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ABSTRACT

Data streaming systems are becoming essential for monitoring ap-
plications such as financial analysis and network intrusion detec-
tion. These systems often have to process many similar but differ-
ent queries over common data. Since executing each query sepa-
rately can lead to significant scalability and performance problems,
it is vital to share resources by exploiting similarities in the queries.
In this paper we present ways to efficiently share streaming aggre-
gate queries with differing periodic windows and arbitrary selec-
tion predicates. A major contribution is our sharing technique that
does not require any up-front multiple query optimization. This is a
significant departure from existing techniques that rely on complex
static analyses of fixed query workloads. Our approach is partic-
ularly vital in streaming systems where queries can join and leave
the system at any point. We present a detailed performance study
that evaluates our strategies with an implementation and real data.
In these experiments, our approach gives us as much as an order of
magnitude performance improvement over the state of the art.

1. INTRODUCTION

Data streaming systems are increasingly used as infrastructure
for critical monitoring applications such as financial alerts and net-
work intrusion detection. At Berkeley, we have built such a sys-
tem, TelegraphCQ [6], in the context of the HiFi [12] project that
is aimed at managing data from widely dispersed receptors.

These monitoring applications often have many concurrent users
asking similar but different queries over a common data stream.
For example, a system that monitors stock market trades might
have multiple users interested in the total value of trades in a slid-
ing window. While some of these users might care about stocks
of a particular sector, or only about high volume trades, others
might compute complex user-defined predicates (as suggested in
CASPER [9]) on fluctuating quantities like stock price. Similarly,
the aggregation window that different users are interested in can
vary widely. Money managers in financial institutions who run al-
gorithmic trading systems might want aggregates over 5-10 minute
windows reported every 60-90 seconds depending on the specific
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financial models they use. In contrast, day traders with individ-
ual investing strategies might only need these results every 5-10
minutes. Clearly such a system will have to support hundreds of
queries, each with different predicates, and sliding windows.
Using a naive approach to execute such queries separately can
lead to scalability and performance problems as each additional
query adds significant load to the system. When the load becomes
too high, the system has to either limit the number of queries, or
resort to load shedding [31] and drop tuples. Instead, we exploit
similarities in the queries to share resources and thus scale better.

Aggregate Queries Techniques
Predicates [ Windows Shared Section
Same Different Slices 3
Diffferent Same Fragments 4
Different | Different Shards 5

Table 1: A staged approach to shared aggregation

In our scenario, a stream processor needs to support hundreds
of aggregate queries that differ in their predicates and windows.
In this paper, we attack this problem in stages, by considering in
turn query sets with the characteristics shown in Table 1. The ta-
ble lists the technique we have developed for each case, and the
section that explains it. We first focus on queries that differ only
in their window specifications. Next we show how to share aggre-
gate queries that have varying selection predicates. Finally, we put
these techniques together to solve our problem of sharing aggregate
processing for queries with different windows and predicates.

Shared processing has been studied for Multiple Query Opti-
mization (MQO) in static databases [29, 28, 18, 10], as well as with
streams [7, 23, 21]. These earlier approaches statically analyze a
fixed set of queries in order to find an optimal execution strategy.
We argue against this “compile-time” approach for two reasons:

1. Dynamic Environment. Queries can join and leave a stream-
ing system at any time. A static approach would require ex-
pensive recompilation (Aurora [4]) at each such event, con-
suming precious system resources.

2. Complexity of Analysis. It turns out that for the specific
problem that we consider, i.e., shared aggregation with vary-
ing windows and selections, static analysis is prohibitively
expensive. This is because of the high cost of analysis for
varying windows (Section 3.3), and because of the complex-
ity and unknowns in isolating common sub-expressions in a
set of arbitrary predicates (Section 4.2).

In contrast to these previous approaches, our techniques operate on
the fly and focus on the data, with very little upfront query anal-
ysis. This lets us support complex multi-query optimization in
an extremely dynamic environment. Beyond streaming systems,



our fragment sharing approach can be used in traditional static
databases, in order to share aggregate queries that have different
predicates. We now summarize, our main contributions:

1. Shared Time Slices (STS). A new technique to share the
processing of aggregates with varying windows that chops
the input stream into time slices. We prove that our new
paired window technique is an optimal method to form such
slices. (Section 3)

2. Shared Data Fragments (SDF). A novel approach to share
the processing of aggregates with varying arbitrary selection
predicates that breaks the input data into disjoint sets of tu-
ples. (Section 4)

3. Shared Data Shards (SDS). An innovative way to combine
STS and SDF to share aggregates with varying windows and
predicates. We know of no other approach to sharing ag-
gregates that supports more than one kind of variation in the
queries. (Section 5)

4. On-the-fly MQO. A common feature of all our techniques
is that they operate on data on-the-fly and require no static
analysis of the queries as a whole. This is vital in a dynamic
streaming system, and very promising in static systems.

5. Performance study. We validate our approach with a study
of an implementation of these techniques that evaluates their
performance with a real data set. (Section 6).

We first present necessary background in Section 2 below.

2. BACKGROUND AND RELATED WORK

In this paper we consider distributive (e.g., max ,min, sum, and
count) and algebraic (e.g., avg) aggregates as classified by Gray et
al. [15]. These are typical aggregates in database systems, and can
be evaluated with constant state independent of the size of their
input. Further, they can be computed using partial aggregates over
disjoint partitions of their input,' a technique used with parallel
databases (e.g., Bubba [3]), sensor networks (e.g., TAG [24]) and
streams (e.g., STREAM [1], PSoup [5]).

2.1 Windowed Aggregation

Since data streams are unbounded, aggregates over them gener-
ally have a window specification. In CQL[2], a window is specified
with a RANGE, and an optional SLIDE clause. For example, Query 1
computes the total value of high volume trades in “12 minute” win-
dows (range), reporting these results at “5 minute” intervals (slide).

Query 1 Total value of high volume xacts

SELECT sum(T.price * T.volume)
FROM Trades T [RANGE ‘12 min’ SLIDE ‘5 min’]
WHERE T.volume > 50000

We call a window with a slide periodic, and one without a slide
non-periodic, or on-demand. A periodic window can be classified
based on its range r and slide s as follows:

1. Hopping: when r < s, each window is disjoint.

2. Tumbling: when r = s, the windows are disjoint and cover
the entire input.

3. Overlapping: when r > s, each window overlaps with some
others.

We focus on queries that compute aggregates over periodic overlap-
ping windows of streams, such as Query 1. With non-overlapping
(hopping or tumbling) windows, such aggregates are easily com-
puted and only require constant space, as a tuple can be discarded

"The functions used for the partial aggregates can, in general, be
different from those for the overall aggregate.
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after being accumulated in the aggregate. In contrast, with overlap-
ping windows a tuple is included in multiple windows and cannot
be discarded in this way. Our sharing techniques are easily ex-
tended to non-overlapping windows.

In our implementation, we assume that an aggregate operator has
heartbeats in its input so that it can produce results even if its input
rate drops, or if there is a very selective predicate upstream [16].
Golab et al. [13] present a general treatment of this area.

2.2 Shared query processing

Shared aggregate processing has been studied in the MQO and
materialized view literature for static databases. A big focus of
this work has been for OLAP environments where queries differ in
their grouping parameters. Harinarayan et al. [18] show how to
efficiently compute data cubes by computing coarse grained aggre-
gates from fine grained partial aggregates. Deshpande et al. [10]
show a similar approach to share multi-dimensional aggregates us-
ing fine-grained chunks. The chunks approach also allows variation
in predicates, but only when the predicates are exclusively over the
grouping attributes. The work on chunks and data cubes was ex-
tended by Srivastava et al. [30] for a memory limited stream pro-
cessor such as Gigascope [8], where the queries can only differ in
their grouping parameters.

In streaming systems, Arasu et al. [1] explored shared process-
ing of aggregates with varying non-periodic windows. While this
work lets users specify different range intervals, it cannot exploit
the cases where users are ready for results to be pushed to them pe-
riodically, and thus incurs heavy space and time overheads. Further,
a shared aggregate that produces results on demand is not suitable
for a streaming view whose results are used in other queries, since
its on-demand nature forces it to be only used as the final operator
in a string of queries. In fact, a composition of multiple queries is
likely to get more specialized downstream (especially with selec-
tions) where there are fewer sharing opportunities.

Shared processing of queries with varying selection predicates
and join windows has been studied extensively in streaming sys-
tems. Hammad et al. [17] showed how to share queries that have
varying join window specifications. Work that focuses on sharing
predicate evaluation in the presence of joins include NiagaraCQ [7],
CACQ [23], and TULIP [21]. Although these papers study varia-
tions in windows and predicates, none of them permit aggregates,
which is vital in processing high volume streams like stock trades.

Thus, the major open problems for shared processing of stream-
ing aggregates is for queries with varying arbitrary predicates, and
with varying periodic windows. The former case is open for static
databases as well. This paper fills these lacunae in the literature.

3. VARYING TIME WINDOWS

In this section we address the first phase of our problem, i.e.
sharing aggregates with varying windows. We develop Shared Time
Slices (STS), a new technique for this case. We will use STS in
Section 5 in solving our main problem of sharing aggregates with
varying windows and predicates. STS can offer over an order of
magnitude improvement over the state of the art unshared tech-
niques. The queries that we consider here have identical predicates,
and differ only in their periodic time windows, like Query 2 below.

Query 2 Total sliding window transaction value

SELECT
FROM

sum(T.price * T.volume)
Trades T [RANGE ‘r’ SLIDE ‘s’]

Our approach chops an input stream into non-overlapping slices
of tuples, that can be combined to form partial aggregates, which
can in turn be aggregated to answer each query. We first explain



how to slice a stream for a single query using our new technique,
paired windows, that is a significant improvement over earlier work.
Next we show how to combine paired windows of multiple queries
to produce partial aggregates over slices of the input that can still
answer each query. Finally, we show why it is not feasible to com-
bine paired windows statically, and instead present a Slice Manager
that accomplishes this on the fly.

3.1 Slicing a stream with paired windows

Here we show how to efficiently process a single aggregate query
with a periodic overlapping window. The idea of chopping a stream
into slices was first introduced by Li [22] in the paned window ap-
proach where all the slices are of equal sizes and are called “panes”.
We improve on this with paired windows which chops a stream into
pairs of possibly unequal slices. The paired windows technique
is superior to paned windows as it can never lead to more slices.
While both paned and paired windows can be used in our shared
slices approach for processing multiple aggregates, we prove in
Section 3.2 that paired window always produces better, or at least as
good, sharing than paned windows. Paned and paired windows are
both special cases of what we call non-overlapping sliced windows.
We now define overlapping, and non-overlapping sliced windows.

Definition 1 (Overlapping) An overlapping window W with range
r and slide s (r > s) is denoted by W [r, s| and is defined at time t,
as the tuples in the interval:

[t —rt] iftmods=0,
0] otherwise.

Definition 2 (Sliced) A sliced window W that has m slices is de-
noted by W (s1,...,8m). We say that W has |W| slices, a pe-
riod s = s1 + -+ + Sm, and that each slice s; has an edge
e; = 81+ -+ si. At time t, W is the tuples in the interval:

[t —si,t] ftmods=e; 1<i<m
10} otherwise.

Intuition. An aggregate over an overlapping window W{r, s| can
always be computed by a two-step process that aggregates partial
aggregates over a sliced window V' (s1, ..., Sk, ..., Sm) With pe-
riod s, if and only if, sy + --- + s» = r mod s. These sliced
windows can be paned or paired, defined as:

1. Paned: X(g, .., g); g is greatest common divisor of r and s.

2. Paired: Y (s1,82); s2 =7 mod s and s1 = s — s2.
This intuition is based on the following Lemma. We omit the proof
due to space constraints.
Lemma 1 An aggregate over a window W r, s| can be computed
from partial aggregates of a window V (s1,...,8k,...,Sn) with
period s if and only if:

Sk + -+ 8, =7 mod s

While paned windows break a window of period s into s/g slices
of equal size g, paired windows split a window into a “pair” of ex-
actly two unequal slices. Let A be the aggregate function we are
computing over W{r, s]. The partial aggregation step uses a func-
tion G, and the final aggregation step uses a function H.> In the
partial aggregation step, we apply the function G over all the tuples
in each slice of V. In the final aggregation step, an overlapping
window aggregate operator buffers these partial aggregates (that
we call “sliced aggregates™) and successively applies the function
H on these sets of sliced aggregates to compute the query results.
For example, Figure 1 shows how an aggregate over a window
W18, 15] can use X (3,3,3,3,3), a paned window of 5 slices,
or a paired window Y (12, 3).

“Since A is distributive or algebraic, G and H always exist. For
example, if A is count, then G is count and H is sum.

: s T : : LT :
[EEEEEEENEEENEEEE] RANGE: 18 seconds H:H:H:h
SLIDE: 15 seconds

L] 15 30 45 L] 15 30 45

Paned Windows Paired Windows
(3,3,3,3,3) seconds (12,3) seconds

Figure 1: Paned vs Paired Windows

We now analyze the relative costs of executing a single sliced
window aggregate using the paired and paned window approaches.
Our analysis focuses on the costs of partial and final aggregation.
Let T" denote the set of tuples in each period s of the overlapping
window W r, s]. We measure costs in terms of the number of ag-
gregate operations needed to process the tuples in 7" and summarize
it for paned windows, and worst-case paired windows in Table 2.

l Technique [ Partial [ Final ‘
Paned [T (1/g)r
Paired (worst-case) |T| [(2/s)r]

Table 2: Complexity of Paned and Paired Windows

In both cases the partial aggregate step requires | 7| operations.
The cost of final aggregation depends on the number of partial ag-
gregates, and so the number of slices, in a window period (its slide).
If there are m such slices in a period s, the number of final aggrega-
tions in each period, i.e., the number of partial aggregates that are
buffered, is m(r/s). In a period s, paned windows always have s/g
slices while paired windows have either 2 slices (worst-case when
r mod s # 0) or 1 slice. This results in a final aggregate cost of
(s/g)(r/s) for paned windows, and [2r/s] for paired windows in
the worst case (and /s in the best case). Since the paired win-
dow option never has more slices than paned windows, it is always
faster than, or at least as fast as, paned windows. For the rest of the
paper we focus on paired sliced windows. We will also compare
the performance of paired and paned windows in Section 6.

3.2 Combining multiple sliced windows

Here we show how to combine the paired, or paned, sliced win-
dows of a set of queries in order to efficiently answer each individ-
ual query. We will prove that the paired window approach is the
optimal way of using non-overlapping sliced aggregates to process
multiple aggregate queries with differing periodic windows.

We start with Q, a set of n queries that compute the same ag-
gregate function over a common input stream, where each query
has different range and slide parameters. More precisely, each
query Q; in Q has range r; and slide s;. These queries can be
like Query 2, with different values for r and s, even where r and s
are relatively prime. For simplicity we further assume that for all 7,
r; mod s; # 0 (the worst case for paired windows).

Q1 XX QAn QA1 XX Q

Iy " ® Overlapping Window
+ : Aggregate Operator

@ Buffer for Overlapping
Window Aggregate

@ Single Sliced Window
Aggregate Operator

Shared Sliced Window
Aggregate Operator

(b) Shared Sliced O Stream Scan Operator

(a) Unshared Sliced

Figure 2: Possible plans for multiple queries

The queries in Q can be processed in either an unshared or shared



fashion. We consider each alternative in turn:

1. Unshared sliced aggregation: We process each query sep-
arately using paired windows, as shown in the query plan in
Figure 2(a). The stream scan input is replicated to each of the
n operator chains with a single sliced window aggregate that
produces partial aggregates, which are fed to an overlapping
window aggregate operator.

2. Shared sliced aggregation: We compose the paired win-
dows of each query in Q into a single common sliced win-
dow (details below). Figure 2(b) shows the input stream
processed by a shared sliced window aggregate producing a
stream of partial aggregates, that is replicated to the n over-
lapping window aggregates.

3.2.1 Explicit common sliced window composition

We now show how to compose multiple sliced windows of the
queries in Q to form a common sliced window. Partial aggregates
computed with the common sliced window can then be used to an-
swer each individual aggregate query. The main requirement is
that the partial aggregates over the common sliced window must
be computed at every unique slice edge of each individual sliced
window.

Sliced windows can be composed only if they have the same pe-
riod. Thus the period of a composite sliced window is the low-
est common multiple (Icm) of the periods (or slides) of individ-
val windows. With unequal periods, windows are stretched to the
common period (lcm) by repeating their slice vectors. For exam-
ple, Figure 3 shows how to compose two sliced windows U (12, 3)
and V(6,3). Here U and V have differing periods (15 and 9),
and we stretch them respectively by factors of 3 and 5 to pro-
duce U®(12,3,12,3,12,3) and V*(6,3,6,3,6,3,6,3,6,3). We
then compose U3 and U® to produce a new composite sliced win-
dow W (6,3,3,3,3,6,3,3,3,3,6,3). Note that ovals show shared
edges in U® and V.

23 U%(12,3,12,3,12,3)
[ = [_IN_ANl |

STRETCH

= ) (6,3,3,3,3,6,3,3,3,3,6,3)
V(6,3) V5(6,3,6,3,6,3,6,3,6,3)

Figure 3: Composing sliced windows

We can now analyze the relative complexities of the unshared
and shared approaches in processing the queries in Q. Let .S repre-
sent the composite period (Icm) of {s1,...,sn}, the slides of the
queries in Q, and let T" be the set of input tuples processed in the
composite period S. Let E represent the number of slices, and the
number of partial aggregates, formed in the common sliced window
with period S. The partial aggregation step costs n|T'| for unshared
sliced, and |T| for shared sliced aggregation. In the unshared sliced
approach, the cost of the final aggregation step for query @Q; at each
period s; is, [2r;/s;] from Table 2. Over a composite period S,
there are S/s; steps, causing a per-query cost of (S/s;)[2r/s;].
In the shared sliced case, the cost of the final aggregation cost for
the query @; at each period s; is (E/S)s;[ri/si], leading to the
total per-query cost of (S/s;)(E/S)r; over the composite period
S. These costs are summarized in Table 3 below.

3.2.2 To share, or not to share

While the total final aggregation cost without sharing is always
less than that with sharing, the total partial aggregation cost in the
unshared case is always more than in the shared case. Let A rep-
resent the input data rate and ~y represent the rate at which partial
aggregates are produced by the shared sliced window. Over a com-
posite period S, Ais |T'|/S and y is E/S. We can solve for A and
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Technique ‘ Partial ‘ Final ‘
Unshared sliced | n|T| | >, (S/s:)[2r:i/s:]
Shared sliced |T| > E(ri/s:)

Table 3: Unshared versus Shared Aggregation

say that the shared approach is always better, as long as the input
rate A is high enough, as required by the following inequality (1).

A > (WEin/si — 222'7’1'/(81‘2))/(11 e 1) (D

The critical factor is the “extent” of sharing in the common sliced
window, and is reflected by the common partial aggregate data rate
~. In theory, with a very low input rate it may be better not to share.
In practice, however, low input rates are unlikely. When they do
occur, the shared and unshared approaches both cost so little, that
the choice does not matter.

As an example, let us consider our motivating example that uses
stock market data. We obtained a data trace of trades on the NYSE
and NASDAQ for December 1,2004 from the NYSE TAQ [27] and
NASTRAQ [26] databases. For this trading data, we found that the
input rate \ is approximately 375 tuples a second. For the query
workloads that we consider where the slide varies between 5 and
10 minutes and the range between 10 and 15 minutes, it is always
better to share. We analyze this workload assuming a constant real
data rate of 375 tuples/second and an artifical data rate of 0.0005
tuples/sec in Figure 4. Clearly, for the real data rate, the shared
approach heavily outperforms the unshared approach. For an ar-
tificial data rate that is very low (= 1.8 tuple/hour), the unshared
approach is better for 83 or more queries. These simulation results
are confirmed with time measurements from a real implementation
that are presented in the performance study in Section 6.

Input Rate: 1.8 tuples/hour
250000 T T

200000 - e

150000 - 1

Unshared =
100000 - 1

Total Aggregations (Partial+Final)

50000

Queries
Input Rate: 375 tuples/sec

1.4e+11 T T

12e+11 | R
Te+11 - —
8e+10 | T B

6e+10 |- T 4
Unshared

4evt0 | o g

Total Aggregations (Partial+Final)

Shared
2e+10 . Bl

o L=
0 20

40
Queries

60 100

Figure 4: Analysis: Shared vs Unshared

3.2.3  On the optimality of shared paired windows

While we already know that paired windows outperform paned
windows for individual queries, we now show that shared sliced



aggregation is faster using paired windows as compared to paned
windows. In Theorem 1 we show that composing paired windows
leads to a lower number of edges E, in a composite period .S than
composing paned, or any other sliced, window. We know from
Table 3 that a smaller value for £/ lowers the cost of shared sliced
aggregation, and so using paired windows is always optimal.

Theorem 1 Let W be {W1(r1,$), ..., Wn(rn,s)}, asetof n win-
dows. Let W be the common sliced window formed by composing
the paired windows of each W; in W. There exists no common
sliced window W' formed by composing any other sliced window
of each W; in W, where |[W'| < |W|.

Proof: Without loss of generality, let each W; have identical slide
s (or else stretch as in Section 3.2). So every sliced window of each
Wi has edges at 0 and s. The paired window for each W; has only
one other edge at s — r; mod s. From Lemma 1 every sliced win-
dow of each W; must also have an edge at s — r; mod s. Thus, the
edges of the paired windows for each W; must exist in all possible
sliced windows of W;. Since the edges of a composite sliced win-
dow are the union of all edges of its constituents, any composition
W' of arbitrary sliced windows must include every edge of W, the
composition of paired-window rewritings and |W| < |W’|. a
For the rest of this paper, unless mentioned otherwise, we always
refer to paired windows when we talk about sliced aggregation.

3.3 On-the-fly sliced window composition

In Section 3.2 we saw how to explicitly compose sliced windows
to form a common sliced window that can be used to efficiently
process all queries in Q. While composing sliced windows is con-
ceptually simple, the resulting common sliced window can have a
very long period (Icm of individual periods) with a large number of
slices. Even tens of queries each with periods under 100 seconds
can produce a composite sliced window with a period of 10° sec-
onds and hundreds of thousands of slices. Such a window with a
large slice vector consumes a lot of space and is expensive to com-
pute. Here we present an elegant alternative, that produces a stream
of partial aggregates for the common sliced window “on-the-fly”
without explicit composition.

Paired
Windows

Sliced Window
Aggregate Operator

R
LIS

Heartbeats

Slice 7

Manager

N
Tt

Sliced
Tuples Slices of Tuples Aggr::geates

Figure 5: Slice Manager: Partial Aggregates

In our approach, we have a Slice Manager that keeps track of
time and determines when to end the next slice, i.e., the time of the
next slice edge. Figure 5 shows the Slice Manager demarcating the
end of each slice with a heartbeat tuple. This heartbeat is a signal
for the downstream sliced window aggregate operator, that it is time
to emit partial sliced aggregates. This approach is very similar to
the well-known sorting strategy for grouped aggregation [14].

The pseudocode for the core routines of the Slice Manager are
shown in Algorithm 1. For simplicity we assume that each individ-
ual window W;(a,b) is a paired window, although the technique
is easily extended to arbitrary sliced windows. Our algorithm is
initialized with a set of paired windows, W7, ..., W, by calling
addEdges to add the edges of the first slice of each paired win-
dow to a priority queue H with operations (enqueue,dequeue and
peek). Each edge identifies its time, the window it belongs to, and a
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Algorithm 1 Slice Manager

proc addEdges(H, ts, W (a, b))
enqueue(H, edge(ts + a, W, false));
enqueue(H, edge(ts + a + b, W, true));

end

proc initializeWindowState ({W71, . .
initializePriorityQueue(H );
fori:=1ton

addEdges(H, 0, W;);
end

end

proc advance WindowGetNextEdge (H )
comment: Discard all edges at current time t..
comment: Add new edges of subsequent periods.
var Edge e.;
var Time t. <« peek(H) . time;
while (¢t == peek (H) . time)

ec < dequeue(H);

- Wa})

if (ec . last == true)
then addEdges(H, e. . time, e..window);
fi
end
return ¢.;
end

boolean that records if it is the last slice in the window. The queue
is ordered by increasing edge times. The SliceManager repeatedly
calls advanceWindowGetNextEdge which returns the time of the
next slice edge. At each call, this function discards all edges with
the same time and at the top of the queue. If any edge belongs to
the last slice of a window, it calls addEdges to add another set of
edges for it. The Slice Manager passively outputs each input tu-
ple, except when it receives a tuple with a timestamp greater than
that of the next slice edge. At this point, it first inserts a heartbeat
tuple in the output stream. When a query leaves the system, all
edges corresponding to it are removed from the priority queue of
the Slice Manager. Similarly, when a new query joins the system,
appropriate edges are created for it by calling addEdges with the
current time and the new paired window as an argument.

To summarize this section, we showed how to efficiently pro-
cess a set of streaming aggregate queries with identical selection
predicates but varying periodic windows. A key feature of our im-
plementation is that it does not require any static analysis of the
query set, and can easily accomodate the addition and removal of
queries.

4. VARYING SELECTION PREDICATES

In this section, we shift our focus to the other half of our problem,
i.e., sharing the processing of aggregates with varying predicates.
We develop Shared Data Fragments (SDF), a novel technique for
this problem. Later, in Section 5, we will combine SDF with STS,
our solution to the first half of the problem, to achieve our goal of
shared processing of aggregate queries with varying windows and
predicates. Our SDF technique can offer up to an order of magni-
tude improvement over the state of the art unshared techniques.

We begin with a precise problem formulation. Next, we present
the intuition for shared fragments. Finally, we explain our novel on-
the-fly scheme that obviates the need for static analysis of queries.

4.1 Problem Statement

We start with Q, a set of n streaming aggregate queries that each
compute the same aggregate function with an identical sliding win-
dow over an input stream where each query applies an arbitrarily



complex selection predicate. The predicate can include conjuncts,
disjuncts, and even complex user-defined predicates. We say that
the query @; in Q has a complex predicate p(Q;) (abbreviated to
pi) and an ungrouped aggregate A. For simplicity, we assume that
each query (); has a tumbling window W (i.e., where the RANGE
and SLIDE parameters are the same) and is similar to Query 3.

Query 3 Total value of low volume mid-cap xacts

SELECT sum(T.price * T.volume)
FROM Trades T [RANGE ‘5 min’ SLIDE ‘5 min’]
WHERE  (T.volume > 100) AND midcap(T.symbol)

Let W split the input stream into contiguous sets of tuples, and
let T' denote such a set. For ease of exposition, we focus on aggre-
gation for a single set of tuples 1" for the rest of this section. Since
we consider tumbling windows here, we merely have to apply our
techniques for each subsequent set of tuples. We represent the sub-
set of T' that satisfies p; by p; (T) Thus, we need to compute for
each query Q;, the aggregate A(p;(7")) that we denote by A; (7))
over the set of tuples 7.

p4(T) Multiple Aggregates

Pa(T)

Figure 6: Unshared Aggregation

In many state-of-the-art systems such as TelegraphCQ [6] or
STREAM [25], the tuples in 1" are processed by evaluating the
predicates of all queries over each tuple in 7'. For many kinds
of selections, systems like TelegraphCQ [20] and NiagaraCQ [7]
build an index of the predicates to efficiently process tuples. After
these predicates are processed, however, the input set 7' is split into
n subsets that are each aggregated separately, a process we call un-
shared aggregation (Figure 6). Our goal in this section, is to reduce
the total number of aggregate operations, and hence the associated
cost, in evaluating such queries.

4.2 The Intuition

The main intuition is to use the predicates {p1, ..., pn} to parti-
tion the tuples in a window of the input stream into disjoint subsets
that we call fragments. The tuples in each fragment can then be
aggregated to form partial fragment aggregates which can in turn
be processed (via another aggregation) to produce the results for
the various queries. In other words, a set of tuples 7" in a window
of the input stream, is partitioned into {Fo, F1, ..., Fi}, a set of
k + 1 disjoint fragments:

T=FRUFRUF- - Fy

Each fragment F; is associated with a subset of the query set QQ that
we denote by Q(F;) € 29, where every tuple in the fragment F;
satisfies the predicates of every query in Q(F3), and no other query.
Our convention is that Fy is a special fragment whose associated
query set Q(Fp) is the empty set ¢. The tuples in Fy satisfy none
of the predicates {p1, ..., pn}, and thus do not need to participate
in the aggregates of any query and can safely be ignored. Formally,
each fragment F; is created by applying the predicates p1, ..., pn
on tuples in 7™

Fi = {t|(t € p(q)Vq € Q(F:)) A (t € p(q)Vq & Q(F:))}
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Example 1 Consider a set of 3 queries Q1,Q2, and Q3 with pred-
icates p1, p2 and ps3. These result in a set of 8 possible fragments

{Fo, ..., Fr} with signatures as shown in Figure 7.
F, ﬁ T
(000)
e
Ps(T)
Figure 7: All possible fragments
Partial
Aggregarmn
||||||||||||||||-) s - S, E@@
QT,_J Hﬂf/ é> @ é>| st

Figure 8: Conceptual View of Shared Fragments

Once we partition the set of tuples 7" into fragments we can effi-
ciently compute the individual aggregates as shown conceptually
in Figure 8. The basic idea is to split the aggregation process into
two steps. First, in the partial aggregation step, we aggregate the
raw data in each fragment F; to produce a fragment aggregate with
the value G(F;) and denoted by G;. Then, in the final aggrega-
tion step, we aggregate these fragment aggregates to produce each
query’s results. As in Section 3.1, we denote the aggregation func-
tions used in the partial and final steps by G and H respectively.
Thus A;(T), the result of the aggregate query Q; is given by:

Ay(T) = H{G(F;) | VF},Qi € Q(Fj)} 2

For the queries in Example 1, each aggregate can be computed from
the fragments { Fo, ..., Fr} as follows:

A(T) = A(p1(T)) = H{G(F1), G(Fs),G(Fs), G(Fr)}
A2(T) = A(p2(T)) = H{G(F2), G(F}),G(Fs),G(F7)}
As(T) = A(ps(T)) = H{G(F1),G(F}),G(F5),G(F7)}

Our approach uses a dynamic implementation of this conceptual
notion of shared fragments. One can, however, conceive of a more
traditional static implementation in the vein of other MQO work.
We now explain why such a hypothetical approach is not suitable
for dynamic streaming environments.

A static approach would use a priori analysis of the fixed set of n
queries in Q, to determine which of the 2" possible fragments can
actually occur. This, however, would involve determining the sub-
sumption relationships between the predicates of various queries,
which is known to be computationally expensive [19]. Further, the
system would need to manage this set of possible fragments, and
for each tuple, efficiently compute which fragment it actually be-
longs to. Since there can be an exponential number of fragments,
managing them can be expensive.

Even if it were possible to statically analyze the queries, the high
cost of fragment management is difficult to ameliorate. This is be-
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Figure 9: Dynamic Shared Fragments: Partial Aggregation

cause a static technique may not reveal a tight upper bound on the
number of fragments, and will hence have high overheads. Static
techniques can make pessimistic estimates of the number of frag-
ments for the following reasons:

1. The predicates that we target can be arbitrarily complex and
include opaque user-defined functions that cannot, in gen-
eral, be easily analyzed.

2. A static analysis may not have access to information such as
functional dependencies, or correlations, between attributes
and might overestimate the number of fragments. In stream-
ing systems, these might even vary significantly over time.
For instance, in our stock trading application, heavy price
fluctuation may be more often accompanied by high volume
trades when the market is falling, than when it is stable.

3. Most importantly, in a streaming context, the real number of
fragments is actually bounded by |7'|, the number of tuples in
a window. This number is not fixed, especially when we con-
sider in Section 5, aggregate queries with varying selections
and windows.

Beyond the fact that a static analysis of possible fragments is hard,
and not complete in general, it is very unsuitable for the dynamic
requirements of a data stream processor. A single query joining or
leaving the system, can greatly affect the fragment computations.
Thus, while the conceptual model of shared fragments that we in-
troduced here is useful, we believe that a traditional MQO-style
static analysis is not suitable for a data streaming system, and inap-
propriate for a traditional system.

4.3 Dynamic Shared Fragment Aggregation

We now describe our dynamic implementation of Shared Data
Fragments. The main insight is that we can use existing data stream-
ing technology to efficiently, and dynamically, identify the frag-
ment a tuple belongs to. Notice that since this approach is dynamic,
it is entirely free of the pitfalls of static analysis listed above. Thus,
this scheme is useful even in a traditional, non-streaming, MQO
context. We next explain in detail, the partial and final aggregation
steps of this approach, and then present an analysis of the relative
costs of unshared and shared aggregation.

4.3.1 Partial Aggregation

In our approach, we rely on the evaluation of selections in a
scheme like CACQ [23] and TULIP[21] to produce an “augmented”
stream of tuples, where each tuple carries along a signature that
identifies the precise subset of queries that the associated tuple sat-
isfies. While these selections may actually be applied in a shared
fashion (e.g., the Grouped Selection Filter in CACQ and TULIP),
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sharing selections is not a requirement for our approach. Thus,
given a set of tuples 7', we can apply the predicates {p1,...,pn}
on each tuple ¢; in 7" to produce its signature b;, and generate the
augmented set 7" of pairs of the form (¢;, b;).

In CACQ and TULIP, the signature of a tuple is called its lineage,
and is implemented with a bitmap containing one bit for each of the
n queries in Q. We use the same approach in our implementation.
Since the signature of a tuple encodes the queries that it satisfies,
it also identifies the unique fragment that the tuple belongs to, as
well as the queries associated with that fragment. We represent the
set of queries Q(F;) of a fragment F; with a bit vector b; that has
n bits. We call b; the fragment signature of F;. Note that the j bit
of b; is set, if and only if, Q; € Q(F;). We denote the cardinality
of Q(F3), i.e., the number of queries satisfied by the tuples in the
fragment F;, by |b;|.

These augmented tuples are then processed by a Fragment Man-
ager that dynamically combines, and aggregates, all tuples with
identical signatures, i.e., those that belong to the same fragment.
Given each tuple-signature pair (¢;, b;), we look up the signature b;
in a data structure such as a hash table, or a trie, and accumulate ¢;
into an associated “in-place aggregate” using the partial aggregate
function G. At the end of the partial aggregation step the fragment
manager outputs a set of k£ fragment aggregate-signature pairs of
the form (G, b;), where G; is G(F;), i.e., the result of applying
the partial aggregation function G to the tuples in the fragment F;.

This pipeline of partial aggregation in our dynamic shared frag-
ment approach is shown in Figure 9. Notice that this is very similar
to the well-known hash-based grouped aggregation [14] and we can
easily adapt a standard operator implementation for our purpose.

4.3.2  Final Aggregation

In the final aggregation step (not shown in Figure 9), we com-
bine {(G1,b1),...,(Gg,bk)}, the set of k fragment aggregate-
signature pairs, as defined in equation (2). Algorithm 2 shows a
straightforward techique for this step. We first initialize the final
aggregate values A1, ..., A, for each individual query. Then, we
consider each fragment aggregate-signature pair in turn, and for-
ward it to every query it is associated with, for aggregation. These
queries are picked using the signature of each fragment aggregate.

4.3.3 Analysis

We now analyze the cost of processing the set of n selective ag-
gregate queries with the unshared and shared techniques. As in
Section 3, our analysis focuses on the computational complexity of
aggregation operations in the partial and final aggregation steps.

We measure time complexity in terms of the number of aggre-
gate operations carried out while processing the tuples in 7'. Ta-



Algorithm 2 Final Aggregation

proc FinalAggregation({(G1,b1) ..., (Gk,bx)})
for i := 1 to n, initialize(A;); end

fori:=1tok
forj:=1ton
E(bl[j] = true)thﬂAi — H(Aj,Gi);
end
end

ble 4 summarizes our analysis parameters. Each tuple t € T is
augmented with a signature b to form the augmented set 7”. Let k
be the number of unique signatures in 7", and let B be a set of k
signature-frequency pairs { (b1, f1), ..., (bk, fx)} where each pair
(bi, i) denotes that the signature b; occurs f; times in 7”. We say
that the expected cardinality of the signature of tuples in 7" is a,
and that the average cardinality of each signature in B is (.

> Iblf > bl

__ (b,f)EB 5= (b,f)EB
T Tk
[ Symbol [ Explanation ]
n Number of queries
T Set of tuples in the window
T Augmented set of tuples in the window
k Number of unique signatures in 7"
B Set of k signature-frequency pairs in 7"
« Expected cardinality for each signature in 7"
15 Average cardinality for each signature in B

Table 4: Parameters

Table 5 summarizes the costs of the unshared and shared tech-
niques to process n selective aggregate queries. With unshared ag-
gregation, there is only a single “final aggregation” step. Here, each
tuple in 7 is subjected to as many aggregations as the number of
queries it satisfies. Although this method only uses the input set 7',
its cost can be calculated by considering the augmented input set

T’ as follows:
> ol > blf

(t,b)eT’ (b,f)eB

T|a

With the shared approach, the partial aggregation step involves
exactly |T'| aggregations and produces a set of k fragment aggre-
gates each associated with a signature in B. As each fragment ag-
gregate is aggregated as many times as the cardinality of its associ-
ated signature, the final cost is:

> b=k

(b,f)eB

’ Technique ‘ Partial ‘ Final ‘

Unshared 0 a|T|
Shared |T| kB

Table 5: Unshared and Shared Aggregation Costs

From this analysis, the shared approach is cheaper than the un-
shared approach when k << |T7|, i.e., the number of fragment ag-
gregates has to be significantly less the input data set. If this is not
true, and k = |T'| (recall that k cannot be greater than T"), then the
expected cardinality of each signature in 7" approaches the average
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cardinality for each signature in B, i.e., & = . In this situation, the
cost of shared aggregation approaches |T'| + |T'|a which exceeds
|T'|cx, the cost of unshared aggregation.

Consider for instance, an example based on a scenario with 256
queries from our performance study (the scenario is explained in
detail in Section 6.3) processed over one hour of 10 minute inter-
vals of stock market data. Here, |T|, the average size of the input
set for 10 minute intervals over one hour is 189,445. Let the num-
ber of fragments caused by our query workload be k. Also, let us
assume for simplicity, that an identical number of tuples belong to
each fragment, i.e., « is the same as 3. From our workload we set
a= (=76

Simulated Total Aggregations
16000 T T T T T
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Figure 10: Analysis: Shared vs Unshared

Figure 10 shows the simulated costs of shared and unshared ag-
gregation for this scenario, where the number of fragments k, varies
from 1 to 189,445. In the actual workload, the average number of
unique fragments was 12,068. The arrow in the figure shows the
point that represents the costs of shared aggregation for this case.

While the maximum possible fragments is governed by the num-
ber and nature of the queries (especially the number of attributes
they involve) in a workload, the actual number of fragments in a
window is based on the nature of the data set. In this workload that
uses real data, the number of fragments (k=12,068) is far smaller
than the number of tuples in a window (|7'|=189,445). In this par-
ticular case, there are fewer fragments because the values found in
our real stock market data, are not uniformly distributed in their en-
tire domain. For example, in the first 10 minute interval of the stock
market data discussed above, the volume attribute of each trade tu-
ple has values between 10 and 1.6 million. There are, however,
fewer than 2000 distinct values seen for this attribute in roughly
200,000 tuples of the interval. Further, the most common value,
100, occurs for half the tuples, and the 15 most common values
together account for over 90% of the tuples.

We expect that in practice, we will find this situation, i.e, the
number of observed fragments being small relative to the number
of tuples in a given window, true for many real applications.

In this section, we presented the Shared Data Fragments (SDF)
approach to efficiently process multiple streaming aggregate queries
with varying selections and identical windows. We proposed an in-
novative dynamic implementation of Shared Data Fragments that
leverages existing advances in stream query processing without any
of the drawbacks of static analysis. We present a detailed experi-
mental evaluation of this approach in Section 6.

S. PUTTING IT ALL TOGETHER

In this section we are now ready to address our main problem of
shared processing of aggregate queries with varying predicates, and
windows. Our approach is to put together the techniques developed



in the earlier sections (STS in Section 3 and SDF in Section 4) that
solve simpler versions of this problem. We show here that these
techniques work well together to form our new technique, Shared
Data Shards (SDS), and solve the main problem.

Here, we compare our SDS approach with Unshared Sliced (US),
a scheme where each query has an operator chain with a sliced win-
dow aggregate followed by an overlapping window aggregate. For
each input tuple, we can apply the predicates of the queries, possi-
bly in shared fashion. Then, for each query the tuple satisfies, we
replicate the tuple to its operator chain.

E D c B A SLICES
o1 D4 ct ps A28
D1 o A2
E1 B2 SHARDS
E5 (FRAGMENTED

D5 c3/ C2 SLICES)

D3 B7| A7

E2 E6| pg ca 84
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Figure 12: Shards

From a high-level, both STS and SDF partition an input data set
into chunks of tuples that are partially aggregated, and then aggre-
gate these partial aggregates to answer individual queries. Thus,
when both windows and selections vary, we can conceive of an
approach that partitions the input set to form what we call shards
(these can be thought of as fragmented slices or sliced fragments) as
shown in Figure 12, partially aggregating the tuples in each shard,
and aggregating these partial aggregates to answer each query.

We cannot, however, further partition a partial aggregate formed
by sliced or fragmented aggregation. Instead, we must first apply
one partitioning operation (slicing or fragmentation) to the input
stream, and then apply the other operation to these partitions be-
fore computing any partial aggregates. Thus, the main question
is: “which partitioning operation, slicing or fragmentation, should
we perform first ?”

To answer this question, we must look back to the implementa-
tions of STS and SDF that we presented earlier. Recall that while
partial aggregate computation is similar to the sorting based strat-
egy for grouped aggregates in STS, it is similar to a hashing based
strategy for grouped aggregates in SDF. The reason that the sorting
based strategy is possible for STS, is that in a data stream, tuples are
naturally sorted by time. In contrast, contiguous tuples do not nec-
essarily have identical signatures (and hence do not belong to iden-
tical fragments), and so SDF needs to use a hashing based strategy.
The consequence of this observation is that, while the partial ag-
gregation step is performed “in-place” along with partitioning step
in SDF, it can safely be separated from the partitioning step in STS.

Using this insight, we propose the Shared Data Shards (SDS)
technique that uses elements from the STS and SDF approaches.
Like in STS, we use a Slice Manager that is aware of the paired
windows of each query in the system, to demarcate slice edges in
an input stream using heartbeats. These slices of tuples are then
passed on to a shared selections operator (e.g., GSFilter), to pro-
duce slices of augmented tuples, just as in SDF. These augmented
tuples are then sent to a SDF-style Fragment Manager that com-
putes partial aggregates of shards. Next, these shard aggregates are
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processed using SDF-style Final Aggregation (Section 4.3.2) and
sent to the appropriate per-query overlapping window aggregates.
Finally, these operators produce result tuples for each query. This
pipeline is shown in Figure 11.

An analysis of the relative complexities of the unshared (US)
and shared (SDS) schemes for processing aggregate queries with
varying selections and windows is essentially the same as that for
the unshared and shared (SDF) scheme in Section 4.3.3. The main
difference is that, unlike STS and SDF, the SDS approach ends up
splitting the input data into much smaller shards. Even so, we will
show in the next section that for the real data sets we used, such
as the stock market trading data, the performance of SDS greatly
exceeded that of US, as explained in the performance study in Sec-
tion 6.

In this section, we presented Shared Data Shards (SDS), a new
approach to efficiently share the processing of multiple streaming
aggregate queries that differ in selections and periodic windows.
This solves an important problem in understanding how to share ag-
gregate queries that vary in more than one aspect. A key property of
this scheme is that it achieves the objectives of shared processing,
without requiring any prior analysis of the queries involved. This
is important because of two reasons stated earlier: (1) the kinds of
analysis required for sharing such queries is hard, and (2) in a data
streaming context, queries are expected to join and leave at any
time and system resources cannot be engaged in complex multi-
query optimization while processing live data.

6. PERFORMANCE STUDY

In this section, we present a detailed performance study of the
various approaches that we proposed in this paper. We use intra-day
trading data from the NYSE and the NASDAQ, that corresponds to
our examples throughout the paper. Our study focuses on each of
the three problems that this paper addresses and is summarized in
Table 6. We first describe our experimental setup and then present
and analyze our results.

| Workload [ Predicates | Windows | Section
(A) Same Different 6.2
(B) Different Same 6.3
©) Different | Different 6.4

Table 6: Query Workloads
6.1 Experiment Setup

We built a prototype aggregate query processor for data streams
in Java. With our prototype we can realize query plans for all the
schemes described in this paper.

The data we use is summarized in Table 7 below, and consists of
a stream (Trades) with intra-day trading data from the NYSE [27]
and NASDAQ [26] stock markets on December 1% 2004 during
the regular trading hours of 09:30 AM to 4:30 PM, a static table
(Close) with the previous day’s closing price for all stocks, and a
static table (Index) that reflects whether or not a given stock is in
any of the Russell 3000, Russell 2000, or Russell 1000 indexes.

l Name [ Schema [ Type
Trades (Time, Symbol, Price, Vol) Stream
Close (Symbol, CP) Table
Index | (Symbol, R3000, R2000, R1000) | Table

Table 7: Data Schema

Each workload has a query set with {16,32,64,128,256} queries
over one hour’s worth of data starting at 12:00 noon. The queries
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Figure 11: Shared Data Shards

are all based on the template in Query 4. They involve a join on
the Symbol attribute between the Trades stream, and the Close and
Index tables. Each query computes the total transaction value of
all trades, subject to possible restrictions, in a sliding window. The
condition checked could be whether or not the trade represented
an “outlier” in terms of its volume, or whether or not it revealed a
significant price movement of the equity from the previous day’s
closing price.

Query 4 Query Template

SELECT sum(T.price * T.vol)

FROM Trades T[RANGE r SLIDE s],Close C,Index X

WHERE T.Symbol = C.Symbol AND T.Symbol = X.Symbol
[AND Member AND Value]

These restrictions are summarized in Table 8. Queries in (A)
have a range and slide picked uniformly at random from [600,900]
and [300,600] seconds respectively. Queries in (B) have a com-
plex predicate with “Member” and “Value” conjuncts. The Mem-
ber conjunct picks with uniform probability a market index from

one of {R3000, R2000, R1000}, and with uniform probability checks

whether or not the traded stock belongs to it. The Value conjunct
picks with equal probability a quantity that is one of the volume,
value, or % change for the day, and checks, with equal probability,
if this quantity is greater than, or less than a constant. Note that
queries in (A) have no predicates, and queries in (B) have the range
and slide both set to 600 seconds. We explain the queries in (C) in
Section 6.4.

Type \ Name \ Values ‘
Window Rar}ge: r [600,900] seconds
Slide: s [300,600] seconds
X.R3000: true, false
Predicate | Member X.R2000: true, false
X.R1000: true, false
Vol: >V, <V
Predicate | Value Vol*Price: >W, < W
abs(Price-CP)/CP: > F, < F

Table 8: Query Parameters

In this paper we focus on processing shared aggregates. We as-
sume the periodic evaluation can be sped up by using well known
techniques such as Rete [11], CACQ [23] and NiagaraCQ [7]. Thus,
in our experiments we measure the actual time in processing the
aggregates and any accompanying overheads, such as the use of
hash-tables. In order to minimize any effects of I/O, we buffer our
data in memory. Each value that we report for any workload with
n queries is an average computed from 10 iterations each with a
different set of n queries.
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6.2 (A) Same Predicates, Diff. Windows

In this workload, we examine queries with identical selection
predicates, and different periodic windows, over a real data set. We
compare the execution time across 4 strategies (Unshared Paned,
Unshared Paired, Shared Paired, Shared Paned) based on the un-
shared sliced and shared sliced approaches discussed in Section 3.

Same Predicates, Different Windows

—+-Unshared Paned
-#-Unshared Paired
-4 Shared Paned
-e-Shared Paired

Figure 13: Sliced Aggregates

The results for all 4 strategies are shown in Figure 13. Here, the
shared approaches significantly outperform the unshared schemes
by more than an order of magnitude. For instance, with 256 queries,
unshared paired costs 50.48 seconds, while shared paired costs only
2.63 seconds. This is because, although unshared paired fewer fi-
nal aggregations (6813) compared to shared paired (1,462,391), un-
shared paired has a many more partial aggregations (291,490,816)
compared to shared paired (1,138,636).

Further, for all query sizes, the paired approach outperforms the
paned approach. For this 256 queries case, shared paned costs 6.90
seconds - more than twice as much as shared paired. This is be-
cause, shared paned has far more final aggregations (2,340,842),
and has to buffer many more partial aggregate tuples.

These results match our analysis from Section 3.2. First this
analysis correctly predicted (Section 3.2.2) that with high data rates
the shared approaches will heavily outperform the unshared ap-
proaches. Second, we proved in Section 3.2.3 that paired win-
dows are are better than paned windows, and in fact are optimal, for
shared processing. Again, this matches our experimental results.

6.3 (B) Diff. Predicates, Same Windows

In this workload, we examine queries with differing selection
predicates, and identical tumbling windows. Since these are tum-
bling windows, the paired and paned options are identical and there
is no final overlapping window aggregate step. Thus, we compare
the execution time for the Unshared and Shared Data Fragments
strategies from Section 4.

The results are shown in Figure 14 with a split of the partial
and final aggregation costs for the Shared Data Fragments scheme.
For all query sizes, the Shared Data Fragments (SDF) approach
vastly outperforms the state of the art Unshared Sliced (US) ap-
proach. For example, with 256 queries, the US scheme uses 27.25
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seconds, while the SDF scheme uses only 3.01 seconds, a savings
of 89% and almost an order of magnitude. In this case, US has
to compute 116,101,112 aggregations, while SDF has to compute
only 7,771,956 total aggregations (1,094,947 partial and 6,677,009
final). Note that although SDF has only 6% the number of aggrega-
tions as US, it has a total time about 11% of US. This is because of
the overheads of SDF, such as hash table and bitmask operations.

To understand why the SDF scheme gives us such outstanding
results, we focus on the number of tuples and average number of
unique fragments. For instance, with 256 queries, the window from
12:20 to 12:30 has 218583 tuples, but only 11,944 unique frag-
ments. In fact, over a 1 hour time period from 12:00 to 1:00, the
average number of tuples per 10 minute window is 192,945 and the
average number of fragments per window is 11,407. More interest-
ingly, over the entire 1 hour period (with six 10 minute windows),
there are 1,181,901 tuples, but only 34,327 unique fragments. No-
tice that while any static analysis scheme would have analyzed the
query workload as splitting the data set into at least 34327 frag-
ments, our dynamic approach gives us all the benefits of such a
static approach while only having to manage on average 11,407,
and at most 11,893 fragments.

In summary, we found that SDF can provide an order of magni-
tude improvement over the Unshared approach. The SDF scheme
performs very well because of the small number of unique frag-
ments that occur in each window.

6.4 (C) Diff. Predicates, Diff. Windows

We now consider workloads that represent our main problem,
i.e., aggregate queries with varying predicates and windows. We
consider in turn, a regular workload, and a low sharing work-
load, and for each case we compare the performance of the Shared
Data Shards (SDS) with the Unshared Paired (from Section 5) ap-
proaches.

In the first regular case, we consider query sets with sizes in
{16,36,64,144,256}. Here, a query set with n queries has predi-
cates chosen from +/n distinct predicates (based on (B) above), and
windows chosen from +/n distinct windows (based on (A) above).
These sets are constructed so that all queries in a set of n queries
are unique, but with exactly v/n unique predicates and windows. In
the second low sharing case, we have sets of queries with sizes in
{16,32,64,128,256}. Here, each query set is constructed by com-
bining the properties of the sets used in (A) and (B) defined above.
Thus, a given query set will have neither any duplicate windows,
nor any duplicate predicates.
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6.4.1 Regular Workload

The results for the regular workload are shown in Figure 15. We
do not separate out the final aggregation cost in the UP scheme as
it is negligible. For all query sizes, the SDS approach consistently
outperforms the UP method. For instance, for 256 queries, the UP
method costs 31.19 seconds, while the SDS approach costs only
3.67 seconds, a savings of 89%. Notice that here, SDS provides
nearly an order of magnitude improvement over UP, for a work-
load where every query is different. This is because in this case,
UP has to perform 100,909,915 (100,902,960 partial + 6,955 final)
aggregations, while SDS only has to perform 3,395,132 (1,138,636
partial + 2,256,496 final) aggregations. Again, while SDS only per-
forms about 3.3% of the aggregations of US, its cost is about 11%
of US. The difference can be attributed to the overheads of SDS.
Note that the difference here is about 7% and less than the 5% dif-
ference in the SDF case. This is because SDS has all the overheads
of SDF, as well the additional overheads of the Slice Manager.

Regular: Different Predicates, Different Windows

W Shared Fragment(final)

O Shared Fragment(partial)

Time (seconds)
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16 36 64
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32
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Figure 15: Regular: Unshared/Shared Data Shards

6.4.2 Low Sharing Workload

We now consider the low sharing workload where every query is
unique, and every predicate and window is also unique across all
queries.

Low Sharing: Different Predicates, Different Windows

W Shared Fragment(final)

DShared Fragment(partial)

@ Unshared Paired(partial)

Figure 16: Low Sharing: Unshared/Shared Data Shards

This is a low sharing workload, where at first blush it might seem
that there are no easy sharing opportunities. Even so, our results are
very encouraging and are shown in Figure 16. The partial and final
aggregation costs for SDS are split and we omit the final aggrega-
tion costs of UP. For all query sizes, SDS significantly outperforms
UP. For instance, for 256 queries, the total cost for UP is 34.56 sec-
onds, while that for SDS is only 17.73 seconds. This is a savings of
approximately 51%, or a factor of 2. Again, these savings can be
attributed to the fewer aggregations that SDS performs (65,278,107



total = 1,294,064 partial and 63,984,043 final) as compared to UP
(120,679,022 total = 120,672,210 partial and 6,812 final).

Notice that this savings is less than the order of magnitude im-
provements we see in the regular workload above. Essentially,
when both predicates and windows vary, the input stream gets parti-
tioned into small “shards” (Figure 12). Since there is more variation
in this workload, there are more shards, each with fewer tuples.

We emphasize that in such a low sharing workload where there
are no repeated windows or predicates, the other schemes (STS and
SDF) cannot be used here.

In summary, our experiments show that when both predicates
and windows vary, the opportunities for sharing can be small or
large. In either case, SDS can exploit these opportunities and pro-
vide improvements of between a factor of 2 (for fewer opportuni-
ties) and a factor of 10 (for greater opportunities) over UP.

6.5 Summary

Our study examined different ways to process sets of aggregate
queries with varying predicates and windows. In all our experi-
ments, our dynamic sharing approach gives large benefits over the
state of the art. The specific conclusions we can make are:

1. Paired beats Paned. Paired windows are always superior to
the paned windows, whether for a single query or for multi-
ple queries where only windows vary. This result reinforces
our proof on the optimality of paired windows in Section 3.2.

2. Shared Data Fragments beats Unshared. In our experi-
ments, when only predicates vary we found that there are far
fewer unique fragments than tuples in any given window. As
a result, SDF offers up to an order of magnitude improve-
ment over the unshared technique.

3. Shared Data Shards beats Unshared Sliced. In our ex-
periments, we found that when predicates and windows both
vary, the SDF approach can offer improvements of between
a factor of 10 and a factor of 2 over UP. The latter case is for
extremely aggressive stress tests where no window or predi-
cate occurs in more than one query.

7. CONCLUSIONS

Data streaming systems are increasingly used as critical infras-
tructure for monitoring applications such as financial alerts. Such
systems have to support hundreds of similar, but different, concur-
rent queries. Executing these queries separately can lead to exces-
sive system load, and force the use of query admission control, or
load shedding.

Instead, we showed how the processing of such queries can be
shared, when they vary in their predicates and windows. First,
for queries with differing windows, we developed “Shared Time
Slices”. Next, for queries with differing predicates, we proposed
“Shared Data Fragments”. Finally, we showed how these two tech-
niques can be combined together in the “Shared Data Shards” ap-
proach, in order to solve our problem.

Our strategies mark a significant departure from the state of the
art in shared processing, where queries are normally optimized to-
gether statically to produce an efficient execution plan. The tradi-
tional approach is not suitable in a streaming system where queries
join and leave at any time. Further, we showed why the static ap-
proach is computationally expensive for queries with varying selec-
tions or varying windows. Instead, we proposed innovative ways to
share the processing of queries on the fly by examining the data as it
streams in, with very little upfront query analysis. Not only is this a
very efficient scheme, it lets us elegantly handle environments with
lots of churn, i.e., where queries come and go very often.
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Finally, we evaluated an implementation of our approach with a
data set based on stock market trades, and showed that our schemes
can perform excellently in the real world.
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