Due: November 6/11, 1996

1. (2 points) For the queueing model discussed in class, what is the expected queue length if the queue is empty 50% of the time? What is the expected queue length if the queue is empty 10% of the time?

2. (4 points) Find as simple a form as possible for the recurrence
\[n_{a_n} = (n + 1)a_{n-1} + 4n^2, \text{ if } n > 0 \]
\[0, \text{ if } n = 0 \]
We note that the first few terms are \(a_0 = 0, a_1 = 4, a_2 = 14 \).

3. (8 points) A set of vertices of a graph is an independent set if there are no edges between any pair of vertices in the set. For example, in the following graph

\[
\begin{array}{c}
\text{G:} \\
\text{a - b - c - f - e - d - g}
\end{array}
\]

\(\{a, e, f\} \) is an independent set, though \(\{a, b, f\} \) is not. We want an algorithm to compute the cardinality of a maximum independent set. For the above graph, our algorithm should return 4 corresponding to the independent set \(\{b, d, e, f\} \). Let \(\Gamma(v) \) denote the neighbors of \(v \), and for \(S \) a set of vertices of \(G \), let \(G-S \) denote the graph obtained by removing all vertices of \(S \) plus all incident edges, and let \(A(G) \) denote the size of a largest independent set in \(G \). An algorithm to compute \(A(G) \) is suggested by the observation that any fixed vertex \(v \) either belongs or doesn’t belong to an independent set. If \(v \) belongs to an independent set, then no vertices of \(\Gamma(v) \) belong to the set.

\[
\text{function } A(G) : \text{integer} \\
\quad \text{if } G \text{ has no edges then return the number of vertices in } G \\
\quad \text{else select some vertex } v \text{ with at least one incident edge} \\
\quad \text{return max}(A(G-\{v\}), A(1+G-\{v\}-\Gamma(v)))
\]

A) What kind of graph causes function \(A(G) \) to have worst-case execution time?
B) Develop a recurrence to describe the worst-case execution time of \(A(G) \). Assume that all of the operations of \(A(G) \) (aside from the recursive calls) require time \(n^2 \), where \(n \) is the number of vertices of \(G \).
C) Solve the recurrence of part B). A solution using \(\Theta \)-notation suffices.