C.S.504
Solution for H.W. #2

1) A) (1,5), (2,5), (3,4), (3,5), (4,5)

B) \(\sum_{j=1}^{n} (j-1) = \sum_{j=1}^{n} j - \sum_{j=1}^{n} 1 = \frac{n(n+1)}{2} - n = \frac{n(n-1)}{2} \) inversions.

C) The do-loop is executed exactly once for each inversion. The execution time of INSERTION-SORT has a linear factor plus a factor proportional to the number of inversions in the input array.

D) \(X_j, 1 \leq j \leq n, \) - # inversions \((j,i) \) for each \(j \) counting from the right, \(n-j \), (that is, for \(j=1 \) the only possible inversion is \((n-1,n) \))

\[X = \sum_{n \geq j \geq 1} X_j. \]

We want \(E[X] \). For each \(j, X_j \) can assume values \(0, \ldots, j \), Assuming all permutations of \(A \) equally likely (drawn from uniform distribution), \(\Pr\{X_j = i\} = \frac{1}{j+1}, 0 \leq i \leq j \), and

\[E[X_j] = \sum_{j=1}^{n} \frac{i}{j+1} = \frac{1}{j+1} \sum_{j=2}^{i} \frac{1}{j} = \frac{i}{2}. \]

Now, \(E[X] = \sum_{j=1}^{n} E[X_j] = \sum_{j=1}^{n} \frac{i}{2} = \frac{1}{2} \sum_{j=1}^{n} - \frac{n(n+1)}{2} = \frac{n(n-1)}{4} = \Theta(n^2) \)

E) decrease

2. Letting \(\text{rv} A_n \) denote the number of accesses,

\[VA_n = E[A_n^2] - \left(E[A_n] \right)^2 = \sum_{1 \leq k \leq n} k^2 \Pr\{A_n = k\} - \left(\sum_{1 \leq k \leq n} k \right)^2 = \sum_{1 \leq k \leq n} k^2 \omega_k^2 - \left(\sum_{1 \leq k \leq n} k \right)^2 = \sum_{1 \leq k \leq n} k \left(n - \omega_k \right)^2 \]

\[= \frac{n(n+1)}{2} \left(\frac{1}{2} - \omega_k \right) + \frac{1}{2}, \]

and the standard deviation of \(A_n \) is

\[\sqrt{\frac{n}{2} \left(\frac{1}{2} - \omega_k \right) + \frac{1}{2}}. \]

3. There are \(\frac{n+1}{2} \), leaves, all at height 0, and \(\frac{n+1}{4} \) nodes of height 1,\ldots. Letting \(T(n) \) denote the sum of the heights,

\[T(n) = \left(\frac{n+1}{2} \right) 0 + \left(\frac{n+1}{4} \right) 1 + \left(\frac{n+1}{8} \right) 2 + \ldots + \left(\frac{n+1}{n+1} \right) \left(\frac{n+1}{n+1} \right) = (n+1) \sum_{k=1}^{\frac{1}{2}(n+1)} k \cdot \frac{1}{2^k}. \]

Substituting \(m = \log(n+1) \) and solving the first inner sum,

\[\sum_{k=1}^{m} \frac{1}{2^k} = \sum_{k=0}^{m} \frac{1}{2^k} = \left(\frac{1}{2} - \left(\frac{1}{2} \right)^{m+1} \right) + \left(\frac{1}{2} \right)^{m+1} = 4 \left(\frac{1}{2} - \left(\frac{1}{2} \right)^{m+1} \right) + \left(\frac{1}{2} \right)^{m+1} = 2 - 2 \left(\frac{1}{2} \right)^{m+1} \]

Solving the second inner sum,

\[\sum_{k=1}^{m} \frac{1}{2^k} - 1 = \frac{1 - \left(\frac{1}{2} \right)^{m+1}}{1 - \frac{1}{2}} = 2 - \left(\frac{1}{2} \right)^{m+1} - 1 = \frac{1}{n+1}. \]

Recombining,

\[T(n) = (n+1) \left(2 - \frac{2}{n+1} \left(\frac{1}{2n+1} + 1 \right) - 1 + \frac{1}{n+1} \right) = n - \log(n+1). \]