
CS 513/EE 506 Introduction to Local and Wide Area Networks WPI, Spring 2007
Craig E. Wills Standard Project Description
Monday, January 29, 2007

Introduction

This assignment is a course project to design and implement a three layer communication
model which permits two or more application processes to communicate over a network. The
expectation is that the program will be done in a UNIX environment with processes using
TCP/IP to exchange messages. The assignment can also be attempted in other environments,
but there is no guarantee as to how difficult the project becomes when you use another
network context.

The project is intended to expose you to at least three aspects of computer networks—the
client/server paradigm, working with a real network protocol (TCP/IP) and issues in the
design of the data link layer. You have already done some work with the first two items,
which you will be building on for this assignment.

The following description outlines the project but does not specify all the details. This
approach is used to give you choices in the functionality of the model and to force you to
make some of the design decisions.

Throughout the description it is important to separate the abstraction of a three level
model, from the details of interfacing to TCP/IP.

The project consists of three layers—application, data link, and physical. The application
layer consists of a protocol between a client/server pair of processes. Communication is in the
form of request and response messages. The client sends requests to the server and receives
responses to those requests. The data link layer provides frame-level communication between
client and server hosts. The data link layer operates over an unreliable channel subject to
lost and garbled data. The physical layer provides a full-duplex, communication channel on
which the data link layer can send an arbitrary byte stream. It is the physical layer that is
actually implemented using the TCP/IP protocol.

Application Layer

The application layer implements an interactive request/response protocol. The client reads
commands from standard input, converts them into server requests, sends them to the server,
and prints the response returned by the server. The server fields client requests and sends
back appropriate responses.

This is the part of the project where you have the most choice. You are to propose
the application domain. This proposal includes the functionality of the server and the
specification of the protocol. You must specify valid commands that the client accepts from
input, the meaning of the command request to the server, and the server responses. Your
protocol should have at least five distinct commands and at least one command must involve
a file transfer over the network. Your commands should include a large transfer in both
directions.

You should define message types for each of the commands supported by your client and
server. These messages should include header and data portions. However, the data portion
of your application layer messages is limited to 100 bytes in size. You will need to define a
means to accommodate commands requiring multiple messages for a single command.

1



If the server encounters an application-level error while processing a request, it returns
an error message. The client in turn prints out appropriate error explanations.

The application layer interfaces with the data link layer via only two routines: DataLinkSend()
and DataLinkRecv(). Both the client and server processes can issue DataLinkSend() and
DataLinkRecv() calls. You may also consider encapsulating these routines in a DataLink
object.

Data Link Layer

The data link layer accepts data passed via DataLinkSend(), places the data into a data
link frame, and sends the frame on the TCP/IP link for transmission. The design of your
data link layer must include the ability to handle an error-prone channel. Thus, the data
link layer must include considerations for buffering, retransmissions and some form of flow
control.

You must implement some type of sliding window protocol (see Tanenbaum for details).
At a minimum you must use a single-bit sliding window protocol, but you are encouraged to
use a send window size greater than three. In the latter case your data link layer will have
to handle buffering at the sender and/or receiver. If an application attempts to transmit
messages beyond the window size, the data link layer will block until space becomes available.

Retransmissions will require a timer mechanism to detect lack of acknowledgments. These
can be done using the select() system call. See the man page for how to use the timer facility
of select(). More details on using this call will also be made available by the instructor.

On the DataLinkRecv() side, note that a new data frame may arrive before the application
layer actually calls DataLinkRecv(). Because frames must be processed when they arrive
(otherwise you might ignore an acknowledgment), received data frames will have to queued.
When DataLinkRecv() is called, it must check for the presence of data in the receive queue.
If none is present, it will have to suspend itself until an appropriate event occurs. As in
Tanenbaum’s discussion, the data link layer processes must respond to timeout, frame arrival
and frame error events.

Physical Layer

The actual communication with the server takes place using Unix sockets and TCP/IP. Use
your Unix uid as the port number for your server unless this value conflicts with another
server in which case pick a a random value. The physical layer deals with the details of
establishing a TCP/IP connection and sending messages over a TCP/IP network. The data
link layer hands off frames to the physical layer for transmission.

As part of introducing unreliability into the network transmission you are responsible
for artificially dropping frames in the transmission. Dropping a frame simply means not
transmitting it for this assignment. Any frame that is sent (setup, data, ACK, NAK, etc)
can be potentially lost. The error rate to be used by the client and the server should be
given on the command line when each of these is started up. Obviously your data link layer
should not “know” whether a frame will be lost and will have to discover that problem via
the protocol you implement.

The sending data link layer will need to indicate the size of frames as part of the DLL
header so that the receiving DLL knows the size of each frame. For more realism, you can
add framing, character stuffing and checksumming to your data link layer, but in the simplest

2



case you can assume the physical layer either transmits an entire frame reliably or drops the
entire frame.

Input

It is the group’s responsibility to provide interesting and meaningful test data to show that
your project works. If the final project turned in does not work completely, then you should
provide ways to demonstrate which modules in fact are working.

Output

In order to observe the performance of the sliding window protocol and to check whether
your implementation is working properly, you need to collect statistics. For debugging rea-
sons, you should design a statistics gathering process on both the client and server machines.
These processes record on-going and final statistics. When you demonstrate your project it
is advantageous to have both monitoring processes outputting information into separate win-
dows. The following are suggested statistics (You should add your own which are appropriate
to your specific proposal):

1. the total number of data frames transmitted

2. the total number of retransmissions

3. the total number of acknowledgments sent

4. the total number of acknowledgments received

5. the total number of duplicate frames received

6. the total amount of data sent

For your debugging purposes you may wish to show the size of frames sent and received.
For performance analysis purposes you should consider measuring the time required to satisfy
a client request.

Design Decisions

Students are encouraged to work in two-person groups of your choosing, but individual
projects are acceptable. You should select a partner who has similar goals for the project
as yourself. Projects will be graded equally for all team members unless exceptional circum-
stances arise.

One issue to address in your design for the project is what protocol to use for handling
errors. More credit will be given to projects that correctly implement a protocol that allows
multiple outstanding messages (such as “go back n” or “selective repeat”) as opposed to
projects that implement a simple “stop and wait” protocol. However projects that do not
work will be penalized regardless of the protocol. Hence it is better to turn in a project that
works with a simpler data link protocol than one that does not work with a more complex
protocol.

An enhancement for additional credit is to send and receive frames byte-by-byte using
character delimiters for frames along with character stuffing and checksums. If this enhance-
ment is used then your error rates will be on a per-byte rather than per-frame basis.

3



Project Deadlines

The project has two deadlines:

1. Design Report (Due: Monday, February 12, 2007)

Each group will turn in a typed design report (one or two pages) defining the project
and explaining the work to be done. The design should include the team members,
the data link layer protocol to be used along with message structures and types. You
should also indicate what statistics you intend to gather. This design should clearly
explain the final product and include a schedule of work to be done. These designs
will be reviewed and returned with comments, but not actually graded.

2. Final Project and Report (Due: Monday, April 16, 2007)

The final report should be a well-presented technical report discussing your project.
You should explain how the program works, give specific sample runs and analyze the
results. Results indicating the relative efficiency of your protocol with varying error
percentages are encouraged. The final report may include parts of your design report.
The report should be 5-10 pages in length.

Grading

Projects will be primarily graded via an in-person demonstration with the instructor during
the last week of the semester. Projects will be graded based on features and correctness.
Correctly implemented projects using the “stop and wait” protocol will generally receive
grades in the B range. Correctly implemented projects using the “go back n” and “selective
repeat” protocols will generally receive grades in the low A range. Correctly implemented
projects that allow both sending and receiving of data along with buffering in the data link
layer and/or actual framing of data will generally receive A grades. Variation in grades will
depend on the quality of the work, features provided, the analyses that were done and the
final report.

4



Final Comments

This document outlines the project and a lot of the details on how to design and build it.
You should be familiar with TCP/IP from the previous assignment and should begin in a
simple manner by writing routines for transmitting data link information over the TCP/IP
connection. From this start you can go on to more complex issues.

The project provides you latitude on how it is designed and implemented. Not all details
are spelled out for you. Part of the assignment is to test how well you can take a more open
design project and turn it into a finished product. Do not wait to get started and do not
wait until the project design deadline to start coding. You have many decisions to make and
much work to do.

You will obviously want to consult the data link layer protocols in the textbook for
this assignment, although you probably do not want to use the code verbatim. Tanen-
baum has made the data link layer protocol code available online at the text Web site
(http://authors.phptr.com/tanenbaumcn4/) and included it as part of a simulation read-
ers can obtain. This simulation does not actually transfer data as your project must. It also
is more complex in the parameters it uses than your project needs to be. This simulation
and its code are available for you to consult, but it is not suggested that you try to use this
simulation code directly in your project. Any parts you do use should be documented in
your design report and final project.

5


