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Abstract. Pervasive applications rely on data captured from the physical world
through sensor devices. Data provided by these devices, however, tend to be unre-
liable. The data must, therefore, be cleaned before an application can make use of
them, leading to additional complexity for application development and deploy-
ment. Here we present Extensible Sensor stream Processing (ESP), a framework
for building sensor data cleaning infrastructures for use in pervasive applications.
ESP is designed as a pipeline using declarative cleaning mechanisms based on
spatial and temporal characteristics of sensor data. We demonstrate ESP’s effec-
tiveness and ease of use through three real-world scenarios.

1 Introduction

Many pervasive applications rely on data collected from physical sensor devices such as
wireless sensor networks and RFID technology. For instance, consider a sensor-enabled
library (shown in Fig. 1) that uses RFID readers for detecting tags placed on books and
patron’s library cards, wireless sensors for monitoring environmental conditions, and
various other devices such as motion and pressure sensors. Library monitoring and sup-
port applications use readings from these devices to manage inventory and checkouts,
adjust temperature, and monitor patron activity. One of the main challenges in this sce-
nario is the unreliability of the data produced by the sensor devices. These “dirty data”
exist in two general forms:

— Missed readings: Sensors often employ low cost, low power hardware and wireless
communication, which lead to frequently dropped messages. For example, RFID
readers often capture only 60-70% of the tags in their vicinity [19]. Wireless sen-
sors also demonstrate similar errors. For instance, in a wireless sensor network ex-
periment at the Intel Research Lab in Berkeley, each sensor delivered, on average,

only 42% of the data it was asked to report [24].
— Unreliable readings: Often, individual sensor readings are imprecise or unreliable.

For instance, physical devices tend to “fail dirty”: the sensor fails but continues
to report faulty values. In a sensor network deployment in Sonoma County, CA,
for example, 8 out of 33 temperature-sensing motes failed, but continued to report
readings that slowly rose to above 100° Celsius [34].

* This work was done while the author was at Intel Research Berkeley.
** This work was done while the author was at UC Berkeley as a Stonebraker Fellow.
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Fig. 1: A sensor-based library

To mitigate the effects of these errors, the data must be appropriately cleaned be-
fore use in an application. Of course, existing pervasive applications necessarily deal
with these problems to some extent, but they tend to use tedious post-processing and
application-specific means to clean sensor data (as shown in Fig. 2(a)). This ad-hoc
treatment of unreliable data leads to brittle applications and increased deployment costs.

In contrast, we propose to separate cleaning from application logic by interposing
a data cleaning infrastructure between sensor devices and applications (Fig. 2(b)). In
such an approach, the cleaning infrastructure translates raw sensor data to cleaned data;
applications are unaffected by the unreliable devices over which they are deployed.

In this paper, we present a framework for building cleaning infrastructures to sup-
port pervasive applications. Extensible Sensor stream Processing (or ESP), consists of a
programmable pipeline of cleaning stages intended to operate on-the-fly as sensor data
are streamed through the system. ESP is designed to be easy to configure and be able to
evolve over time.

To provide a simple and flexible means of programming cleaning infrastructures,
ESP uses declarative processing and exploits recent advances in relational processing
techniques for data streams [4, 9, 12]. Programmers specify cleaning stages in ESP us-
ing high-level declarative queries over relational data streams®; the system then trans-
lates the queries into the appropriate low-level operations necessary to produce their
results. Thus, programmers do not have to write low-level device interaction code (e.g.,
nesC for TinyOS [22]). Additionally, declarative languages provide data independence,
such that in many cases cleaning operations do not need to be changed when devices
fail, are added, or are upgraded. As an example of a declarative query for data clean-
ing, consider Query 1 which fills in lost temperature readings from a wireless sensor
network using a 5 second moving average over each sensor’s readings.

ESP utilizes the temporal and spatial nature of sensor data to drive many of its
cleaning processes. Sensor data tend to be correlated in both time and space; the read-
ings observed at one time instant are indicative of the readings observed at the next time

3 In ESP, we use CQL [8] as our declarative language as we have a data stream system, Tele-
graphCQ [12], designed to process CQL. In principle, any declarative language would provide
the benefits outlined here.



Query 1 Example declarative query to interpolate for lost sensor readings. This query
runs a 5 second moving average over each sensor’s readings.

SELECT node_id, avg(temperature)

FROM sensor_readings_stream [Range ’'5 sec’]

GROUP BY node_id

instant, as are readings at nearby devices. Thus, we introduce the concepts of temporal
and spatial granule to capture these correlations. These granules define a unit of time
and space inside which the data are mostly homogeneous. These abstractions can be
used to recover lost readings or remove outliers using temporal and spatial aggregation.

The ESP framework segments the cleaning process into five programmable stages,
each responsible for a different logical aspect of the data, ranging from operations on
individual readings to operations involving complex processing across multiple devices
and outside data sources.

Of course, many applications need more advanced processing than that afforded by
the declarative approach of ESP. We discuss such advanced processing later in the paper.
Nevertheless, as demonstrated in this paper, infrastructures built with ESP’s declarative
stages are capable of cleaning sensor data in a wide range of deployments.

2 Related Work

Data cleaning is widely recognized as a crucial step for enterprise data management in
the context of data warehouses. In this domain, data cleaning occurs separately from
any application using the data (e.g., analytic/data mining software). Such traditional
data cleaning, however, tends to focus on a small set of well-defined tasks, includ-
ing transformations, matchings, and duplicate elimination [32, 23]. Extensions to this
paradigm include the AJAX tool [21], an extensible, declarative means of specifying
cleaning operations in a data warehouse. These techniques focus on offline cleaning for
use in data warehouses; the real-time nature of many pervasive applications, however,
preclude such approaches. More fundamentally, the nature of the errors in sensor data is
not easily corrected by traditional cleaning: such technology typically does not utilize
the temporal or spatial aspects of data.

The unreliabilities of sensor data have been widely studied. Work from ETH Zurich
recognizes the poor behavior of RFID technology [19]. Work from the Intel Research
Lab in Seattle has characterized the performance and errors in RFID technology in
order to better guide ubiquitous applications [18, 30]. Other sensor-based applications
have encountered similar issues in regard to dirty sensor data [11, 14]. These projects,
however, either do not address cleaning or incorporate cleaning logic directly into the
application.

Other work has advocated an infrastructural approach to sensor data access and
management, but has not directly addressed data cleaning. Several systems provide
mechanisms for interacting with wireless sensor networks ([27, 10]). For example,
TinyDB provides a declarative means of acquiring data from a sensor network. ALE
(Application-Level Events) defines an interface for building RFID middleware [7]. ALE
defines concepts similar to our temporal and spatial granules. The Context Toolkit ad-
vocates an architectural approach to hiding the details of sensor devices [16].



Various projects have developed techniques for cleaning and error correction for
wireless sensor data (e.g., [17, 28]). The BBQ system uses models of sensor data to ac-
curately and efficiently answer wireless sensor network queries with defined confidence
intervals [15]. Other work uses regression applied to sensor networks for inference pur-
poses [29]. These approaches usually involve building and maintaining complex mod-
els. ESP’s declarative approach, in contrast, does not rely on complex models.

Finally, we note that ESP is part of the HiFi project [20]. HiFi is a distributed stream
processing system designed to support large-scale sensor-based networks (termed “high
fan-in” systems). ESP is intended to clean sensor data streams at the edge of the HiFi
network. Previous work discussed some of the preliminary concepts and results pre-
sented in this paper [20, 25].

3 ESP’s Declarative Sensor Data Cleaning Framework

In this section, we introduce Extensible Sensor stream Processing (ESP), our declarative
pipelined framework for building sensor data cleaning infrastructures.

While building the initial version of HiFi [13], we confronted many of the issues as-
sociated with unreliable data produced by sensor devices. Most notably, the system was
unable to function correctly using raw RFID data. Our solution was to use a rudimen-
tary pipeline of ad-hoc queries we termed “CSAVA” [20], designed to run throughout
HiFi to convert RFID data into application data.

ESP generalizes and extends the CSAVA pipeline with a focus on cleaning sensor
data at the edge of the network. ESP enables infrastructures that clean raw physical
sensor data by processing multiple sensor streams, exploiting the temporal and spatial
aspects of sensor data, to produce a single, improved output stream that can be used
directly by pervasive applications. We first define the temporal and spatial abstractions
that drive many of ESP’s cleaning mechanisms.

3.1 Temporal and Spatial Granules

ESP uses high-level abstractions called femporal and spatial granules to capture time
and space in sensor-based applications. These granules define units of time and space
inside which the data are expected to be homogeneous. ESP uses the granule concept
to aggregate, sample, and detect outliers. These abstractions exploit the fact that many
applications are not interested in individual readings or devices, but with higher-level
data in time and space.

Temporal Granules Although many sensor devices can produce data at frequent inter-
vals, applications are usually concerned with data from a larger time period, or temporal
granule. For instance, an environmental monitoring application that builds models of
micro-climates in a redwood tree needs readings at 5 minute intervals to capture vari-
ations in micro-climate [35]. Within a temporal granule, readings are expected to be
largely homogeneous.

To support this notion of temporal granules, ESP uses windowed processing to
group readings. A window defines a finite set of readings (in terms of an interval of
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Fig. 3: ESP processing stages with the typical form of the declarative query for each stage. The
relevant portion of the query is in boldface

time) within a data stream. Within a window, ESP can aggregate multiple readings into
one or compare readings to detect outliers.

Spatial Granules Just as with readings in time, readings from devices physically close
to each other are expected to be mostly homogeneous; a spatial granule defines the unit
of space in which this homogeneity is expected to hold. Furthermore, a spatial granule
is the smallest unit of space in which an application is interested, even though devices
may have a finer spatial granularity. Examples of spatial granules include a shelf in a
library scenario or a room in a digital home application.

To support spatial granules, ESP organizes sensors into proximity groups. A prox-
imity group defines a set of sensors of the same type monitoring the same spatial gran-
ule. For instance, a set of motes monitoring the temperature in the same room may be
grouped into the same proximity group, as may two RFID readers monitoring the same
library shelf. Just as a time window is the unit of processing for a temporal granule, a
proximity group is the processing unit for a spatial granule.

In many applications, the size of the temporal and spatial granules are obvious from
the nature of the application or environment (e.g., 5 minute intervals in redwood mon-
itoring or rooms in a digital home). In some cases, however, it may be desirable to
determine the granule sizes automatically; this is a rich area of on-going work.

3.2 ESP Cleaning Stages

Having described the fundamental abstractions underlying ESP, we now outline ESP’s
processing stages. Through an analysis of typical sensor-based applications, we dis-
tilled a set of logically distinct operations that occur in a large class of applications to
clean data produced by many types of sensor devices. Using these observations, ESP
organizes sensor stream processing into a cascade of five programmable stages: Point -
Smooth - Merge - Arbitrate - Virtualize. These stages operate on different aspects of the



data, from finest (single readings) to coarsest (readings from multiple sensors and other
data sources). Not all stages are necessary for a given deployment.

Stage 1, Point: The Point stage operates over a single value in a sensor stream. The
primary purpose of this stage is to filter individual values (e.g., errant RFID tags or
obvious outliers) or to convert fields within an individual tuple. The general form for
the Point query (as well as all other stages) is shown in Fig. 3. ESP applies the Point
query to each sensor’s readings, filtering all readings that do not match a predicate.

Stage 2, Smooth: In Smooth, ESP uses the temporal granule defined by the applica-
tion to correct for missed readings and to detect outliers in a single sensor stream. The
Smooth query processes its input stream, smooth_input (a stream of readings from
a single device, provided by ESP), in windows of readings determined by the size of
the temporal granule. For each of these windows, Smooth runs the specified aggregate
function, outputs a processed reading, and then advances the window by one input read-
ing. Note that both Point and Smooth operations can be pushed down to capable sensor
devices (e.g., wireless motes).

Stage 3, Merge: Analogous to the temporal processing in the Smooth stage, Merge uses
the application’s spatial granule to correct for missed readings and remove outliers spa-
tially. At each time step, Merge processes input readings from a single type of device
and groups the readings by the specified spatial granule using the GROUP BY clause.
Merge then processes each of these groups using an aggregate function to produce out-
put readings for each spatial granule.

Stage 4, Arbitrate: Spatial granules may not map directly to sensor detection fields,
leading to possible conflicts between the readings from different proximity groups that
are physically close to one another. The Arbitrate stage deals with conflicts, such as
duplicate readings, between data streams from different spatial granules. The query for
Arbitrate groups its input stream by spatial granule and then uses the HAVING clause
to filter readings from spatial granules that do not match a predicate.

Stage 5, Virtualize: Finally, some types of data cleaning utilize readings from across
different types of sensors or stored data for improved data cleaning. To provide a plat-
form for such techniques, the Virtualize stage combines readings from different types
of devices and different spatial granules. The Virtualize query uses the JOIN construct
to combine readings from different sources based on timestamps, IDs, or other common
attributes. Additional processing can be specified using an optional predicate.

By separating sensor data cleaning into distinct stages, cleaning pipelines are easy
to deploy and configure, affording many opportunities to reuse stages from previous
deployments with changes localized to individual stages. Additionally, the cleaned data
produced by ESP pipelines can be shared across many applications.

In the next three sections, we show detailed ESP processing and demonstrate ESP’s
overall effectiveness and ease of configuration with three typical sensor deployments.

4 RFID-based Scenario

The first deployment we address using ESP is a library scenario using RFID technology,
similar to the one introduced in Sect. 1. RFID technology is notoriously error-prone:
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tags that exist are frequently missed while other tags that are not in a reader’s normal
view are sometimes read. In a library scenario, consider an application that continuously
monitors the count of books on each shelf using Query 2 (shown below). This query
looks at the stream of RFID data in 5-second slices. Within each of these slices, the
query groups the readings by the shelf at which the tag was read, and then counts the
number of distinct tag IDs at each shelf. Here, the window clause indicates the temporal
granule (5 seconds) and the GROUP BY clause denotes the spatial granule (a shelf).

Query 2 Shelf monitoring query to determine the number of books on each shelf.
SELECT shelf, count(distinct tag_id) as num_books

FROM rfid_data [Range ’'5 sec’]

GROUP BY shelf

To study ESP used for cleaning RFID data, we ran an experiment emulating a li-
brary scenario. Our experimental setup is depicted in Fig. 4. We used two 915 MHz
RFID readers from Alien Technology [6], each responsible for one shelf and thus each
forming a proximity group. The readers’ sample period was set at SHz (i.e., 5 polls per
second). Each shelf was stocked with 10 books represented with Alien “I2” tags [5],
EPC Class 1 RFID tags designed for long-range detection in a controlled environment.
Tags were suspended in the same plane as the reader, spaced 1.5 feet apart from each
other, and at two distances from the reader, 3 feet and 6 feet. Tags were oriented such
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that their antennae were directly facing the reader. Note that this setup is overly fa-
vorable to RFID technology as it attempts to alleviate many of the known causes of
degraded readings [18, 19]. To introduce a dynamic component into the experiment, we
relocated 5 tags placed 9 feet from the reader between the two shelves every 40 seconds.

The metric we use to evaluate our techniques is the average relative error of the
results of Query 2, which is defined as % Zfio(%), where N is total number of
time steps, ¢ is the time step at the granularity of the reader (SHz), R; is the reported
count of tags on a shelf at time ¢, and 7T is the true count of tags on a shelf at ¢. This
metric denotes how far off, on average, the reported count of tags is from reality. We
ran this experiment three times; all runs produced similar results.

The results of our experiment without data cleaning are shown in Fig. 6. Figure 6(a)
depicts the trace of the actual count of tags on each shelf over the course of the experi-
ment. Figure 6(b) shows the results of running the application’s query over the raw data.
If the application were to use the output of the RFID readers directly, the results would
be near-meaningless: the average relative error of the output of Query 2 compared to
reality for the duration of the experiment was 0.41 (i.e., the count of the number of
tags on each shelf was off by almost half, on average). For instance, if an application
wants to be notified when the number of books on a shelf drops below 5, then the query
using the raw data would report that a shelf has low inventory 2.3 times per second, on
average.

We build a ESP pipeline to clean this data. Note that the RFID reader already pro-
vides Point functionality natively by removing tags that fail a checksum [1]. We use the
Smooth and Arbitrate stages for ESP in this case (as shown in Fig. 5). As there is only
one sensor per proximity group here, Merge is not needed.

4.1 Stage 2: Smooth

At the Smooth stage (shown in Query 3), ESP interpolates for lost readings within a
temporal granule. ESP runs this query over each reader’s data stream. This query begins
by breaking the stream into 5-second slices (corresponding to the size of the temporal
granule). For each of these slices, Smooth groups by tag ID and then counts the number
of occurrences for that tag. The output of Smooth, then, is a reading for each tag seen at
any point within the window and the number of times it was read. After each window is
processed, ESP moves the window forward by one input reading. Through this sliding
window operation, Smooth fills in dropped readings for any tag seen at least once in a 5
second time period.



Query 3 Interpolating for lost readings in the Smooth stage.
SELECT tag_id, count(*)

FROM smooth_input [Range ’'5 sec’]

GROUP BY tag_id

The results of Query 2 over the data produced by this stage are shown in Fig. 7(a).
The Smooth stage is able to eliminate the constant low inventory alerts generated by the
query using the raw data.

The count of books per shelf, however, is still fairly inaccurate (an average relative
error of 0.24) due to the close proximity of the readers and discrepancies in their perfor-
mance. As seen in Fig. 7(a), the antenna for shelf O read more tags than that of shelf 1,
despite being of the same model; the counts reported for shelf 0 were consistently 4 to
5 tags higher than reality. We tried different configurations of antennae and determined
that this difference is likely due to known issues with the antenna ports on these par-
ticular RFID readers [2]. Processing in the Smooth stage has alleviated the issues with
dropped readings, but any application using this data will be misled into thinking that
shelf O has extra books.

4.2 Stage 4: Arbitrate

The Arbitrate stage (shown in Query 4) corrects for duplicate readings caused by the
close proximity of the readers. At each time step, Arbitrate determines all tags that were
read by multiple spatial granules and the number of times each tag was read by each
granule. It then assigns the tag to the spatial granule that read the tag the most. ESP runs
Arbitrate over the union of the streams produced by Query 3.°

Query 4 Correcting for duplicate readings in the Arbitrate stage. The inner query de-
termines the count of readings for a given tag in each spatial granule; the outer query
selects the spatial granule with the highest count for each tag.
SELECT spatial_granule, tag_id
FROM arbitrate_input ail [Range ’'NOW’]
GROUP BY spatial_granule, tag_id
HAVING count (*) >= ALL(SELECT count (*)
FROM arbitrate_input ai?2
[Range ’'NOW’]
WHERE ail.tag_id = ai2.tag_id
GROUP BY spatial_granule)

The results of running Query 2 over the smoothed and arbitrated data are shown
in Fig. 7(b). Observe that ESP de-duplicates the readings as well as corrects for the
differing performance of the two antennae to provide a substantially more accurate
count of the tags on each shelf. After Arbitrate processing, the average relative error of
Query 2 is 0.04. This equates to an error of being off by less than one book, on average.
The results show that in this scenario, ESP provides a significant reduction in error over

6 Although the Merge stage is unused in this case, ESP automatically adds a
spatial_granule attribute to each stream, corresponding to each proximity group (i.e.,
each shelf).
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the raw RFID data: recall that the original book counts using the raw data were off by
almost half compared to reality.

Size of the Temporal Granule The size of the temporal granule affects the degree
to which ESP can effectively clean the data. In order to effectively smooth, the size of
the temporal granule (i.e., the window size) must be larger than the longest period of
dropped readings in the input. The window size may not be made too large, however,
as its size must be balanced with the rate of change of the data values. This tension can
be observed in Figure 7(a), where the periods when tags are being relocated are not as
accurately captured as the stable periods.

To investigate this issue, we compared the relative errors of ESP using different
temporal granule sizes for the Smooth stage. The results are shown in Figure 8. At very
small and very large granules, the error is larger than for granules around 5 seconds.
Essentially, an effective temporal granule size is bounded at the low end by the reliabil-
ity of the devices and at the high end by the rate of change of the data. In Sect. 7, we
discuss our ongoing work exploring dynamic adaptation of the temporal granule.

S Environment Monitoring Scenario

In the previous section, we demonstrated the ability of an ESP pipeline to clean RFID
data streams. Next, we present a use case where ESP hides the unreliabilities of wireless
sensor networks.

Wireless sensor networks enable new classes of pervasive applications that monitor
environments such as the home and office with high resolution. In order to alleviate
the effects of imprecise readings, calibration errors, outliers, and unreliable network
communication, previous deployments involving sensor networks have had to post-
process the readings, primarily by hand, to produce data that can be used by the applica-
tion [11, 14, 15]. To reduce the complexity associated with sensor network application
deployment, applications can use ESP to provide cleaned sensor data. We demonstrate
two types of wireless sensor network data cleaning: outlier detection of fail-dirty motes,
and temporal and spatial smoothing to correct for dropped messages.



5.1 Outlier Detection

Recall that sensor motes are known to “fail-dirty”” and produce outlier readings. ESP can
be used to alleviate the effects of these fail-dirty motes. To demonstrate the effectiveness
of outlier detection using ESP, we use a 2 day trace from a sensor network deployed in
the Intel Research Lab in Berkeley to monitor the lab’s environment [24]. We focus on
three motes in the same room, assigned to the same proximity group. In this trace, one of
the motes fails by reporting increasing temperatures, rising to over 100°C. We program
the Point and Merge stages of ESP to eliminate the outlier readings. Smooth is not used
because it cannot correct for extended errors produced by one sensor.” Arbitrate is not
necessary as there is only one spatial granule.

Stage 1: Point The Point stage filters any readings beyond its expected range; in this
case, ESP filters readings where the temperature is higher than 50°C (Query 5) .

Query 5 Simple filtering at the Point stage.
SELECT *

FROM point_input

WHERE temperature < 50

Stage 3: Merge In this example, the Merge stage does outlier detection within a spa-
tial granule by computing the average of the readings from different motes in the same
proximity group and then omitting individual readings that are outside of two standard
deviations from the mean (shown in Query 6). Note that these techniques are not in-
tended to be statistically complex, but to the contrary, demonstrate the simplicity of
ESP programming.

Query 6 Outlier detection in the Merge stage.
SELECT spatial_granule, AVG(temp)
FROM merge_input s [Range ’5 min’],
(SELECT spatial_granule, avg(temp) as avg,
stdev(temp) as stdev
FROM merge_input [Range ’'5 min’]) as a
WHERE a.spatial_granule = s.spatial_granule AND
a.avg + (2*a.stdev) < s.temp AND
a.avg - (2*a.stdev) > s.temp

Figure 9 shows the outcome of this experiment. The top line represents the outlier
mote’s readings. The middle line depicts the average of all three motes. If an application
were to use the average of the three motes as a representation of the room’s temperature,
it would see temperatures exceeding 50°C. The bottom lines show the traces of the
two functioning motes as well as the output of ESP with outlier detection processing.
Observe that ESP is able to detect when the outlier mote begins to deviate from the
other motes and then omit its reading from its average calculation.

7 Smooth could, however, be used to correct for individual outlier readings in a single mote using
the same mechanisms presented here.
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5.2 Temporal and Spatial Smoothing of Sensor Data

Wireless sensor networks have another serious problem beyond fail-dirty motes: the
network frequently drops messages. This problem is especially prevalent when sensor
networks are deployed in the real world.

An ESP pipeline for a wireless sensor network can mask the unreliability of a sensor
network by both temporally and spatially aggregating to correct for dropped readings.
We demonstrate this cleaning through an application responsible for monitoring the
temperature of a redwood tree at each elevation range in the tree.

We validated ESP processing on a three and a half day trace of data collected from
sensors on a redwood tree in Sonoma County, CA as part of a large-scale sensor network
deployment to study micro-climates of redwood trees [34]. 33 motes were placed along
the trunk of the tree at varying heights. Data (e.g., temperature and humidity) were
sensed at 5 minute intervals and logged to a local storage buffer (collected at the end
of the experiment) and also sent over the multi-hop network. We grouped the motes
at nearby heights into 2-node, non-overlapping proximity groups (corresponding to the
spatial granules in this deployment), where the distance between motes in a proximity
group was less than one foot.

Note that the log data is incorrect with respect to the ground truth due to fail-dirty
sensors: 8 out of the 33 motes failed dirty. The readings from these motes were removed
by hand shortly after data collection, but before we received the data.®

As ESP is addressing communication errors in this case, our metric of success is the
epoch yield. Epoch yield describes the number of the readings reported to the applica-
tion as a fraction of the total number of readings the application requested. For the raw
data, the epoch yield in this trace was 40% (ideally, the epoch yield should be 100%).
In other words, the application only received 40% of the data it requested. Additionally,
we measure the percent error in the readings. Based on experience collaborating with
biologists, an error of less than 1°C is acceptable for trend analysis. Therefore, the goal
of ESP in this application should be to increase the epoch yield while minimizing the
percent of readings with an error greater than 1°C.

Here, we implement the Smooth and Merge stages in ESP to temporally and spa-
tially aggregate sensor readings to increase the epoch yield of the sensor deployment.

8 ESP could employ the techniques shown in Section 5.1 to remove these outliers automatically.



Stage 2: Smooth In the Smooth stage (not shown), ESP temporally aggregates readings
from a single sensor. By running a sliding window average on each sensor stream, lost
readings from a single mote are masked within the window. After the Smooth stage, the
epoch yield is increased to 77%. 99% of these readings were within 1°C of the logged
data.

Stage 3: Merge In the Merge stage (not shown), ESP performs spatial aggregation
for each spatial granule (again, in the form of a windowed average) to further alleviate
the effects of lost readings. The Merge stage increases the epoch yield to 92%. This
improvement of reporting is at the slight cost of decreasing the percent of readings
within 1°C of the logged data to 94%. Thus, with ESP cleaning, biologists can get
nearly complete data with a slight decrease in the accuracy.

Through the use of simple outlier detection and temporal and spatial smoothing, in
this case an ESP pipeline is able to increase the ability of applications to make sense of
the data they are getting from their sensors. Rather than spending time tediously post-
processing the data, applications can focus on the high-level logic and not conversion,
calibration, and error correction.

6 Digital Home Scenario

In Sects. 4 and 5, we demonstrated how ESP can provide a cleaning infrastructure to
correct for a wide variety of problems associated with different physical devices. Next,
we demonstrate the ease of configuration of ESP and highlight the use of multiple types
of sensors to enhance data cleaning.

Multiple projects are developing sensors and infrastructures to instrument the home
to provide both a better living experience for inhabitants as well as a more efficient
use of home resources [3, 26]. Such applications use a wide variety of sensor devices
providing low-level data (e.g., RFID, sensor motes, pressure sensors). In this section,
we show that pipelines defined for other deployments (i.e., pipelines from the previous
two sections) can be easily re-tasked to a new environment due to ESP’s high-level
declarative nature. Furthermore, ESP can serve platform for combining readings from
multiple devices to provide a virtual “person detector” sensor. This type of processing
is a higher level of cleaning; data from multiple heterogeneous devices, appropriately
combined, can provide higher quality data. The output of ESP is a stream of events
describing the presence of a person in the room.

We demonstrate the use of ESP in a digital home scenario by outfitting a room
with two RFID readers, a small sensor network of three motes, and three X10 motion
detectors [36] tasked to determine when someone is in the room (Fig. 10(a)). The room
corresponds to one spatial granule for the application; thus, the two RFID readers make
up one proximity group, the motes constitute another, and the X10 detectors form a
third. During the experiment, one person, outfitted with an RFID tag, moved in and out
of the room, while talking, at one minute intervals (Fig. 10(b)).

We present the ESP processing to clean the individual sensor streams and then de-
scribe how ESP utilizes these streams to create a person detector.
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Fig. 10: A “Person Detector” in the digital home

6.1 Low-Level Sensor Cleaning

Recall the main advantages of ESP’s declarative pipelined approach: previously built
stages can be reused, changes necessary to tailor processing to each new deployment
are isolated to small logical units, and these changes are easy to make and reason about
as the stages are expressed as high-level queries. In this deployment, the programming
for the ESP pipelines to clean the individual sensor streams (RFID, wireless sensors,
and motion detectors) utilize almost exactly the same processing stages as defined in the
previous two sections. Changes necessary for this deployment involved slightly modify-
ing queries in a small number of stages. The raw data from these devices are presented
in Figs. 10(c)- 10(e). We omit the details of this cleaning due to space considerations.

6.2 Stage 5: Virtualize

The main new feature of this use case (as compared to the previous scenarios) is the
use of the Virtualize stage. Virtualize allows a deployment to combine readings from
multiple different types of devices to perform application-level cleaning. In this case,
Virtualize turns the set of heterogeneous devices into a “person detector.” It uses a vot-
ing query that normalizes all sensor input streams to a single vote of whether it has



determined that a person is in the room or not (Query 7). The query then adds up the
votes and registers that a person is in the room if the sum is higher than a threshold.

Query 7 “Person Detector” logic at the Virtualize stage.
SELECT ’Person-in-room’
FROM (SELECT 1 as cnt
FROM sensors_input [Range ’'NOW’]
WHERE sensors.noise > 525) as sensor_count,
(SELECT 1 as cnt
FROM rfid_input [Range ’'NOW’]
HAVING count (distinct tag_id) > 1)
as rfid_count,
(SELECT 1 as cnt
FROM motion_input [Range ’'NOW’]
WHERE value = 'ON’) as motion_count
WHERE sensor_count.cnt +
rfid_count.cnt +
motion_count.cnt >= threshold

The output of the ESP pipeline is shown in Fig. 10(f). As can be seen, simple and
easy to deploy logic is capable of generally approximating reality. ESP is able to cor-
rectly indicate that a person is in the room 92% of the time.

Virtualize Configuration The Virtualize query involves many numerical parameters,
such as thresholds for sensor noise processing and overall voting. ESP’s declarative
query approach made this type of setup simple: high-level queries are easy to reason
about and adjust until adequate cleaning is achieved. Furthermore, because ESP’s clean-
ing is segmented, any adjustment of Virtualize is isolated to a single operation: lower-
level cleaning remains the same. Nevertheless, there are many cases where this simple
approach for Virtualize will not work; we discuss such cases in Sect. 7.

7 Advanced Cleaning

In Sects. 4, 5, and 6, we showed that cleaning infrastructures built using ESP are ca-
pable of cleaning data in a wide range of realistic scenarios. Perhaps surprisingly, these
significant improvements in data quality were produced by a pipeline of fairly simple
declarative queries. Of course, there are many applications and deployments where such
a simple approach may not be effective. In this section, we outline some of these cases
and discuss extensions to ESP that will enhance its effectiveness in such deployments.

Adaptive Granules In this paper, we required the application to supply the size of the
temporal and spatial granules. In some cases, however, this is not possible: the envi-
ronment may be too complex for the application to adequately determine appropriate
sizes or too dynamic for a single size temporal or spatial granule to work. Thus, it is
preferable to have the system determine and adapt the granule size based on the data it
observes.



To this end, our on-going work involves modeling unreliable sensor data as a sta-
tistical sample of the physical world. With this model in place, we are investigating
techniques from sampling theory to help guide data cleaning and granule size adapta-
tions. For instance, ESP can use 7-estimators [33] to determine the population of RFID
tags in an area or the temperature of a set of sensors without seeing all the data. The
variance of the estimator can be used to guide granule size decisions.

Soft Sensors While these deployments were configured using numerical parameters
that were easy to derive empirically (e.g., Virtualize in Sect. 6), in many cases deter-
mining the parameter values may not be so easy. More advanced processing for Virtual-
ize can involve machine learning techniques such as those used in soft sensors [31]. To
support this type of operation, ESP can be extended to support stages defined by both
declarative queries and user-supplied code.

Query-Driven Operations The cleaning infrastructures presented here have focused
on providing “raw” (but cleaned) streams to the applications. In most cases, however,
the application poses queries over these streams. Application-level queries are a mech-
anism for the application to alert the cleaning infrastructure of additional requirements.
ESP should be able to incorporate this information to help drive cleaning operations.
For instance, query predicates (e.g., temp > 0) should be pushed down to the appro-
priate level in the pipeline.

8 Conclusions

Data produced by physical sensor devices are notoriously dirty: readings are frequently
either missed or dropped and individual readings are unreliable. Furthermore, these er-
ror characteristics vary from deployment to deployment. This leads to high application
deployment costs for both data cleaning and configuration.

To directly address these issues, we developed ESP, a framework for building sen-
sor data cleaning infrastructures in support of pervasive applications. By taking an in-
frastructural approach to sensor data cleaning, ESP allows applications to use sensor
data without incorporating complex cleaning logic. Furthermore, applications using an
ESP infrastructure can be write-once, run anywhere: ESP shields the application from
changes in the error characteristics of the devices or the underlying environment. Fi-
nally, an infrastructure built using ESP allows multiple applications to use the same
cleaned data, further reducing deployment costs.

To drive ESP’s cleaning mechanisms, we introduce the concepts of temporal and
spatial granules. These abstractions capture application-level notions of time and space.
ESP utilizes these concepts in a pipeline of programmable processing stages designed
to clean sensor data as it streams through the system.

ESP infrastructures are easy to deploy and evolve due to the following properties:

— Declarative: ESP cleaning logic is easy to program through high-level declarative
queries. The system can utilize the well-understood techniques of relational query
processing to efficiently execute these queries.



— Pipelined: ESP consists of separate, pipelined cleaning stages allowing operations

to be independently programmed and reused across deployments.
— Cleaning framework: ESP defines logically distinct cleaning operations designed

to directly address the error characteristics of sensor data.

While there are many complex operations that can be used to clean sensor data, we
show here that in practice, some applications and deployments do not need such com-
plexity. We validate the ESP platform through three real-world deployments demon-
strating that infrastructures built using high-level declarative queries can successfully
alleviate both missed and unreliable readings in sensor data. As a result, many perva-
sive applications were able to use data provided by ESP pipelines as they would any
sensor data, but without many of the associated errors.

Sensor-based pervasive application development and deployment today is fraught
with complexities stemming from the unreliable nature of devices on which they are
built. Cleaning infrastructures built using ESP address these problems leading to re-
duced application complexity, faster deployment times with lower costs, and better
manageability.
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