
Data Link Layer

DLL purpose? The goal of the data link layer is to provide reliable, efficient communication
between adjacent machines connected by a single communication channel. Specifically:

1. Group the physical layer bit stream into units called frames. Note that frames are
nothing more than “packets” or “messages”. By convention, we’ll use the term
“frames” when discussing DLL packets.

2. Sender checksums the frame and sends checksum together with data. The checksum
allows the receiver to determine when a frame has been damaged in transit.

3. Receiver recomputes the checksum and compares it with the received value. If they
differ, an error has occurred and the frame is discarded.

4. Perhaps return a positive or negative acknowledgment to the sender. A positive
acknowledgment indicate the frame was received without errors, while a negative
acknowledgment indicates the opposite.

5. Flow control. Prevent a fast sender from overwhelming a slower receiver. For
example, a supercomputer can easily generate data faster than a PC can consume it.

6. In general, provide service to the network layer. The network layer wants to be able
to send packets to its neighbors without worrying about the details of getting it there
in one piece.

At least, the above is what the OSI reference model suggests. As we will see later, not
everyone agrees that the data link layer should perform all these tasks.

CS 513 1 week3-dll.tex



Design Issues

If we don’t follow the OSI reference model as gospel, we can imagine providing several
alternative service semantics:

Reliable Delivery: Frames are delivered to the receiver reliably and in the same order as
generated by the sender.

Connection state keeps track of sending order and which frames require
retransmission. For example, receiver state includes which frames have been received,
which ones have not, etc.

Best Effort: The receiver does not return acknowledgments to the sender, so the sender
has no way of knowing if a frame has been successfully delivered.

When would such a service be appropriate?

1. When higher layers can recover from errors with little loss in performance. That
is, when errors are so infrequent that there is little to be gained by the data link
layer performing the recovery. It is just as easy to have higher layers deal with
occasional lost packet.

2. For real-time applications requiring “better never than late” semantics. Old
data may be worse than no data. For example, should an airplane bother
calculating the proper wing flap angle using old altitude and wind speed data
when newer data is already available?

Acknowledged Delivery: The receiver returns an acknowledgment frame to the sender
indicating that a data frame was properly received. This sits somewhere between the
other two in that the sender keeps connection state, but may not necessarily
retransmit unacknowledged frames. Likewise, the receiver may hand received packets
to higher layers in the order in which the arrive, regardless of the original sending
order.

Typically, each frame is assigned a unique sequence number, which the receiver
returns in an acknowledgment frame to indicate which frame the ACK refers to. The
sender must retransmit unacknowledged (e.g., lost or damaged) frames.

CS 513 2 week3-dll.tex



Framing

The DLL translates the physical layer’s raw bit stream into discrete units (messages) called
frames. How can the receiver detect frame boundaries? That is, how can the receiver
recognize the start and end of a frame?

Length Count: Make the first field in the frame’s header be the length of the frame.
That way the receiver knows how big the current frame is and can determine where
the next frame ends.

Disadvantage: Receiver loses synchronization when bits become garbled. If the bits
in the count become corrupted during transmission, the receiver will think that the
frame contains fewer (or more) bits than it actually does. Although checksum will
detect the incorrect frames, the receiver will have difficulty resynchronizing to the
start of a new frame. This technique is not used anymore, since better techniques are
available.

Bit Stuffing: Use reserved bit patterns to indicate the start and end of a frame. For
instance, use the 4-bit sequence of 0111 to delimit consecutive frames. A frame
consists of everything between two delimiters.

Problem: What happens if the reserved delimiter happens to appear in the frame
itself? If we don’t remove it from the data, the receiver will think that the incoming
frame is actually two smaller frames! Solution: Use bit stuffing. Within the frame,
replace every occurrence of two consecutive 1’s with 110. E.g., append a zero bit after
each pair of 1’s in the data. This prevents 3 consecutive 1’s from ever appearing in
the frame.

Likewise, the receiver converts two consecutive 1’s followed by a 0 into two 1’s, but
recognizes the 0111 sequence as the end of the frame.

Example: The frame “1011101” would be transmitted over the physical layer as
“0111101101010111”.

Note: When using bit stuffing, locating the start/end of a frame is easy, even when
frames are damaged. The receiver simply scans arriving data for the reserved
patterns. Moreover, the receiver will resynchronize quickly with the sender as to
where frames begin and end, even when bits in the frame get garbled.

The main disadvantage with bit stuffing is the insertion of additional bits into the
data stream, wasting bandwidth. How much expansion? The precise amount depends
on the frequency in which the reserved patterns appear as user data.

Character stuffing: Same idea as bit-stuffing, but operates on bytes instead of bits.

CS 513 3 week3-dll.tex



Use reserved characters to indicate the start and end of a frame. For instance, use
the two-character sequence DLE STX (Data-Link Escape, Start of TeXt) to signal
the beginning of a frame, and the sequence DLE ETX (End of TeXt) to flag the
frame’s end.

Problem: What happens if the two-character sequence DLE ETX happens to appear
in the frame itself?

Solution: Use character stuffing; within the frame, replace every occurrence of DLE
with the two-character sequence DLE DLE. The receiver reverses the processes,
replacing every occurrence of DLE DLE with a single DLE.

Example: If the frame contained “A B DLE D E DLE”, the characters transmitted
over the channel would be “DLE STX A B DLE DLE D E DLE DLE DLE ETX”.

Disadvantage: character is the smallest unit that can be operated on; not all
architectures are byte oriented.

Encoding Violations: Send an signal that doesn’t conform to any legal bit
representation. In Manchester encoding, for instance, 1-bits are represented by a
high-low sequence, and 0-bits by low-high sequences. The start/end of a frame could
be represented by the signal low-low or high-high.

The advantage of encoding violations is that no extra bandwidth is required as in
bit-stuffing. The IEEE 802.4 standard uses this approach.

Finally, some systems use a combination of these techniques. IEEE 802.3, for instance, has
both a length field and special frame start and frame end patterns.

CS 513 4 week3-dll.tex



Error Control

Error control is concerned with insuring that all frames are eventually delivered (possibly
in order) to a destination. How? Three items are required.

Acknowledgements: Typically, reliable delivery is achieved using the “acknowledgments
with retransmission” paradigm, whereby the receiver returns a special
acknowledgment (ACK) frame to the sender indicating the correct receipt of a frame.

In some systems, the receiver also returns a negative acknowledgment (NACK) for
incorrectly-received frames. This is nothing more than a hint to the sender so that it
can retransmit a frame right away without waiting for a timer to expire.

Timers: One problem that simple ACK/NACK schemes fail to address is recovering from
a frame that is lost, and as a result, fails to solicit an ACK or NACK. What happens
if an ACK or NACK becomes lost?

Retransmission timers are used to resend frames that don’t produce an ACK. When
sending a frame, schedule a timer to expire at some time after the ACK should have
been returned. If the timer goes off, retransmit the frame.

Sequence Numbers: Retransmissions introduce the possibility of duplicate frames. To
suppress duplicates, add sequence numbers to each frame, so that a receiver can
distinguish between new frames and old copies.

CS 513 5 week3-dll.tex



Flow Control

Flow control deals with throttling the speed of the sender to match that of the receiver.
Usually, this is a dynamic process, as the receiving speed depends on such changing factors
as the load, and availability of buffer space.

One solution is to have the receiver extend credits to the sender. For each credit, the
sender may send one frame. Thus, the receiver controls the transmission rate by handing
out credits.

Link Management

In some cases, the data link layer service must be “opened” before use:

• The data link layer uses open operations for allocating buffer space, control blocks,
agreeing on the maximum message size, etc.

• Synchronize and initialize send and receive sequence numbers with its peer at the
other end of the communications channel.

CS 513 6 week3-dll.tex



Error Detection and Correction

In data communication, line noise is a fact of life (e.g., signal attenuation, natural
phenomenon such as lightning, and the telephone repairman). Moreover, noise usually
occurs as bursts rather than independent, single bit errors. For example, a burst of
lightning will affect a set of bits for a short time after the lightning strike.

Detecting and correcting errors requires redundancy — sending additional information
along with the data.

There are two types of attacks against errors:

Error Detecting Codes: Include enough redundancy bits to detect errors and use ACKs
and retransmissions to recover from the errors.

Error Correcting Codes: Include enough redundancy to detect and correct errors.

CS 513 7 week3-dll.tex



To understand errors, consider the following:

1. Messages (frames) consist of m data (message) bits and r redundancy bits, yielding
an n = (m + r)-bit codeword.

2. Hamming Distance. Given any two codewords, we can determine how many of the
bits differ. Simply exclusive or (XOR) the two words, and count the number of 1 bits
in the result.

3. Significance? If two codewords are d bits apart, d errors are required to convert one
to the other.

4. A code’s Hamming Distance is defined as the minimum Hamming Distance between
any two of its legal codewords (from all possible codewords).

5. In general, all 2m possible data words are legal. However, by choosing check bits
carefully, the resulting codewords will have a large Hamming Distance. The larger
the Hamming distance, the better able the code can detect errors.

To detect d 1-bit errors requires having a Hamming Distance of at least d + 1 bits. Why?

To correct d errors requires 2d + 1 bits. Intuitively, after d errors, the garbled messages is
still closer to the original message than any other legal codeword.

CS 513 8 week3-dll.tex



Parity Bits

For example, consider parity: A single parity bit is appended to each data block (e.g. each
character in ASCII systems) so that the number of 1 bits always adds up to an even (odd)
number.

1000000(1) 1111101(0)

The Hamming Distance for parity is 2, and it cannot correct even single-bit errors (but can
detect single-bit errors).

As another example, consider a 10-bit code used to represent 4 possible values: “00000
00000”, “00000 11111”, “11111 00000”, and “11111 11111”. Its Hamming distance is 5, and
we can correct 2 single-bit errors:

For instance, “10111 00010” becomes “11111 00000” by changing only two bits.

However, if the sender transmits “11111 00000” and the receiver sees “00011 00000”, the
receiver will not correct the error properly.

Finally, in this example we are guaranteed to catch all 2-bit errors, but we might do better:
if “00111 00111” contains 4 single-bit errors, we will reconstruct the block correctly.

CS 513 9 week3-dll.tex



Single-Bit Error Correction

What’s the fewest number of bits needed to correct single bit errors? Let us design a code
containing n = m + r bits that corrects all single-bit errors (remember m is number of
message (data) bits and r is number of redundant (check) bits):

1. There are 2m legal messages (e.g., legal bit patterns).

2. Each of the m messages has n illegal codewords a distance of 1 from it.That is, we
systematically invert each bit in the corresponding n-bit codeword, we get n illegal
codewords a distance of 1 from the original.

Thus, each message requires n + 1 bits dedicated to it (n that are one bit away and 1
that is the message).

3. The total number of bit patterns = (n + 1)2m ≤ 2n. That is, all (n + 1)2m encoded
messages should be unique, and there can’t be fewer messages than the 2n possible
codewords.

4. Since n = m + r, we get:

(m + r + 1)2m ≤ 2m+r, or

(m + r + 1) ≤ 2r.

This formula gives the absolute lower limit on the number of bits required to detect
(and correct!) 1-bit errors.

CS 513 10 week3-dll.tex



Hamming developed a code that meets this lower limit:

• Bits are numbered left-to-right starting at 1.

• Bit numbers that are powers of two (e.g., 1, 2, 4, 8, etc.) are check bits; the
remaining bits are the actual data bits.

• Each check bit acts as a parity bit for a set of bits (both data and check).

• To determine which parity bits in the codeword cover bit k of the codeword, rewrite
bit position k as the a sum of powers of two (e.g., 19 = 1+2+16). A bit is checked by
only those check bits in the expansion (e.g., check bits 1, 2, and 16).

• When a codeword arrives, examine each check bit k to verify that it has the correct
parity. If not, add k to a counter. At the end of the process, a zero counter means no
errors have occurred; otherwise, the counter gives the bit position of the incorrect bit.

CS 513 11 week3-dll.tex



For instance, consider the ascii character “a” = “1100001”.

We know that:

• check bit 1 covers all odd numbered bits (e.g, 1, 3, 5, . . .)

• check bit 2 covers bits 2, 3, 6, 7, 10, 11, . . .

• check bit 3 covers bits 4, 5, 6, 7, 12, 13, 14, 15, . . .

• check bit 4 covers bits 8, 9, 10, 11, 12, etc.

Thus:

• check bit 1 equals: ?+1+1+0+0+1 = 1

• check bit 2 equals: ?+1+0+0+0+1 = 0

• check bit 3 equals: ?+1+0+0 = 1

• check bit 4 equals: ?+0+0+1 = 1

giving:

data: - - 1 - 1 0 0 - 0 0 1
codeword: 1 0 1 1 1 0 0 1 0 0 1
k: 1 2 3 4 5 6 7 8 9 10 11

Note: Hamming Codes correct only single bit errors. To correct burst errors, we can send b
blocks, distributing the burst over each of the b blocks.

For instance, build a b-row matrix, where each row is one block. When actually sending the
data, send it one column at a time. If a burst error occurs, each block (row) will see a
fraction of the errors, and may be able to correct its block.

Error correction is most useful in three contexts:

1. Simplex links (e.g., those that provide only one-way communication).

2. Long delay paths, where retransmitting data leads to long delays (e.g., satellites).

3. Links with very high error rates, where there is often one or two errors in each frame.
Without forward error correction, most frames would be damaged, and
retransmitting them would result in the frames becoming garbled again.

CS 513 12 week3-dll.tex



Error Detection

Error correction is relatively expensive (computationally and in bandwidth).

For example, 10 redundancy bits are required to correct 1 single-bit error in a 1000-bit
message. Detection? In contrast, detecting a single bit error requires only a single-bit, no
matter how large the message.

The most popular error detection codes are based on polynomial codes or cyclic

redundancy codes (CRCs).

Allows us to acknowledge correctly received frames and to discard incorrect ones.

CRC Checksums

The most popular error detection codes are based on polynomial codes or cyclic redundancy

codes. Idea:

• Represent a k-bit frame as coefficients of a polynomial expansion ranging from xk−1

to x0, with the high-order bit corresponding to the coefficient of xk−1.

For example, represent the string “11011” as the polynomial: x4 + x3 + x + 1

• Perform modulo 2 arithmetic (e.g. XOR of the bits)

• Sender and receiver agree on a generator polynomial: G(x). (G(x) must be smaller
than the number of bits in the message.)

• Append a checksum to message; let’s call the message M(x), and the combination
T (x). The checksum is computed as follows:

1. Let r be the degree of G(x), append r zeros to M(x). Our new polynomial
becomes xrM(x)

2. Divide xrM(x) by G(x) using modulo 2 arithmetic.

3. Subtract the remainder from xrM(x) giving us T(x).

• When receiver gets T (x), it divides T (x) by G(x); if T (x) divides cleanly (e.g., no
remainder), no error has occurred.

CS 513 13 week3-dll.tex



The presence of a remainder indicates an error. What sort of errors will we catch?

Assume:

• the receiver gets T (x) + E(x), where each bit in E(x) corresponds to an error bit.

• k 1 bits indicate k single-bit errors.

• Receiver computes [T (x) + E(x)]/G(x) = E(x)/G(x).

Will detect:

• single bit errors. If a single-bit error occurs, G(x) will detect it if it contains more
than one term. If it contains only one term, it may or may not detect the error,
depending on the E(x) and G(x).

• two isolated single-bit errors. Consider two single-bit errors:
E(x) = xi + xj = xi(1 + xj−i)

Note: xi is not divisible by G(x) if it contains two or more terms. Thus, we can detect
double-bit errors if G(x) does not divide (xk + 1) for any k up to the message size.

Satisfactory generator polynomials can be found. G(x) = x15 + x14 + 1, for instance,
does not divide xk + 1 for k ≤ 32768.

• odd number of bits.

• burst errors less than or equal to degree. Note: A polynomial with r check bits will
detect all burst errors of length ≤ r.

What transmitted message will be an error but still generate a checksum of zero on
receiving end? (T (x) + E(x))/G(x) so if E(x) = G(x).

CRC Standards

There are currently three international standards:

• CRC-12: x12 + x11 + x3 + x2 + x + 1

• CRC-16: x16 + x15 + x2 + 1

• CRC-CCITT: x16 + x12 + x5 + 1

Note: 16-bit CRCs detect all single and double errors, all errors with odd number of bits,
all burst errors of length ≤ 16 bits, and 99.997% of 17-bit errors.

Is usually done in hardware!

CS 513 14 week3-dll.tex



MD5

Message-digest algorithm for compressing a large message.

Take a message and produce a 128-bit message digest. This compact form can be used to
validate the received copy of the message.

CS 513 15 week3-dll.tex


