enforcement sense.) From this taxonomy, another joins
profile, social graph, group, and other activity data to determine the
canonicalized skills for a member. These stores are pushed as a key-
value store wrapped by a service that exposes an API for any client
to determine a member’s skills and resolve skill identifiers. Once
skills are resolved, another workflow computes the endorsement
recommendations through a model that combines the propensity
for a member to have a skill and the affinity between two members.
The resulting recommendations are delivered as a key-value store
mapping a member id to a list of member, skill id, and score triples.
This data is used by the frontend team to build the user experience.

Related Searches.
LinkedIn’s related search system [27] builds on a number of sig-

nals and filters that capture several dimensions of relatedness across
member search activity. Related search recommendations, as shown
in Figure 2d for the query “Hadoop”, provide an important navi-
gational aid for improving members’ search experience in finding
relevant results to their queries. The search backend emits search
activity events and the resulting store is keyed by search term and,
because the website is international, the locale.

7.2 Streams
Applications that require a push-based model leverage Kafka as

the delivery mechanism. Both online and offline systems negotiate
a predefined Kafka topic, with the offline system producing and the
online system consuming the output. The stream egress mechanism
represents around 20% of all Hadoop-based data deployments at
LinkedIn.

News Feed Updates.
On most consumer websites, news feed generation is driven by

an online system. Updates are generated on a per-member basis
based on interactions with other components in the ecosystem. For
example, a LinkedIn member receives an update when one of their
connection updates their profile. To show deeper analytical updates
requires joining data across multiple sources, which can be time
consuming in a service-oriented manner. For example, to generate
an update highlighting the company that most of a member’s former
coworkers now work for (as shown Figure 3a), requires joining com-
pany data of various profiles. As this is a batch compute-intensive
process, it is well suited for an offline system like Hadoop. Further,
ease of data processing in the Hadoop ecosystem engenders quick
prototyping and testing of new updates.

Each of these offline updates are maintained by workflows run-
ning at different scheduled intervals. The output of each workflow
writes its data in a packaged format to a news feed Kafka topic
using the functionality mentioned in Section 6.2. The news feed
system listens to this topic and stores the updates for online serving,
blending them with online-generated updates.

Email.
Similar to the news feed system, email generation can be either

online or offline. Certain types of emails (e.g., password recovery
or joining a LinkedIn group), are activity driven and require online
generation and delivery. On the other hand, a digest email is well
suited for an offline system. Besides ease of development, running
the computation online results in a bursts of calls to backend services,
impact site performance.

(a) News Feed Updates

(b) Email

(c) Typeahead

Figure 3: Examples of features where derived data is streamed

out of Hadoop into another system using Kafka.

1132

For example, the email shown in Figure 3b shows a member’s
connections that have started a new job in the past 6 months. This is
a fairly straightforward Pig script taking less than 100 lines of code:
one must take a member’s connections, join the requisite profile
data, and run a filter to determine new positions.

The architecture of the email system is similar to the network
update stream with a workflow populating a Kafka stream with
the necessary email content and envelope information. The email
system packages this data with the appropriate template into an
email message that is eventually sent to the user.

Relationship Strength.
The edges in LinkedIn’s social graph are scored by a periodic

offline job as a means to distinguish between strong and weak
ties [10]. These scores are periodically published to a stream and
are read by numerous consumers to populate their own indexes.

For example, LinkedIn’s social graph service, which supports
a limited set of online graph traversals (e.g., degree distance or
shortest paths between nodes), indexes these scores to support graph
operations such as finding the “best” path in the graph. As another
example, LinkedIn supports a search typeahead [17] that attempts
to auto-complete partial queries, as shown in Figure 3c. As another
consumer of this relationship strength stream, the typeahead ser-
vice indexes and uses these scores to display entities that are more
relevant by strength to the member.

7.3 OLAP
The structured nature of LinkedIn profiles provides various mem-

ber facets and dimensions: company, school, group, geography, etc.
Combined with activity data, this can provide valuable insights if
one can slice and dice along various dimensions. OLAP accounts
for approximately 10% of egress usage.

Who’s Viewed My Profile?.
LinkedIn provides users with the ability to view statistics around

members who viewed their profile. For example, in Figure 4a, profile
views are shown faceted by time, industry, and country. Because
this dashboard is generated on a per-member basis, small cubes are
computed offline keyed by member id.

The data generation workflow starts by aggregating profile views
to a coarser “week” level granularity, followed by a join with various
individual dimension datasets. The granularity of the offline rollup
dictates the flexibility of queries online; in this case, any rollups
must be at a minimum of a week level.

The output—a small cube—is a partially materialized list of
tuples of the form (viewer_id, industry_id, country_id, timestamp,
count_measure), where the first 3 fields signify the dimensions
followed by the measure. After this is loaded into a Voldemort
read-only store, the online query engine allows further real-time
group-by, order, and limit requests to retrieve the top dimensions.
This in-memory manipulation of data is very quick, with 90% of
queries being satisfied in under 20 ms.

Who’s Viewed This Job?.
Figure 4b shows an analytical dashboard of members who viewed

a recruiter’s job, delineated by title, time, and company. The job id
is the primary key of the cube, with a similar workflow as “Who’s
Viewed My Profile?,” to generate a cube for 3 dimensions on job
views.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented the end-to-end Hadoop-based ana-

lytics stack at LinkedIn. We discussed how data flows into the

(a) "Who’s Viewed My Profile?"

(b) "Who’s Viewed This Job?"

Figure 4: Examples of features where different flavors of

descriptive statistics are exposed through multidimensional

queries using the OLAP egress mechanism.

offline system, how workflows are constructed and executed, and
the mechanisms available for sending data back to the online system.

As the processing and storage cost of data continues to drop,
the sophistication and value of these insights will only accumulate.
In developing this system, we strived to enable non-systems pro-
grammers to derive insights and productionize their work. This
empowers machine learning researchers and data scientists to focus
on extracting these insights, not on infrastructure and data delivery.

There are a several avenues of future work. MapReduce is not
suited for processing large graphs as it can lead to sub-optimal
performance and usability issues. Particularly, MapReduce must
materialize intermediate data between iterations and the stateless
map and reduce nature yields clunky programming as the graph
must be passed between stages and jobs. This is an active area of
research that we are investing in.

Second, the batch-oriented nature of Hadoop is limiting to some
derived data applications. For instance, LinkedIn provides news ar-
ticle recommendations and due to the ephemeral nature of news (we
need to support “breaking news”), it is built on a separate customized
platform. We are developing a streaming platform that will hook
into the rest of the ecosystem to provide low-latency data processing.

1133

Acknowledgements

The authors are indebted to the numerous engineers from the
LinkedIn data team that have contributed to the work presented
in this paper, our grid operations team for their exemplary man-
agement and guidance, and the invaluable feedback from our data
scientists.

References

[1] R. Agrawal, T. Imieliński, and A. Swami. Mining association
rules between sets of items in large databases. In SIGMOD,
pages 207–216, 1993.

[2] A. Barbuzzi, P. Michiardi, E. Biersack, and G. Boggia.
Parallel Bulk Insertion for Large-scale Analytics Applications.
In Proceedings of the 4th International Workshop on Large

Scale Distributed Systems and Middleware (LADIS), pages
27–31, 2010.

[3] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer. Apache
Hadoop goes realtime at Facebook. In SIGMOD, pages
1071–1080, 2011.

[4] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A
Distributed Storage System for Structured Data. In OSDI,
2006.

[5] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet,
U. Gargi, S. Gupta, Y. He, M. Lambert, B. Livingston, and
D. Sampath. The YouTube video recommendation system. In
RecSys, pages 293–296, 2010.

[6] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI, 2004.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available
Key-Value Store. SIGOPS Operating Systems Review, 41:
205–220, Oct. 2007.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe. ACM

Computing Surveys, 35(2):114–131, 2003.

[9] L. George. HBase: The Definitive Guide. O’Reilly Media,
2011.

[10] E. Gilbert and K. Karahalios. Predicting tie strength with
social media. In CHI, pages 211–220, 2009.

[11] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park,
J. Rao, and V. Y. Ye. Building LinkedIn’s Real-time Activity
Data Pipeline. IEEE Data Eng. Bull., 35(2):33–45, 2012.

[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
wait-free coordination for Internet-scale systems. In USENIX,
2010.

[13] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer.
Enterprise Data Analysis and Visualization: An Interview
Study. IEEE Trans. Vis. Comput. Graph., 18(12):2917–2926,
2012.

[14] I. Konstantinou, E. Angelou, D. Tsoumakos, and N. Koziris.
Distributed Indexing of Web Scale Datasets for the Cloud. In
Proceedings of the 2010 Workshop on Massive Data Analytics

on the Cloud (MDA), pages 1:1–1:6, 2010.

[15] J. Kreps, N. Narkhede, and J. Rao. Kafka: A Distributed
Messaging System for Log Processing. In Proceedings of the

NetDB, 2011.

[16] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy. The unified
logging infrastructure for data analytics at Twitter. Proc.

VLDB Endow., 5(12):1771–1780, Aug. 2012.

[17] G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead search on
relational data: a TASTIER approach. In SIGMOD, pages
695–706, 2009.

[18] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In CIKM, pages 556–559, 2003.

[19] J. Lin and A. Kolcz. Large-scale machine learning at Twitter.
In SIGMOD, pages 793–804, 2012.

[20] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering. IEEE

Internet Computing, 7(1):76–80, Jan. 2003.

[21] P. Mika. Distributed Indexing for Semantic Search. In
Proceedings of the 3rd International Semantic Search

Workshop (SEMSEARCH), pages 3:1–3:4, 2010.

[22] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan.
Distributed Cube Materialization on Holistic Measures. In
ICDE, pages 183–194, 2011.

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: a not-so-foreign language for data processing. In
SIGMOD, pages 1099–1110, 2008.

[24] S. Owen, R. Anil, T. Dunning, and E. Friedman. Mahout in

Action. Manning Publications Co., Greenwich, CT, USA,
2011.

[25] S. Pachev. Understanding MySQL Internals. O’Reilly Media,
2007.

[26] A. Rabkin and R. Katz. Chukwa: a system for reliable
large-scale log collection. In LISA, pages 1–15, 2010.

[27] A. Reda, Y. Park, M. Tiwari, C. Posse, and S. Shah. Metaphor:
a system for related search recommendations. In CIKM, 2012.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop Distributed File System. In Proceedings of the 2010

IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), pages 1–10, Washington, DC, USA,
2010.

[29] A. Silberstein, B. Cooper, U. Srivastava, E. Vee, R. Yerneni,
and R. Ramakrishnan. Efficient Bulk Insertion into a
Distributed Ordered Table. In SIGMOD, pages 765–778,
2008.

[30] A. Silberstein, R. Sears, W. Zhou, and B. Cooper. A batch of
PNUTS: experiences connecting cloud batch and serving
systems. In SIGMOD, pages 1101–1112, 2011.

[31] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and
S. Shah. Serving Large-scale Batch Computed Data with
Project Voldemort. In FAST, 2012.

[32] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive—a
petabyte scale data warehouse using Hadoop. In ICDE, pages
996–1005, 2010.

[33] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. S.
Sarma, R. Murthy, and H. Liu. Data warehousing and
analytics infrastructure at Facebook. In SIGMOD, pages
1013–1020, 2010.

[34] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
2010.

[35] L. Wu, R. Sumbaly, C. Riccomini, G. Koo, H. J. Kim,
J. Kreps, and S. Shah. Avatara: OLAP for web-scale analytics
products. Proc. VLDB Endow., pages 1874–1877, 2012.

1134

